
ORIGINAL PAPER

Event abstraction in process mining: literature review and taxonomy

Sebastiaan J. van Zelst1,2 • Felix Mannhardt3,4 • Massimiliano de Leoni5 • Agnes Koschmider6

Received: 15 October 2019 / Accepted: 25 April 2020 / Published online: 27 May 2020

� The Author(s) 2020

Abstract

The execution of processes in companies generates traces of event data, stored in the underlying information system(s),

capturing the actual execution of the process. Analyzing event data, i.e., the focus of process mining, yields a detailed

understanding of the process, e.g., we are able to discover the control flow of the process and detect compliance and

performance issues. Most process mining techniques assume that the event data are of the same and/or appropriate level of

granularity. However, in practice, the data are extracted from different systems, e.g., systems for customer relationship

management, Enterprise Resource Planning, etc., record the events at different granularity levels. Hence, pre-processing

techniques that allow us to abstract event data into the right level of granularity are vital for the successful application of

process mining. In this paper, we present a literature study, in which we assess the state-of-the-art in the application of such

event abstraction techniques in the field of process mining. The survey is accompanied by a taxonomy of the existing

approaches, which we exploit to highlight interesting novel directions.

Keywords Granular computing � Process mining � Sequential data � Label refinement � Event abstraction

1 Introduction

In modern organizations, the execution of business pro-

cesses is often supported by different information systems.

Organizations aim to improve the understandability of their

core processes, since this yields improved process

performance from different perspectives: reduced lead

time, higher revenue, higher customer satisfaction, better

compliance with internal/external regulations, etc. Process

mining provides several techniques to extract actionable

knowledge and insights of a process, on the basis of his-

torical execution data (van der Aalst 2016). Within the

realm of process mining, process discovery algorithms are

able to translate the captured event data into a process

model, in a (semi)automated fashion. Also, conformance

checking algorithms allow us to compute whether or not

the execution of the process, as recorded in the event data,

is in line with a reference model. Furthermore, several

techniques exist that allow us to compute insights in the

performance of the process, perform root-cause analyses,

correlate behavior with different KPIs, improve processes

and its models, etc., see, e.g., van der Aalst (2016).

The majority of the available process mining techniques

assume that event data are captured on the same level of

granularity. However, often, multiple dedicated informa-

tion systems are used within a company that support dif-

ferent aspects of the business, e.g., customer relationship

management (CRM), enterprise resource planning (ERP),

etc. Typically, these systems track the different activities

executed, i.e., events, in the context of the process. How-

ever, these systems capture the concept of activities (and

& Sebastiaan J. van Zelst

sebastiaan.van.zelst@fit.fraunhofer.de

Felix Mannhardt

felix.mannhardt@sintef.no

Massimiliano de Leoni

deleoni@math.unipd.it

Agnes Koschmider

ak@informatik.uni-kiel.de

1 Fraunhofer Institute for Applied Information Technology,

Sankt Augustin, Germany

2 RWTH Aachen University, Aachen, Germany

3 SINTEF Digital, Trondheim, Norway

4 NTNU Norwegian University of Science and Technology,

Trondheim, Norway

5 University of Padua, Padua, Italy

6 Kiel University, Kiel, Germany

123

Granular Computing (2021) 6:719–736

https://doi.org/10.1007/s41066-020-00226-2 (0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0003-0415-1036
http://crossmark.crossref.org/dialog/?doi=10.1007/s41066-020-00226-2&domain=pdf
https://doi.org/10.1007/s41066-020-00226-2

hence events) differently, which might not all be at the

same level of abstraction, i.e., the level of granularity

might be too fine. Also, different systems within the same

organization might not agree on their granularity level, i.e.,

joining the event data requires us to first ensure the same

granularity. As an example, consider Fig. 1, in which we

depict a simplified example of such a scenario. In the fig-

ure, sequences of low-level recorded events correspond to

one high-level business activity. For example, the first three

events, i.e., reg_act_start, opsi_pp_open and

reg_act_end, together refer to the high-level register

request activity. Observe that, the example is oversimpli-

fied, i.e., as indicated, different (information) systems

might record events at different levels of granularity.

The presence of mixed/overly fine granularity in event

logging causes problems in the direct application of pro-

cess mining techniques. For example, in the context of

process discovery, the presence of events in the data leads

to the discovery of process models that are often of high

complexity, i.e., no longer human interpretable. As an

example of such data, consider click-stream data. When

applying automated process discovery algorithms directly

on the raw logged click-stream data, we obtain a process

model such as the model depicted in Fig. 2a. Clearly, such

a complex process model, severely prevents us from

achieving the overall goal of process mining, i.e., an

improved understanding of the process. The main reason

for obtaining such a high-complex model is the fine gran-

ularity at which the user clicks are logged by the server. In

this case, it is necessary to group those low-level events to

high-level concepts, to discover the actual tasks performed

by the users. For example, in de Leoni and Dundar (2020),

the authors propose an abstraction technique that allows

discovering the process model depicted in Fig. 2b, when

applied on the same event data. Clearly, the complexity in

this model is greatly reduced, which enables us to gain

more insights into the high-level behavior of the users.

As a naive solution, one might be tempted to just focus

on the most frequent events, independently of the granu-

larity. However, this typically leads to process models that

are severely under-fitting with respect to the data. Hence,

we advocate the need of more advanced ways of

abstracting fine-granular events into higher level concepts.

In process mining, a large share of research has already

been conducted on the problem of event log abstraction.

However, a concise overview and categorization of these

works is lacking. Hence, in this paper, we present a liter-

ature survey of event abstraction techniques developed in

the context of process mining. We rely on a taxonomy,

derived from the existing literature, to provide an overview

of event abstraction techniques, which additionally allows

us to identify interesting directions for future work.

The remainder of this article is structured as follows. In

Sect. 2, we introduce the field of process mining. In Sect. 3,

we present a newly developed taxonomy for event

abstraction techniques in the field of process mining. In

Sect. 4, we discuss the existing techniques designed for

event abstraction, along the lines of the defined taxonomy.

In Sect. 5, we discuss the techniques covered in this work

compared to related domains, and, we highlight interesting

directions for future work based on underexposed taxon-

omy dimensions and recent developments in process min-

ing. Section 6 concludes this paper.

2 Process mining

The techniques that we report on in this paper are intended

to abstract event logs, with the ultimate purpose to achieve

better results when subsequently applying process mining

techniques. This section introduces event data, i.e., as stored

in event logs. Subsequently, we provide an overview of the

different aspects of process mining. Finally, we discuss the

problems and challenges posed by mixed-granular/low-

level event data, in the context of process mining.

2.1 Event logs

Event logs, e.g., Table 1, are the primary input data for any

process mining analysis. In Table 1, each row represents an

Fig. 1 Example visualization of logging at different granularity levels versus the business activity level. Multiple recorded events constitute a

high-level business process activity, e.g., the event sequence hreg act start; opsi pp open; reg act endi corresponds to register request

720 Granular Computing (2021) 6:719–736

123

event, which captures a specific execution of an activity

within a case (i.e., an instance of the process). Columns are

the attributes associated with the events. Mandatory attri-

butes are the Case Identifier, which allows identifying to

which case the event refers, the Timestamp when the event

occurred, and the Activity that was executed. Other typical

attributes are the Resource that executed the activity and

Transactional information indicating the activity’s state.

Using transactional information one can determine the

duration of the activities: The execution of activity check

ticket for case 12374 started at 12.12 on 30-7-2019, and

completed at 14.42, and hence, took 150 min. Other

transactional states, e.g., scheduled,active, etc. exist as

Fig. 2 Two process models, automatically discovered, i.e., using

process discovery algorithms, on the basis of logged clickstream

data (de Leoni and Dundar 2020). Figure 2a is discovered using the

raw logged data, Fig. 2b is discovered using the same data, yet,

abstracted to a more coarse-grained view of the data

Granular Computing (2021) 6:719–736 721

123

well. Additional process-specific attributes might also be

present in an event log, e.g., the Cost attribute in Table 1.

2.1.1 Events versus activities

The event log in Table 1 highlights the difference between

events and activities. Activities are the work packages that

are instantiated within instances of the process. The history

of execution of these activities is stored within event logs

for a posteriori analysis. Events represent the records

within these event logs. Note that, the execution of one

activity in a process instance can be reflected by multiple

events, e.g., when event logs record both the start and

completion of an activity. The business activities (i.e., the

concepts known at business level) can differ significantly

from the corresponding events stored in the event log, since

the underlying system might not operate on the same

conceptual level.

2.1.2 Instances versus classes

Aside from the differences between events and activities,

we also differentiate between the instance and class level

for activities as well as events. An activity class describes

an activity that may potentially be executed for some

instance of a process. An activity instance describes the

actual execution of an activity of some class. For example,

register request is an activity that is potentially executed.

As such, it represents an activity class. However, the

effective execution of such an activity (class) is referred to

as an instance of the activity class. Similarly, an event

class, describes a potentially observable entity related to

the execution of an activity. Likewise, an event instance

describes the actual recording of an event. For example, the

first two event instances listed in Table 1 refer to the event

classes that describe starting and completing the register

request activity, i.e., they are both recorded in the context

of the same register request activity instance. The number

of event classes per activity class, i.e., in terms of

observable event instances, depends on the detail at which

a system actually keeps track of activity execution.

2.2 Process models

Aside from event logs, another typical input of process

mining techniques is a process model. A process model is a

description of how a process ought to be executed. Com-

pared with a textual description in natural language, a pro-

cess model encodes (or should encode) the set of allowed

executions in a more formal way. Using a formal process

modeling notation has several advantages, i.e., it allows us to

assess various quality properties of the model, e.g., the

absence of deadlocks. It also allows software tools to auto-

matically reason about the modeled process behavior.

Several modeling notations have been put forward (-

van der Aalst 2016). However, the current de facto standard

in industry is the Business Process Model and Notation

(BPMN) formalism (Chinosi and Trombetta 2012), which

mediates between being mathematically grounded and

human interpretable. Figure 3 illustrates a simple model

describing the same process behavior as captured in Table 1.

The model describes a few fundamental constructs, often

Table 1 An example event log,

adapted from van der Aalst

(2016), describing behavior

related to a compensation

request process for concert

tickets

Case id Timestamp Activity Resource Transactional Cost � � �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. � � �

12373 30-7-2019 11.02 Register request Barbara Start 50 � � �

12373 30-7-2019 11.12 Register request Barbara Complete 50 � � �

12374 30-7-2019 11.32 Register request Jan Start 50 � � �

12374 30-7-2019 11.44 Register request Jan Complete 50 � � �

12373 30-7-2019 12.12 Check ticket Hajo Start 100 � � �

12374 30-7-2019 14.16 Examine casually Jorge Start 400 � � �

12375 30-7-2019 14.32 Register request Josep Start 50 � � �

12374 30-7-2019 14.16 Examine casually Jorge Complete 400 � � �

12373 30-7-2019 14.42 Check ticket Hajo Complete 100 � � �

12375 30-7-2019 14.32 Register request Josep Complete 50 � � �

12375 30-7-2019 15.42 Examine thoroughly Marlon Start 600 � � �

12373 03-8-2019 11.18 Examine thoroughly Barbara Start 600 � � �

12375 03-8-2019 12.42 Examine thoroughly Marlon Complete 600 � � �

12373 03-8-2019 15.18 Examine thoroughly Barbara Complete 600 � � �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. � � �

722 Granular Computing (2021) 6:719–736

123

used when modeling a process. The circle with label ‘‘start’’

represents the starting point of the process, whereas the circle

with label ‘‘end’’ represents the end point. Each rounded

rectangle represents an activity that we are able to execute

within the process, e.g., the decide activity. The arcs repre-

sent the general behavioral flow of the model, e.g., the first

activity is register request.

The diamond-shaped operators represent behavioral

control-flow constructs. The diamonds containing a �-

symbol represent an exclusive choice, i.e., either one of the

outgoing/incoming arcs is followed. The diamonds con-

taining a þ-symbol represent concurrency: all outgoing/

incoming arc (and branches) are followed, and, executed

completely independently/concurrently. The þ-symbol

with multiple incoming arcs are synchronization points.

We refer the reader to Chinosi and Trombetta (2012) for a

more elaborate introduction.

The þ-construct is an important feature present in most

process modeling notations that are used in industrial set-

tings. For instance, a block of 10 activities modeled con-

currently, yields a total of 10!¼3; 628; 800 different ways

to schedule those activities. When modeling the process as

an automaton, the resulting automaton is impossible to be

interpreted by humans, i.e., not allowing us to achieve the

goal of process mining: understanding the process.

2.3 Process discovery and conformance checking

Process mining largely focuses its attention on process

discovery and conformance checking. We briefly introduce

these subfields here.

2.3.1 Process discovery

Here, the goal is to automatically discover a process model,

on the basis of the event log. In Augusto et al. (2019), the

authors report an up-to-date survey of the major, current

process-discovery techniques. Process discovery algo-

rithms are typically able to discover a process model such

as the one depicted in Fig. 3, using event logs as presented

in Table 1. The quality of the discovered model depends on

whether or not the input event log contains sufficient

behavior and a limited amount of noise.

2.3.2 Conformance checking

Here, the starting point is a process model that describes

how the process ought to be executed. Such a process

model, i.e., a reference model, is either designed by a

human process analyst, or, is the result of the application of

a process discovery algorithm on an event log. Confor-

mance checking techniques/algorithms enable verifying to

what degree the execution of a process, i.e., as captured in

an event log, conforms with respect to the reference

model (Carmona et al. 2018). Reconsider the process

model depicted in Fig. 3, and a trace of process behavior of

the form hregister request, reinitiate request, check ticket,

decide, . . .i. Conformance checking techniques are able to

pinpoint that, e.g., the 2nd event of the trace of behavior

was wrongly executed, i.e., according to the model, it is not

possible to execute reinitiate request directly after the

register request activity.

2.4 Mixed granular and fine granular events
in process mining

Most process mining techniques assumes that event logs

record events at the right level of granularity, i.e., matching

the concepts known at business level, e.g., Table 1. How-

ever, as indicated, this is often not the case. As an example,

it could be the case that the execution of a real process,

e.g., behaving as modeled in Fig. 3, generates the event log

in Table 2. This event log is clearly not matching the

business concepts in the model. For example, the first three

events in Table 2, reg act start, opsi pp open and

reg act end correspond to activity register request exe-

cuted by Barbara.

Several challenges exist when applying process mining

algorithms on the basis of fine-granular event logs, i.e.,

event logs such as exemplified in Table 2:

Process

Discovery

Fine-granular events typically generate

complex process models, e.g., in

Fig. 2a. As indicated, these models lose

their purpose to convey actionable

knowledge of the process being

analyzed.

Fig. 3 Example process model

in BPMN notation, adopted

from van der Aalst (2016). The

model describes process

behavior in terms of the same

high-level business activities as

presented in the event log in

Table 1

Granular Computing (2021) 6:719–736 723

123

Conformance

Checking

In conformance checking, one aims to

explain the observed behavior in an

event log in terms of a reference model.

Clearly, if there is no exact match

between the captured events and the

modeled activities, conformance

checking is not properly applicable.

The example fine-granular event log in Table 2 illustrates

some additional challenges. For example, the costs recor-

ded for the first event of Table 1 is built up out of two

logged cost data attributes on the lower level, i.e., of event

id 45632X1i and 45632X3i. Furthermore, a mapping of

the resources tracked in the event data, e.g., 112AA12

corresponding to Barbara, is performed as well. However,

in the remainder of this paper, we are primarily concerned

with translating observed sequences of fine-granular events

to sequences of coarse-granular events, i.e., events

describing activities at the business level.

3 Event abstraction in process mining

To structure the literature review on event abstraction, we

first present the notion of event abstraction itself. In Sect.

3.2, we present the methodology followed in taxonomy

construction. In Sect. 3.3, we present and discuss a tax-

onomy of event abstraction techniques in process mining.

In Sect. 4, we discuss existing work on event abstraction

along the lines of the taxonomy presented here.

3.1 Event abstraction

We assume that the techniques considered in this paper

translate (multiple) instances of fine-granular events into

instances of coarse-granular events, i.e., representing a

level of detail that is closer, or equal to, the level of detail

at which one aims to analyze the process. Our work is

focused on event abstraction methods addressing the

mapping from fine-granular events to coarse-granular

events and, optionally, their connection to activity

instances.

Typically, given a sequence of fine-granular events r,

after applying an event abstraction technique a, we obtain a

sequence r0 of events, i.e., aðrÞ¼r
0, at a coarser granularity

level. Typically, we have jaðrÞj � jrj, i.e., aðrÞ is intended

to be significantly shorter/less complex than r. We assume

r to be a discrete sequence of events, however, not all

techniques covered in this study work on discrete event

sequences, i.e., some techniques transform continuous data

to coarse granular events. Nonetheless, most techniques,

i.e., potentially after applying some pre-processing on their

primary output, yield or provide means to obtain, a discrete

sequence of coarse-granular events, on the basis of a given

discrete sequence of fine-granular events.

Event abstraction as defined and considered in this paper

can be seen in the broader spectrum of a larger hierarchy

linking observations from the physical world to meaningful

activity instances. Consider Fig. 4, in which we sketch this

hierarchy (Koschmider et al. 2018). Within the figure, the

cloud represents observations in the physical world,

translated to ‘‘low-level events,’’ i.e., fine-granular events

in our context. Subsequences of said low-level events are

subsequently translated into ‘‘high-level events,’’ i.e.,

coarse-granular events, by means of applying abstraction

and/or aggregation techniques, i.e., event abstraction in our

context. In some cases, even the activity instances, i.e., as

described by the high-level events, are not directly related

to one-another. In such cases, additional correlation tech-

niques need to be used as well, i.e., to determine which

Table 2 Example event log

describing behavior related to a

compensation request process

for concert tickets (i.e., similar

to Table 1), depicting how the

events are typically logged in an

information system

Case id Event id Timestamp Event Description Resource Cost � � �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. � � �

12373 45632X1i 20193007T1102 reg act start null 15 � � �

12373 45632X2i 20193007T1102 opsi pp open 112AA12 null � � �

12373 45632X3i 20193007T1102 reg act end null 35 � � �

12374 45633X1i 20193007T1132 reg act start null 15 � � �

12374 45633X2i 20193007T1132 opsi pp open 1333A27 null � � �

12374 45633X3i 20193007T1132 reg act end null 35 � � �

12373 45634YZ1 20193007T1212 bs op stat x null null � � �

12373 45634YZ2 20193007T1212 ch chk tr 0093B74 100 � � �

12373 45634YZ3 20193007T1212 bs op stat u null null � � �

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. � � �

724 Granular Computing (2021) 6:719–736

123

activity instances belong to the same process instance.

However, in this paper, we do not consider such event

correlation challenges.

3.2 Taxonomy model and construction strategy

In this section, we briefly detail on the methodology fol-

lowed to construct the taxonomy presented. We adopt the

model of taxonomies as defined in Nickerson et al. (2010),

i.e., a taxonomy T consists of a collection of n dimensions

D1; . . .Dn. A dimension Di consists of ki � 2 characteristics

Ci;1; . . .;Ci;ki . These characteristics, ideally, are mutually

exclusive and collectively exhaustive. According to Nick-

erson et al. (2010), taxonomy construction is either in-

ductive or deductive. In an inductive approach, the authors

propose a set of dimensions based on their understanding

of the field and classify existing work accordingly. In a

deductive approach, the set of dimensions is derived from

existing work in the field. Here, we primarily follow a

deductive approach, however, in some cases, the taxonomy

is extended based on domain knowledge of the authors.

The study inclusion criteria within taxonomy construction

and the corresponding literature survey are presented in

Sect. 4.1.

3.3 A taxonomy of event abstraction methods

In this section, we present a taxonomy that helps in clas-

sifying event abstraction methods in the field of process

mining. Based on the literature assessed, we identify 7

different dimensions: supervision strategy, fine-granular

event interleaving, probabilistic nature of the outcome,

data nature, use of alternative perspectives, event class/

activity class relation and event instance/activity instance

relation. In the upcoming sections, we explain each

dimension in detail and discuss the different categories of

each dimension.

3.3.1 Supervision strategy

In line with common machine learning terminology, we

identify two main categories of supervision strategy used

by event abstraction techniques: supervised and unsuper-

vised. In a supervised scenario, the event abstraction

technique expects some form of additional input, e.g., a

labeled event log, a reference model, a set of possible

activities, etc., that is used to guide the event abstraction

algorithm in order to translate the observed fine-granular

events. In case an algorithm is unsupervised, no form of

additional input is required for the algorithm to translate

the fine-granular events into events of coarser granularity.

We do not distinguish between weak/strong forms of

supervision.

3.3.2 Fine-granular event interleaving

The dimension of fine-granular event interleaving refers to

the capability of event abstraction techniques to handle true

concurrency on the higher granular level. This implies that

a technique that is able to handle true concurrency is able

to map a group of fine-granular events, which potentially

occur interleaved with other fine-granular events, to the

same coarse-granular event instance. Consider Fig. 5, in

which we visualize this concept in terms of the running

example. Within this dimension, we identify two main

categories, i.e., strictly sequential- and interleaved

Fig. 4 Hierarchy of

mappings (Koschmider et al.

2018); from raw data captured

in the physical world, to activity

instances that can be correlated

to process instances

Granular Computing (2021) 6:719–736 725

123

techniques. Strictly sequential techniques only allow us to

map strict sub-sequences of fine-granular events to a

coarse-granular event, e.g., as examplified in Fig. 1.

Interleaved techniques allow for event interleaving, e.g., as

exemplified in Fig. 5. Interleaved techniques, by definition,

support the strictly sequential case. However, as inter-

leaved techniques allow us to express true concurrency on

the high level, we still differentiate between these two

categories.

3.3.3 Probabilistic nature of outcome

Some of the approaches that handle the mixed granularity

problem, internally use probabilistic models. In some

cases, the usage of an internal probabilistic model is

reflected in the output. Rather than returning a sequence of

coarse-granular events, these algorithms return a more

probabilistic result, e.g., a sequence of probability distri-

butions over high-level events. As such, we distinguish

purely deterministic approaches versus probabilistic

approaches. Here, the probabilistic nature is defined on the

output of the event abstraction technique. In some cases,

techniques use probabilistic models internally, yet, the

resulting outcome is always a sequence of coarse-granular

events. Hence, in such a case, we categorize the technique

as being deterministic.

3.3.4 Data nature

We assume the event abstraction techniques to translate

discrete sequences of fine-granular events into sequences of

coarse-granular events. However, some work assumes

continuous data to originate from the execution of a pro-

cess, which is aimed to be translated into sequences of

discrete, coarse-granular events. For example, consider the

analysis of human behavior in processes by means of

analyzing motion sensor data. Whereas this refers to the

first mapping challenge in the lower-left part of Fig. 4, the

results are coarse-granular events. Hence, we distinguish

between techniques that work on discrete event data and

techniques that are able to handle continuous/sensor data.

3.3.5 Alternative perspectives

In Tables 1 and 2, we depict additional data attributes for

events, e.g., the associated resources and costs of the

executed activities. Some event abstraction techniques

explicitly exploit such additional information for the pur-

pose of event abstraction. In terms of the taxonomy, we

define a strictly binary distinction between event abstrac-

tion techniques, i.e., a technique either exploits additional

information, or not. In case a technique does not exploit

any additional information, we assume the technique to just

consider the event data from a control-flow perspective,

i.e., solely considering/using the captured sequences of

fine-granular events. For the techniques that exploit addi-

tional perspectives, we further identify the following non-

exclusive perspectives:

• Time; Event time-stamps are omnipresent in event data

and allow us to order the observed events. However,

some event abstraction techniques, apart from using

sequential ordering of events, explicitly exploit timing

information in the event data, e.g., exploiting periods of

process inactivity to determine the stop criterion of a

high-level activity instance.

• Resources; Another data attribute that is often present

relates to resource information, e.g., which worker

caused the low-level event to be recorded. Some

techniques exploit this information to classify member-

ship relationship of low-granular events to higher-level

activity instances.

• Additional Available Event Payload (AAEP); Some

techniques allow for expressing behavioral patterns in

Fig. 5 Example of fine-granular

events which are interleaving

with each other. Some

abstraction techniques support

this, whereas other techniques

only support strictly sequential

mapping, cf. Fig. 1

726 Granular Computing (2021) 6:719–736

123

terms of fine-granular events, which relate to higher-

level concepts. In some cases, these patterns include

constraints on arbitrary event data attributes, e.g.,

activity costs. This extends the capabilities of methods

to correlate events with activity instances, by using

additional contextual information.

3.3.6 Event class/activity class relationship

As explained in Sect. 2.1, we differentiate between events

and activities. Typically, an event abstraction technique

translates sequences of fine-granular events to coarse-

granular events, which, in turn, represent instances of high-

level activities. Some techniques only allow us to map one

event class to one activity class, e.g., in terms of Fig. 5,

such techniques only allow us to map any observed

instance of event class reg_act_start to coarse-

granular event instances representing the higher level

register request activity class. Hence, the mapping is fixed

on a class level. Other techniques are less restrictive, i.e.,

they allow a single event class to be related to multiple

high-level activity classes. This is sometimes referred to as

shared functionality (Baier et al. 2014). We distinguish

between 1:1, n:1 and n:m mappings. Observe that, these

mappings are not necessarily mutually exclusive, i.e.,

n:m includes both 1:n and 1:1. However, due to the explicit

difference in expressive power between the different types

of mappings, we identify them as separate categories.

3.3.7 Event instance/activity instance relation

In line with the event class/activity class relationship, we

define a similar dimension for the actual instances of

events/activities. We distinguish between techniques that

allow us to map a fine-granular event instance to multiple

coarse-granular event/activity instances, and techniques

which do not allow for this. We distinguish between 1:1,

n:1 and n:m mappings. Observe that, in case of 1:1 map-

ping, we do not effectively apply event abstraction, i.e.,

each observed event directly corresponds to an executed

activity/coarse-granular event. As such, after applying a

technique describing a 1:1 mapping, the level of granu-

larity of the data remains unchanged.

4 Literature review

Having defined the taxonomy dimensions, we now discuss

the relevant literature on event abstraction techniques in the

domain of process mining. In Sect. 4.1, we briefly outline

the data collection and study inclusion strategies followed.

In Sect. 4.2, we discuss the relevant work along the dif-

ferent dimensions identified in the taxonomy. For each

dimension, we discuss what category is most commonly

represented, and, highlight noteworthy alternative approa-

ches. A schematic overview and classification of the lit-

erature, covered by this review, is presented in Table 3.

4.1 Methodology

In this section, we describe the methodology adopted

during the conduction of the literature review. We first

highlight the data collection phase, after which we briefly

mention inclusion criteria for the selected studies.

4.1.1 Data collection

As we are primarily interested in studies that originate from

the area of process mining, i.e., assuming that the data is

collected during the execution of a process, we used the

following query to identify appropriate publications:

To find synonyms for the term event abstraction we

checked all citations of papers that are related to process

mining, having this term in the title. We always checked

the first 100 hits of each query and searched the databases

SpringerLink, ScienceDirect and the ACM Digital Library

for related literature. When there were more hits, we

checked them as long as no matching publication was

found on three consecutive result pages. We also used

Google Scholar to find appropriate literature by browsing

the citations of related publications already found in the

scientific databases. Secondly, we conducted a backward

search to find more appropriate publications cited in papers

of the first search round. The result list was cross-checked

with two commonly known publications on event

abstraction in process mining (Baier et al. 2014; Tax et al.

2016). Moreover, we added six papers, which were not

found in the literature search, but were known to the

(‘‘event abstraction’’ OR ‘‘event and activity abstraction’’ OR
‘‘event and activity matching’’ OR ‘‘low-level event log’’ OR
‘‘unsupervised event abstraction’’ OR ‘‘supervised event abstraction’’)
AND ‘‘process mining’’.

Granular Computing (2021) 6:719–736 727

123

authors. Eventually, we ended up with 28 relevant publi-

cations. Related publications were found in the following

databases: SpringerLink (65%), ScienceDirect (5%) and

ACM Digital Library (36%). The 28 publications were

published in the following years: 2009 (7.14%), 2011

(3.5%), 2012 (3.5%), 2013 (7.14%), 2014 (3.5%), 2015

(10.71%), 2016 (14.3%), 2017 (14.3%), 2018 (21.4%),

2019 (10.71%), 2020 (3.5%). These numbers indicate an

increasing interest in the topic.

4.1.2 Study inclusion

Some of the event abstraction techniques developed in the

context of process mining bare great similarity compared to

techniques developed in other areas, e.g., the area of

complex event processing (CEP). In Sect. 5, we discuss

these similarities in more depth. However, in process

mining, a key assumption is the existence of some under-

lying process, for which multiple instances are executed. In

the majority of pattern detection methods originating from

different domains, such assumption is not met. Hence,

direct adoption of such methods in the context of process

mining potentially leads to combining inter-case events

into the same pattern. Therefore, as a criterion for inclusion

within this paper, we require the work described in a paper

to explicitly assume the existence of a process. Further-

more, we filtered the resulting list and included publica-

tions according to the following criteria.

• We only include work if it was not superseded by a

more recent revised version in which case we only

considered the latest publication.

Table 3 Classification of work (sorted chronologically) in the field of event abstraction, along the taxonomy dimensions identified in Sect. 3.3

Article Year Dimension

Supervision Interleaving Probability Data Alt. Perspectives EC:AC EI:AI

Un. Su. Se. In. Pr. De. Di. Co.

Bose and van der Aalst (2009) 2011 U U U U None n:1 n:1

Günther et al. (2009) 2009 U U U U None n:1 n:1

Ferreira et al. (2013b) 2013 U U U U None n:1 n:1

Baier et al. (2014) 2014 U U U U AAEP n:m n:1

Folino et al. (2015) 2015 U U U U AAEPa n:1 n:1

van Eck et al. (2016) 2016 U
b U U U None n:m n:1

Senderovich et al. (2016) 2016 U U U U Resource n:m n:1

Begicheva and Lomazov (2017) 2017 U U U U None n:1 n:1

Leonardi et al. (2017) 2017 U U U U Time n:m n:1

Mannhardt and Tax (2017) 2017 U U U U None n:m n:1

Sánchez-Charles et al. (2017)c 2017 U U U U None n:1 n:1

Alharbi et al. (2018) 2018 U U U U None n:m n:1

Baier et al. (2018) 2018 U U U U None n:1 n:1

Bernard and Andritsos (2018) 2018 U U U U None n:md n:1

Fazzinga et al. (2018a) 2018 U U U U Time n:m n:1

Fazzinga et al. (2018b) 2018 U U U U None n:m n:1e

Mannhardt et al. (2018b) 2018 U U U U AAEP n:m n:1

Tax et al. (2018) 2018 U U U U Time, Resource n:m n:1

Rehse and Fettke (2019) 2019 U U U U None n:1 n:1

Tello et al. (2019) 2019 U U U U Time n:m n:1

de Leoni and Dundar (2020) 2020 U U U U None n:m n:1

For some works, we combine initial and extended work. We refer to the year of publication of the latest work
aThe approach does solely use the data attributes attached to events and does not make use of the control-flow perspective.
bThe approach uses a provided window size to create segments of sensor data. However, a clustering algorithm (unsupervised) is used to merge

similar clusters. The identified clusters need to be labeled by a human expert.
cThe technique presented is inspired by event names/classes captured in natural language, yet, is generally applicable.
dExamples provided in the paper do not show the n:m relation, however, such relation is theoretically possible.
eThe n:1 mapping of event instances to activity instances is only sketched in this work

728 Granular Computing (2021) 6:719–736

123

• We do not include work if the publication did not

address an underlying model. For example, in Baier

et al. (2015), a method is proposed to find the best

matching activity name (represented by a coarse-

granular event) to observed fine-granular events. Hence,

the method assumes that the events observed are in fact

at the same level of granularity as the activities in which

the process model is expressed.

• We do not include work if the presented approach

allows to only translate an event instance to exclusively

one activity/high-level event instance, i.e., a 1:1 map-

ping on the event instance/activity instance dimension,

which is not suitable for event abstraction in process

mining.

• We exclude work describing a high-level application of

event abstraction, i.e., not a specific approach,

e.g., Brzychczy and Trzcionkowska (2019).

• We exclude publications primarily focusing on event

correlation, e.g., Montahari-Nezhad et al. (2011) and

Pérez-Castillo et al. (2012);

• We excluded techniques that are described incom-

pletely and/or techniques that potentially could be used

for event abstraction, yet, a detailed study has not been

performed. For example, in Folino et al. (2014), event

abstraction is discussed in the context of process

performance prediction, however, it is unclear if the

approach can provide a coarse-granular event log for

use in generic process mining tasks. In Richetti et al.

(2014), event abstraction using semantic similarity of

fine-granular events is proposed, yet, the actual abstrac-

tion phase is not described. Similarly, in Nguyen et al.

(2019), the authors propose to automatically detect

stages of a process, yet, focus on applying process

discovery on sublogs created for said stages, at the same

granularity level as the initial input.

After applying study exclusion (including removal of work

that is superseded by follow-up work), 21 articles are

considered in the review.

4.2 Review

In this section, we discuss the identified event abstraction

techniques in the area of process mining, along the lines of

the dimensions of the deduced taxonomy. The supervision

dimension is the most variable dimension, i.e., techniques

differ greatly in this domain. Hence, we highlight all works

in this section in detail, in a chronological fashion per

supervision type, i.e., unsupervised and supervised. For the

other dimensions, the variability of the different approa-

ches is less prominent, hence, for these dimensions, we

briefly discuss what is the most common category among

the different works identified, and, we highlight interesting

applications, i.e., techniques falling into a less common

category.

4.2.1 Supervision strategy

Whereas the majority of techniques uses some form of

supervision strategy to group fine-granular events into

coarse-granular events, the first two event abstraction

techniques identified (chronologically) work in an unsu-

pervised manner. Hence, we first turn our focus toward

techniques implementing an unsupervised strategy, after

which we turn our focus to supervised techniques. We start

each paragraph with a summary of the different techniques,

after which we present each technique covered in the study

in more detail.

4.2.2 Unsupervised techniques

The unsupervised techniques all aim to group the fine-

granular events on the basis of strong re-occurrence of

patterns. In some cases, these patterns are simply repeating

(strict) sub-sequences. In other cases, these patterns are

more advanced, e.g., imperative process models that

describe sub-sequences of fine-granular events. In some

cases, the techniques cluster (sometimes iterative) patterns

into new coarser-grained events.

In Bose and van der Aalst (2009), the authors consider

the notion of coherent sub-sequences of behavior. How-

ever, no clusters are discovered in this techniques, i.e.,

repeating local execution patterns, e.g., tandem arrays or

maximal repeats, are discovered and then abstracted to

higher-level activities. In Günther et al. (2009), the authors

propose to learn coherent sub-sequences of event instances,

i.e., referred to as trace segmentation, which are used to

create coarse-granular events. Each event and/or trace

segment is assigned to a cluster. Internally, a hierarchy of

clusters is constructed, s.t., in the end, all events belong to

the root cluster of the hierarchy. In Folino et al. (2015), the

authors propose an unsupervised event abstraction tech-

niques, which is subsequently followed by a trace-level

clustering. Predictive clustering trees are used to cluster

low-level events, i.e., considered as being sets of attributes,

into hierarchical clusters so that each cluster corresponds to

an activity type for which the low-level events are recor-

ded. Clustering is based on repeatedly checking whether

the workflow schema (process model) extracted, when

applying the clustering, improves two quality measures

defined in the paper.

In Mannhardt and Tax (2017), more advanced methods

to find patterns are used. In this work, frequent local pro-

cess models, i.e., process models that describe just a frac-

tion of an observed fine-granular trace, are discovered and

subsequently used as a basis for abstraction. In Sánchez-

Granular Computing (2021) 6:719–736 729

123

Charles et al. (2017), the authors propose to use word-

embedding techniques to map subsequences of fine-gran-

ular events into coarse-granular events. The authors pro-

pose to do so, in order to group events that have a

semantically similar name. In Alharbi et al. (2018), the

authors propose to learn high-level activities by discover-

ing hidden Markov models. The number of states of these

models is computed using log likelihood, after which the

Viterbi algorithm (Forney 1973) is applied to extract

sequences of states corresponding to coarse-granular

events. Finally, in Rehse and Fettke (2019), the authors

propose to compute the ‘‘spatial proximity’’ between fine-

granular activities, i.e., essentially grouping events that

often co-occur. Subsequently, a hierarchical clustering of

events is computed, which forms the basis for coarse-

granular event recognition.

4.2.3 Supervised techniques

The supervised event abstraction techniques generally use

three different types of supervision artefacts. Some use a

time interval to determine groups of fine-granular events.

Each group typically relates to a distinct higher-level

activity. A fairly limited number of techniques assumes

process analysts to select a small portion of event data on

which they provide a manual mapping from fine-granular

events to higher-level activities. The mapping is then used

as a knowledge base to reason on the large portion of event

data. The majority of the techniques assumes some form of

reference model, i.e., ranging from loosely specified

domain knowledge to more advanced/formal models.

Typically, these models are used as a basis to apply

matching of fine-granular patterns.

In Ferreira et al. (2013a), the authors expect the user to

provide a macro-model as an input, next to a sequence of

fine-granular events. The macro-model is represented by a

Markov model, expressed over the high-level activity

classes. As such, the user of the technique is expected to

know the basic high-level activities and their relationship.

In Baier et al. (2014), the authors propose to use domain

knowledge to guide the event abstraction algorithm. In

particular, the technique expects an input process model

together with a description, which is transformed into an

annotated process model. The annotated process model, in

turn, is used to define event-activity relations for the input

event log, i.e., the event log on which the abstraction is

applied.

In van Eck et al. (2016), the authors translate continu-

ous sensor data into higher-level events. The only input

required is a minimal window size, in which the input

sensor data needs to be segmented. Clustering is subse-

quently used to group segments, and, based on cluster

properties, generate implicit labels for the observed events.

Optionally, such implicit labels can be refined by a domain

expert. Similarly, Senderovich et al. (2016) propose an

event abstraction technique for discrete sensor data. The

sensor data (location data) is translated to a collection of

interactions. Given an interaction pattern, sets of interac-

tions are grouped that match the given pattern. Additional

process knowledge, e.g., a person cannot be in two loca-

tions in the same time, is encoded in an ILP, which is used

to translate the observed interactions into high-level

activity instances.

In Begicheva and Lomazov (2017), the authors assume

that each coarse-granular activity class is represented by

the execution of a sub-process, tracked at the fine-granular

level. Hence, such a mapping needs to be initially given, in

order to effectively apply the event abstraction. The fine-

granular events are replaced by corresponding coarse-

granular activities, which are further translated into a

process model. In Leonardi et al. (2017), the authors use

domain knowledge, in the form of ontologies, to translate

fine-granular events into coarse-granular events. The fine-

granular events are mapped to the ground terms of such

ontologies, after which a rule-base is exploited to learn

higher-level concepts. In Baier et al. (2018), the authors

propose to match fine-granular events to an existing pro-

cess model of the whole process, by solving constraint

satisfaction problems that are built based on sets of

declarative constraints discovered on both the process

model and the event log. Further disambiguation of the

matches is performed by integration of domain knowledge,

i.e., by consultation of human experts.

In Fazzinga et al. (2018a), the authors abstract fine-

granular events on the basis of a given high-level process

model. Each possible interpretation of the fine-granular

trace, in terms of coarse-granular events, is computed with

an associated probability distribution. In Fazzinga et al.

(2018b), the authors use a hidden Markov model that

models the generation of low-level events. The frequency

of precedence relations between high-level activities are

inferred. To do so, the authors use candidate mappings,

based on activity dependencies. In Mannhardt et al.

(2018b), the authors propose to capture behavioral patterns

as Data Petri nets, i.e., given by the domain expert. The

technique subsequently finds these behavioral patterns in

the fine-grained data, and, replaces them with a coarse-

granular activity instance. In Bernard and Andritsos

(2018), the author propose to use process trees, i.e., a

subclass of Petri nets, to transform fine granular event

sequences onto coarser-level activity instances. In partic-

ular, the authors propose to use event abstraction in the

domain of customer journey mapping.

1 Note that, in some cases, these internal representations are used as a

supervision model, yet, this is not always the case.

730 Granular Computing (2021) 6:719–736

123

In Tax et al. (2018), the authors propose to use a

supervised learning approach on the basis of conditional

random fields. The approach expects a set of annotated

traces in which each fine-granular event instance has a

corresponding coarse-granular event instance. On the basis

of the annotated traces, a conditional random field is

trained, which is used on a collection of unlabeled fine-

grained events to apply event abstraction. In Tello et al.

(2019), the authors propose a framework that first aims to

distinguish segments in traces. For such a segment sepa-

ration, an optimization approach is used that requires a

‘‘segmentation list’’ for the separation problem. The seg-

mentation list, essentially, is a set of relatively small

examples. Next, the separated traces are provided as an

input to a clustering algorithm that is used to create high-

level activity labels. Finally, in de Leoni and Dundar

(2020), the authors propose to create ‘‘sessions’’ of fine-

granular events. These sessions correspond to time periods,

which are defined on a minimum time of inactivity, i.e., if

no events are observed for at least a time-period D, a new

sessions starts.

4.2.4 Fine-granular event interleaving

In terms of fine-granular event interleaving, we observe

that the distribution of the relevant work is relatively

mixed. Typically, work that supports interleaving within

the fine-granular event representation uses some form of

internal model that is able to capture concurrency, in order

to represent the higher level events.1 For example, Petri

nets (Murata 1989) are used internally to map the fine-

granular events into coarse-granular events (Mannhardt

and Tax 2017; Mannhardt et al. 2018b). Also, more

declarative process modeling languages are used for this

purpose (Baier et al. 2018). Similarly, techniques that use

ontologies (Leonardi et al. 2017) are able to use an

underlying engine to map fine-granular events in an inter-

leaved manner. In case of strictly sequential techniques, it

is harder to pinpoint a commonly used internal model type.

For example, in Tax et al. (2018), the authors propose to

use linear-chain conditional random fields (CRFs) to rep-

resent sequences of sensor data. Likewise, in Alharbi et al.

(2018) and Fazzinga et al. (2018b), the authors propose to

use hidden Markov chains as an internal representation.

4.2.5 Probabilistic nature of outcome

The vast majority of the work results in a deterministic

output, i.e., a sequence of coarse-granular events.

Notable exceptions to the standardized outcome

specification are Tax et al. (2016), Fazzinga et al.

(2015, 2018a, b). Tax et al. (2016) return an estimated

Gaussian mixture model (GMM) for each tuple of lifecycle

steps for a certain activity (start and complete). The esti-

mation is based on the time differences between start and

complete lifecycle steps for an activity. In Fazzinga et al.

(2018b), the authors propose to use a hidden Markov model

that models the generation of fine-granular events, which is

used to infer the frequency of precedence relations, rather

than coarse-granular events. In Fazzinga et al.

(2015, 2018a), the authors aim to find all possible inter-

pretations of the fine-granular trace, yet, finally returning a

compact representation of these interpretations.

4.2.6 Data nature

Clearly, most techniques covered in this work are using

discrete data. However, van Eck et al. (2016) is a

notable exception, i.e., the only work applicable on con-

tinuous data. In van Eck et al. (2016), the authors propose

to apply process mining on sensor measurement data. The

stream of sensor data, which might be multivariate, is first

segmented using a given window size. Subsequently, for

each segment, relevant features are calculated, which are

used to cluster the different segments. These clusters need

to be labeled by domain experts. Interestingly, the output of

this first step is a sequence of potentially (yet not neces-

sarily) fine-granular events, i.e., any of the techniques

working on discrete data are applicable on the output of

this step. Other work exists which covers the application of

process mining on continuous/sensor data as well (Brzy-

chczy and Trzcionkowska 2019). However, this work does

not present a generic method and/or technique for the

purpose of event abstraction, i.e., translation of the sensor

signal is performed manually. Another notable work

is Senderovich et al. (2016), which propose to translate

interactions, e.g., nurses providing a treatment to a patient,

into coarse-granular events. In this regard, the work is not

directly applicable on arbitrary fine-granular events, yet,

relevant in the context of event abstraction. Finally,

in Sánchez-Charles et al. (2017), the authors propose a

technique inspired by event classes in natural language,

i.e., event log complexity is reduced by means of learning

word embeddings.

4.2.7 Alternative perspectives

Interestingly, the vast majority of the techniques covered

only uses the control-flow perspective, i.e., solely the

sequence of events is considered, despite the opportunity to

leverage additional information recorded as event payload.

Using additional information that encodes the context in

which an event is recorded may help to map events to the

1 Note that, in some cases, these internal representations are used as a

supervision model, yet, this is not always the case.

Granular Computing (2021) 6:719–736 731

123

correct activity instance. Baier et al. (2014) were the first to

allow the specification of rules over additional data attri-

butes. Here, so-called attribute conditions are defined over

the event payload of surrounding events, which are then

combined with rules based on the control-flow perspective

and allow to restrict the number of events that may be

matched to a specific activity instance. However, in case,

multiple conditions match a single event instance, all

matches are considered valid. A different approach is taken

in Folino et al. (2015). The authors propose to first cluster

the event log, while disregarding the control-flow per-

spective by considering an event as a set of data attributes.

The data perspective takes precedence on the decision

which events to cluster together, and, control flow is only

implicitly taken into account through the clustering. As an

improvement over the work of Baier et al. (2014), the

approach presented in Mannhardt et al. (2018b) allows to

exploit arbitrary data by using Petri nets with variables and

data expressions as the internal model to represent patterns

of fine-granular events. Here, the ambiguity of multiple

conflicting rules being activated for the same fine-granular

event is resolved by solving a global optimization problem,

i.e., at the cost of higher computational complexity. Several

other methods have been exploiting specific perspectives,

e.g., the time and resource perspective. For example,

in Senderovich et al. (2016), the discovered mappings are

based on interactions between resources, i.e., heavily

relying on the resource perspective. In Leonardi et al.

(2017), the authors incorporate the time perspective in an

ontology-based approach. The conditional random fields

used in Tax et al. (2016) include both the time and

resource perspective. Notably, the work in Fazzinga et al.

(2018a) supports the time dimension in combination with

providing a probabilistic output.

4.2.8 Relation between event classes and activity classes

Concerning the relationship between event classes and

activity classes, most recent works support the full n:m

mapping, i.e., the challenge posed by shared functionality,

first raised in Baier et al. (2014). A single event class may,

in these works, relate to different activity classes depending

on the context is solved. This is in contrast to early work

that does not allow for such ambiguity in the input data,

i.e., a certain event class is always linked to the same

higher level activity, i.e., a n:1 mapping is used.

4.2.9 Relation between event instances and activity

instances

Opposed to the class relationship between events and

activities, on an instance level, we observe that almost all

techniques are limited to an n:1 relationship model. This

means that, whereas event classes may be shared between

activities, individual events cannot be part of more than

one activity instance. This is restriction limits certain sce-

narios, e.g., when the same sensor is triggered by two

different activities at the same time. A notable exception

is Tax et al. (2016), where, due to its probabilistic nature,

i.e., as described previously, an event instance is able to

(partially) belong to multiple high-level concepts. How-

ever, this is not extensively evaluated nor further discussed

in the paper.

5 Discussion

In this section, we discuss different fields and/or groups of

techniques that bear similarities with the techniques pre-

sented in this paper. We discuss granular computing,

complex event processing, activity recognition and (pro-

cess mining specific) data pre-processing techniques. Fur-

thermore, we present interesting unexplored dimensions as

well as potential novel dimensions to be considered.

5.1 Related fields of study

In this section, we discuss the similarities of event

abstraction in process mining with respect to several rela-

ted fields.

5.1.1 Granular computing

The event abstraction techniques covered in this literature

survey clearly follow the basic conceptual principles of

granular computing (Pedrycz 2001; Bargiela and Pedrycz

2016). In particular, the works considered in this paper can

be regarded as abstraction mechanisms that reduce the

conceptual burden of understanding the information carried

by the data, i.e., as exemplified by Fig. 2. The majority of

the work considered here translates data at the information-

granule level (fine-grained events) to the symbolic level

(coarse-grained events).

Despite the clear relationship between granular com-

puting and event abstraction, typical models used by

techniques in the domain of granular computing are not

necessarily adopted in state-of-the-art event abstraction

techniques. Concepts originating from the domain of fuzzy

logic are often applied in granular computing, yet, have not

at all been considered in event abstraction. For exam-

ple, (Chiang et al. 2018) use fuzzy Petri nets (Looney

1988), in order to analyze electroencephalogram (EEG)

signals for the purpose of sleep quality measurement.

Similarly, in Liu and Zhang (2018); Liu et al. (2018)

principles of fuzzy logic are used for classification

732 Granular Computing (2021) 6:719–736

123

problems in cases where class labels are not necessarily

mutually exclusive.

5.1.2 Complex event processing (CEP)

Methods based on complex event processing (Cugola and

Margara 2012) typically assume a stream of events, over

which queries are evaluated. When a query is matched a

high-level activity is detected. Traditionally, CEP does not

consider the notion of process instance (i.e., a case) and in

case of overlapping queries (e.g., shared functionalities or

n:m relations on a event/activity type level) both high-level

activities are detected. There are some applications using

the CEP paradigm in a business process context, e.g., CEP

is used for process monitoring in Oliveira et al. (2013) and

Bülow et al. (2014). In Halle and Varvaressos (2014), a

CEP notation is formalized such that it could be used as a

basis for event abstraction. The application of CEP to

business processes and process mining is elaborated more

extensively in Soffer et al. (2019). The authors explicitly

list event abstraction as a use case and issue to be worked

on.

5.1.3 Activity recognition (ARC)

Many activity recognition methods, i.e., focusing on

translating low-level sensor data from ambient/wearable

sensors (e.g., vision-based or motion-based signals) to

human activities, have been proposed (Mannhardt et al.

2018a; Abdallah et al. 2018). Often, predictive or inter-

vention-related task scheduling, i.e., based on the recog-

nised activity, is the main goal. A recent overview focused

on using these techniques for process mining in industrial

environments can be found in Mannhardt et al. (2018a).

Broader surveys of the field are published in Aggarwal and

Ryoo (2011); Abdallah et al. (2018).

5.1.4 Data pre-processing

Recently, some authors have considered data pre-process-

ing algorithms, specifically designed for process min-

ing (Conforti et al. 2017; Sani et al. 2017, 2018; Chapela-

Campa et al. 2019; Sun et al. 2019). These techniques do

not aim to alter the granularity level of the data. Rather, the

techniques aim to find (in)frequent patterns in the event

data, which they decide to either keep, remove, replace,

etc. The main challenge in these techniques is the existence

of concurrency in the process under study. Concurrent

scheduling of activities yields a large number of different

orderings in which the corresponding events can be

observed. As such, it is difficult to find common patterns.

Nonetheless, the application of the aforementioned pre-

processing techniques typically leads in more precise

process models, i.e., more restrictive process models. The

pre-processing techniques are expected to perform bad

when the event data are very fine grained, i.e., combined

with concurrency among these fine-grained events. Hence,

a combination of data pre-processing techniques with event

abstraction techniques may lead to better results.

5.2 Future directions

Based on the conducted literature review, some dimensions

identified in the taxonomy, turn out to be underexposed.

Secondly, some recent developments in the area of process

mining indicate possibilities for work on novel dimensions.

In this section, we briefly discuss these aspects.

5.2.1 Supervision

Our analysis of the state-of-the-art has illustrated that the

majority of existing techniques is supervised, i.e., requiring

some domain knowledge to be fed in. Just a small portion

is unsupervised. Clearly, the use of domain knowledge

enables us to generate more accurate abstractions, but is

not always easy to provide, i.e., multiple employees are

responsible for sub-parts of a process, process aware-

ness/knowledge is limited/biased. Hence, there seems to be

room for novel work in this category, where, process

analysts are facilitated to provide some, possibly limited,

domain knowledge, e.g., via visual analytics (de Leoni and

Dundar 2020).

5.2.2 Probabilistic output

The majority of the techniques results in a discrete output.

Whereas there is some work in the area of probabilistic

output models, it is questionable whether such output is

desired, i.e., on needs to translate it in order to use it. An

advantage of probabilistic approaches is the relative ease of

‘‘playing’’ with different abstractions of the same data.

Different abstractions specifically come into play when

moving toward n:m relations between event and activities

on the class and instance level. For example, when using a

local (Baier et al. 2014) or even a global (Mannhardt et al.

2018a) search method for solving event abstraction in such

n:m scenarios there is rarely only one clear optimal solu-

tion, yet, most methods only return a single result. Even

when methods provide a probabilistic interpretation, the

utility of such result is low, i.e., most process mining

methods require a deterministic event log as input. An

exception to this is Pegoraro and van der Aalst (2019),

which assumes that an event log contains quantified

uncertainty.

Granular Computing (2021) 6:719–736 733

123

5.2.3 Input data

Interestingly, only one of the reviewed works combines the

notion of continuous data sources with the notion of pro-

cess instances. Clearly, a lot of work exists that considers

discretization of continuous data/signals. It remains inter-

esting to study whether such techniques are easily trans-

lated to work on data that assume the execution of an

underlying process. Furthermore, the use of additional data

attributes is relatively underexposed. In some cases, certain

data attributes logged during the execution of fine-grained

activities can aid in mapping onto coarsely-grained con-

cepts. A difficulty when considering arbitrary rules over

data combined with control flow is that the computational

complexity of abstraction methods often increases

considerably.

5.2.4 Streaming data

Within process mining, the notion of online analysis and

event streams have gained some attention over recent

years, e.g., consider (Burattin 2019; van Zelst et al. 2018).

As CEP techniques are generally defined on the basis of

online streams of events, an investigation of the applica-

bility of these techniques in an online process mining set-

ting seems promising. Particularly, challenging in online

event abstraction is the fact that the knowledge we have of

a process instances, i.e., the activities that have been exe-

cuted, changes over the course of the analysis. As such, the

mappings detected by an online event abstraction technique

potentially change over time.

5.3 Drawbacks and limitations of event
abstraction

The techniques covered in this paper show a wide variety

in terms of supervision strategy (including the type of

supervision artefact when using a supervised approach).

Similarly, the techniques differ greatly on support for

interleaving among the fine-granular events. For other

categories, we observe less differences, yet, variety still

exists. This variety can be seen as a limitation of event

abstraction, i.e., it signifies the different perspectives one

can take in order to effectively abstract the event data.

Therefore, it is likely that we will not observe the devel-

opment of highly generic, domain independent event

abstraction techniques. Rather, it is to be expected that the

majority of novel event abstraction techniques are tailored

toward specific application domains and/or assumptions

posed on the input data.

In case of using an unsupervised approach, there is no

guarantee that the patterns discovered rightly correspond to

high-level activity instances. On the one hand, some

supervised techniques cope with this problem, i.e., by using

domain knowledge, the semantic meaning of certain sub-

sequences of fine-granular events is more clear. However,

on the other hand, it is questionable whether the type of

supervision artifact is available in practice. Specifically,

when applying the event abstraction techniques in the

context of discovery, a process model accurately describing

the process is typically unknown.

6 Conclusion

The widespread application of process mining in industry

has unraveled new challenging problems, one of which is

mixed granular event collection. Mixed-granular event data

hampers the applicability of process mining, i.e., discov-

ered models tend to be too complex and conceal the true

business-level process logic. Furthermore, conformance

checking techniques are not applicable, in case, there is a

mismatch in granularity between the given reference model

and the collected event data. In this paper, we present the

results of a systematic literature review, covering work that

abstracts events into a higher level of granularity. On the

basis of the relevant literature, we proposed a taxonomy

along the lines of which we classify and discuss the related

works in this domain. On the basis of our literature review,

we observe ample opportunities for work that does not use

any form of supervision in the event abstraction. Similarly,

techniques that work on continuous data are of interest.

Finally, we observe that the recent interest in online pro-

cess mining is an interesting future application domain for

event abstraction techniques as well.

Acknowledgements Open Access funding provided by Projekt

DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Abdallah ZS, Gaber MM, Srinivasan B, Krishnaswamy S (2018)

Activity recognition with evolving data streams. ACM Comput

Surv 51(4):1–36

734 Granular Computing (2021) 6:719–736

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Aggarwal J, Ryoo M (2011) Human activity analysis. ACM Comput

Surv 43(3):1–43

Alharbi A, Bulpitt A, Johnson OA (2018) Towards unsupervised

detection of process models in healthcare. Stud Health Technol

Inform 247:381–385

Augusto A, Conforti R, Dumas M, Rosa ML, Maggi FM, Marrella A,

Mecella M, Soo A (2019) Automated discovery of process

models from event logs: review and benchmark. IEEE Trans

Knowl Data Eng 31(4):686–705

Baier T, Mendling J, Weske M (2014) Bridging abstraction layers in

process mining. Inf Syst 46:123–139

Baier T, Di Ciccio C, Mendling J, Weske M (2018) Matching events

and activities by integrating behavioral aspects and label

analysis. Softw Syst Model 17(2):573–598

Baier T, Rogge-Solti A, Mendling J, Weske M (2015) Matching of

events and activities: an approach based on behavioral constraint

satisfaction. In: Proceedings of the 30th annual ACM sympo-

sium on applied computing, Salamanca, Spain, 13–17 April

2015, pp 1225–1230

Bargiela A, Pedrycz W (2016) Granular computing. In: Handbook on

computational intelligence: volume 1: fuzzy logic, systems,

artificial neural networks, and learning systems. World Scien-

tific, pp 43–66

Begicheva AA, Lomazov IA (2017) Discovering high-level process

models from event logs. Model Anal Inf Syst 24(2):125–140

Bernard G, Andritsos P (2018) CJM-ab: abstracting customer journey

maps using process mining. In: Information systems in the big

data era—CAiSE Forum 2018, Tallinn, Estonia, 11–15 June

2018. Proceedings, pp 49–56

Bose RPJC, van der Aalst WMP (2009) Abstractions in process

mining: a taxonomy of patterns. In: Business process manage-

ment, 7th international conference, BPM 2009, Ulm, Germany,

8–10 Sept 2009. Proceedings, pp 159–175

Brzychczy E, Trzcionkowska A (2019) Process-oriented approach for

analysis of sensor data from longwall monitoring system

Bülow S, Backmann M, Herzberg N, Hille T, Meyer A, Ulm B, Wong

TY, Weske M (2014) Monitoring of business processes with

complex event processing. In: Business process management

workshops. Springer International Publishing, pp 277–290

Burattin A (2019) Streaming process discovery and conformance

checking. In: Encyclopedia of big data technologies

Carmona J, van Dongen BF, Solti A, Weidlich M (2018) Conformance

checking—relating processes and models. Springer, Berlin

Chapela-Campa D, Mucientes M, Lama M (2019) Simplification of

complex process models by abstracting infrequent behaviour. In:

Service-oriented computing—17th international conference,

ICSOC 2019, Toulouse, France, 28–31 Oct 2019. Proceedings,

pp 415–430

Chiang HS, Chen MY, Wu ZW (2018) Applying fuzzy petri nets for

evaluating the impact of bedtime behaviors on sleep quality.

Granul Comput 3(4):321–332

Chinosi M, Trombetta A (2012) BPMN: an introduction to the

standard. Comput Stand Interfaces 34(1):124–134

Conforti R, Rosa ML, ter Hofstede AHM (2017) Filtering out

infrequent behavior from business process event logs. IEEE

Trans Knowl Data Eng 29(2):300–314

Cugola G, Margara A (2012) Processing flows of information: from

data stream to complex event processing. ACM Comput Surv

44(3):15

de Leoni M, Dundar S (2020) Event-log abstraction using batch

session identification and clustering. In: Proceedings of the 35th

ACM/SIGAPP symposium on applied computing (SAC 2020)

Fazzinga B, Flesca S, Furfaro F, Masciari E, Pontieri L (2018a)

Efficiently interpreting traces of low level events in business

process logs. Inf Syst 73:1–24

Fazzinga B, Flesca S, Furfaro F, Masciari E, Pontieri L (2015) A

probabilistic unified framework for event abstraction and process

detection from log data. In: Proceedings of the 23th OTM

confederated international conference on cooperative informa-

tion systems, vol 9415. Springer, LNCS, pp 320–328

Fazzinga B, Flesca S, Furfaro F, Pontieri L (2018b) Process discovery

from low-level event logs. In: Advanced information systems

engineering—30th international conference, CAiSE 2018, Tal-

linn, Estonia, 11–15 June 2018, Proceedings, Lecture Notes in

Computer Science, vol 10816. Springer, pp 257–273

Ferreira DR, Szimanski F, Ralha CG (2013a) Mining the low-level

behaviour of agents in high-level business processes. Int J Bus

Process Integr Management 8 6(2):146–166

Ferreira DR, Szimanski F, Ralha CG (2013b) Mining the low-level

behaviour of agents in high-level business processes. IJBPIM

6(2):146–166

Folino F, Guarascio M, Pontieri L (2014) Mining predictive process

models out of low-level multidimensional logs. In: Advanced

information systems engineering—26th international conference,

CAiSE 2014, Thessaloniki, Greece, 16–20 June 2014. Proceed-

ings, pp 533–547

Folino F, Guarascio M, Pontieri L (2015) Mining multi-variant

process models from low-level logs. In: Business information

systems. Springer International Publishing, pp 165–177

Forney GD (1973) The viterbi algorithm. Proc IEEE 61(3):268–278

Günther CW, Rozinat A, van der Aalst WMP (2009) Activity mining

by global trace segmentation. In: Business process management

workshops, BPM 2009 international workshops, Ulm, Germany,

7 Sept 2009. Revised Papers, pp 128–139

Halle S, Varvaressos S (2014) A formalization of complex event

stream processing. In: 2014 IEEE 18th international enterprise

distributed object computing conference. IEEE

Koschmider A, Mannhardt F, Heuser T (2018) On the contextualiza-

tion of event-activity mappings. In: Business process manage-

ment workshops, LNBIP, vol 342. Springer, pp 445–457

Leonardi G, Striani M, Quaglini S, Cavallini A, Montani S (2017)

Towards semantic process mining through knowledge-based trace

abstraction. In: Data-driven process discovery and analysis—7th

IFIPWG2.6 international symposium, SIMPDA2017,Neuchatel,

Switzerland, 6–8 Dec 2017. Revised Selected Papers, pp 45–64

Liu H, Zhang L (2018) Fuzzy rule-based systems for recognition-

intensive classification in granular computing context. Granul

Comput 3(4):355–365

Liu H, Cocea M, Ding W (2018) Multi-task learning for intelligent

data processing in granular computing context. Granul Comput

3(3):257–273

Looney CG (1988) Fuzzy petri nets for rule-based decisionmaking.

IEEE Trans Syst Man Cybern 18(1):178–183

Mannhardt F, de Leoni M, Reijers HA, van der Aalst WMP, Toussaint

PJ (2018b) Guided process discovery—a pattern-based

approach. Inf Syst 76:1–18

Mannhardt F, Bovo R, Oliveira MF, Julier S (2018a) A taxonomy for

combining activity recognition and process discovery in indus-

trial environments. In: Intelligent data engineering and auto-

mated learning—IDEAL 2018, LNCS, vol 11315. Springer,

pp 84–93

Mannhardt F, Tax N (2017) Unsupervised event abstraction using

pattern abstraction and local process models. In: Joint proceed-

ings of (EMISA) co-located with the 29th international confer-

ence on advanced information systems engineering 2017 (CAiSE

2017), Essen, Germany, 12–13 June 2017, pp 55–63

Montahari-Nezhad H, Saint-Paul R, Casati F, Benatallah B (2011)

Event correlation for process discovery from web service

interaction logs. VLBD J 20(3):417–444

Murata T (1989) Petri nets: properties, analysis and applications. Proc

IEEE 77(4):541–580

Granular Computing (2021) 6:719–736 735

123

Nguyen H, Dumas M, ter Hofstede AHM, Rosa ML, Maggi FM

(2019) Stage-based discovery of business process models from

event logs. Inf Syst 84:214–237

Nickerson RC, Muntermann J, Varshney U (2010) Taxonomy

development in information systems: a literature survey and

problem statement. In: Sustainable IT collaboration around the

globe. 16th Americas conference on information systems,

AMCIS 2010, Lima, Peru, 12–15 Aug 2010, p 125

Oliveira CAL, Silva NC, Sabat CL, Lima RMF (2013) Reducing the

gap between business and information systems through complex

event processing. Comput Inform 32(2):225–250

Pedrycz W (2001) Granular computing: an introduction. In: Proceed-

ings joint 9th IFSA world congress and 20th NAFIPS interna-

tional conference (Cat. No. 01TH8569), vol 3, pp 1349–1354

Pegoraro M, van der Aalst WMP (2019) Mining uncertain event data

in process mining. In: ICPM. IEEE, pp 89–96

Pérez-Castillo R, Weber B, Guzmán I, Piattini M, Pinggera J (2012)

Assessing event correlation in non-process-aware information

systems. Softw Syst Model 13:1–23

Rehse JR, Fettke P (2019) Clustering business process activities for

identifying reference model components. In: Business process

management workshops—BPM 2018 international workshops,

Sydney, NSW, Australia, 9–14 Sept 2018. Springer International

Publishing, Revised Papers, pp 5–17

Richetti PHP, Baião FA, Santoro FM (2014) Declarative process

mining: reducing discovered models complexity by pre-process-

ing event logs. In: Business process management—12th inter-

national conference, BPM 2014, Haifa, Israel, 7–11 Sept 2014.

Proceedings, pp 400–407

Sánchez-Charles D, Carmona J, Muntés-Mulero V, Solé M (2017)

Reducing event variability in logs by clustering of word

embeddings. In: Business process management workshops—

BPM 2017 international workshops, Barcelona, Spain, 10–11

Sept 2017, Revised Papers, pp 191–203

Sani MF, van Zelst SJ, van der Aalst WMP (2017) Improving process

discovery results by filtering outliers using conditional beha-

vioural probabilities. In: Business process management work-

shops—BPM 2017 international workshops, Barcelona, Spain,

10–11 Sept 2017, Revised Papers, pp 216–229

Sani MF, van Zelst SJ, van der Aalst WMP (2018) Repairing outlier

behaviour in event logs using contextual behaviour. Enterp

Model Inf Syst Archit 14:5:1–5:24

Senderovich A, Rogge-Solti A, Gal A, Mendling J, Mandelbaum A

(2016) The ROAD from sensor data to process instances via

interaction mining. In: Advanced information systems engineer-

ing—28th international conference, CAiSE 2016, Ljubljana,

Slovenia, 13–17 June 2016. Proceedings, pp 257–273

Soffer P, Hinze A, Koschmider A, Ziekow H, Ciccio CD, Koldehofe

B, Kopp O, Jacobsen H, Sürmeli J, Song W (2019) From event

streams to process models and back: challenges and opportuni-

ties. Inf Syst 81:181–200

Sun X, Hou W, Yu D, Wang J, Pan J (2019) Filtering out noise logs

for process modelling based on event dependency. In: 2019

IEEE international conference on web services, ICWS 2019,

Milan, Italy, 8–13 July 2019, pp 388–392

Tax N, Sidorova N, Haakma R, van der Aalst WMP (2018) Mining

process model descriptions of daily life through event abstrac-

tion. In: Bi Y, Kapoor S, Bhatia R (eds) Intelligent systems and

applications. Springer, Cham, pp 83–104

Tax N, Sidorova N, Haakma R, van der Aalst WMP (2016) Event

abstraction for process mining using supervised learning tech-

niques. In: Proceedings of SAI intelligent systems conference

(IntelliSys) 2016. Springer, pp 251–269

Tello G, Gianini G, Mizouni R, Damiani E (2019) Machine learning-

based framework for log-lifting in business process mining

applications. In: business process management—17th interna-

tional conference, BPM 2019, Vienna, Austria, 1–6 Sept 2019,

Proceedings, pp 232–249

van der Aalst WMP (2016) Process mining—data science in action,

2nd edn. Springer, Berlin

van Zelst SJ, van Dongen BF, van der Aalst WMP (2018) Event

stream-based process discovery using abstract representations.

Knowl Inf Syst 54(2):407–435

van Eck ML, Sidorova N, van der Aalst WMP (2016) Enabling

process mining on sensor data from smart products. In: Tenth

IEEE international conference on research challenges in infor-

mation science, RCIS 2016, Grenoble, France, 1–3 June 2016,

pp 1–12

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

736 Granular Computing (2021) 6:719–736

123

	Event abstraction in process mining: literature review and taxonomy
	Abstract
	Introduction
	Process mining
	Event logs
	Events versus activities
	Instances versus classes

	Process models
	Process discovery and conformance checking
	Process discovery
	Conformance checking

	Mixed granular and fine granular events in process mining

	Event abstraction in process mining
	Event abstraction
	Taxonomy model and construction strategy
	A taxonomy of event abstraction methods
	Supervision strategy
	Fine-granular event interleaving
	Probabilistic nature of outcome
	Data nature
	Alternative perspectives
	Event class/activity class relationship
	Event instance/activity instance relation

	Literature review
	Methodology
	Data collection
	Study inclusion

	Review
	Supervision strategy
	Unsupervised techniques
	Supervised techniques
	Fine-granular event interleaving
	Probabilistic nature of outcome
	Data nature
	Alternative perspectives
	Relation between event classes and activity classes
	Relation between event instances and activity instances

	Discussion
	Related fields of study
	Granular computing
	Complex event processing (CEP)
	Activity recognition (ARC)
	Data pre-processing

	Future directions
	Supervision
	Probabilistic output
	Input data
	Streaming data

	Drawbacks and limitations of event abstraction

	Conclusion
	Acknowledgements
	References

