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In this paper, event-triggered leader-following consensus of general linear multiagent systems under both fixed topology and
switching topologies is studied. First, centralised and decentralised event-triggered control strategies based on neighbors’ state
estimation are proposed under fixed topology, in which the controller is only updated at the time of triggering. Obviously,
compared with the continuous time control algorithms, the event-triggered control strategies can reduce the communication
frequency among agents effectively. Meanwhile, event-triggering conditions are derived for systems to achieve consensus by using
the Lyapunov stability theory and model transformation method. /en, the theoretical results obtained under the fixed topology
are extended to the switching topologies, and the sufficient conditions for the system to achieve leader-following consensus under
the switching topologies are given. However, different from fixed topology, the control input of each agent is updated both at
event-triggering and topology switching time. Finally, Zeno behaviors can be excluded by proving that the minimum triggering
interval of each agent is strictly positive, and the effectiveness of the event-triggered protocol is verified by simulation experiments.

1. Introduction

In recent years, multi-agent systems have great potential of
application in the fields of biology, engineering, physics,
society and so on. Also its distributed cooperative control [1,
2] has attracted more and more researchers' attention. For
example, the controllability [3–11] and the consensus prob-
lem [12–19] are widely studied in multi-agent systems.
Among them, as the basic problem of multi-agent cooperative
control, consensus is widely used in formation control [20],
cluster control, sensor network and other aspects, which is a
research hot issue in the control discipline at present.

In practical applications, the information needed for
cooperative control among agents is transmitted through the
network. It is necessary to design a reasonable controller to
ensure the control performance of the system due to the
finite energy of the agent and the limited network band-
width. It is well known that periodic sampling control
[21–23] can save resources, but when the system runs in an
ideal environment or the system state tends to be consensus

gradually, it will cause unnecessary resource waste if the
control task is executed periodically. In order to reduce this
unnecessary waste of resources, a new simple event-triggered
control strategy based on feedback mechanism was proposed
in [24]. In short, the event-triggered control strategy means
that the control task is executed as required. On the premise of
ensuring the closed-loop system has certain performance,
only can the task be executed once when a specific event
occurs (such as the state error exceeds the preset threshold
value). /e advantage of event-triggered control strategies is
that it can not only guarantee the performance of the system
but also save the network and computing resources. At
present, event-triggered mechanism has been applied to the
research of consensus for multiagent systems effectively. For
example, Dimarogonas and Frazoli and Dimarogonas et al.
[25, 26] studied the consensus of a first-order multiagent
system in undirected topology, and Yan et al. [27] investigated
the consensus of a second-order multiagent system based on
event-triggered mechanism in directed topology. Event-
triggering conditions based on composite measurements were
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designed in [28] to address the consensus of a multiagent
system. Hu et al. and Li et al. [29, 30] discussed the leader-
following consensus of the second-order multiagent system.
/e centralized and decentralized event-triggered strategies
were proposed in [31], which made the state of all agents
converge to the same value gradually. In [32], a consensus
control algorithm based on event-triggered mechanism was
proposed for the nonlinear multiagent system. In [33], a new
average consensus problem under event-triggered control
strategy was set up, which limits the measurement error of
each agent to a threshold that changes with time. Meng and
Chen [34] studied the average consensus of the event-trig-
gered multi-integrator systems under fixed and switching
topologies and designed an event-triggered scheme based on
quadratic Lyapunov function, which made each agent’s state
converge to it’s initial average eventually. Xiao et al. [35]
discussed the average consensus of the network of the inte-
grator system with unidirectional information link. In order
to reduce the communication cost, a distributed state con-
sensus sampling data control scheme based on edge-event was
proposed. In recent years, more and more attention has been
paid to general linear systems. In [36], the consensus of
general linear multiagent systems under integral event-trig-
gered strategy has been considered. In [37], the consensus of
general linear systems under fixed topology and switching
topologies has been investigated. Hu et al. [38] studied the
leader-following consensus of general linear multiagent sys-
tem under fixed topology, and Zhu et al. [39] studied the
consensus of general linear multiagent system under mixed
event-triggering conditions.

With this background, we consider the event-triggered
leader-following consensus of the general linear multiagent
system under fixed topology and switching topologies.
Event-triggered control mechanism is designed for each
agent, respectively. Under the mechanism, multiagent sys-
tems can achieve leader-following consensus gradually.
Moreover, a continuous event-triggering condition is pro-
posed, which uses the state error between the follower and
leader to design the triggering conditions of each agent
under the fixed topology and switching topologies, re-
spectively. /e consensus problem is transformed into the
stability problem by the method of model transformation,
and the sufficient conditions for the system to achieve
leader-following consensus are obtained by using Lyapunov
stability theory. In addition, all the proposed event-triggered
mechanism can exclude Zeno behavior. Finally, the accuracy
of the conclusion is verified by simulation experiment.

/e structure of this paper is as follows. Section 2 in-
troduces some concepts of the graph theory and system
model. /e leader-following consensus of the systems under
the fixed/switching topologies is considered in Sections 3
and 4 In addition, the effectiveness of the results is shown
through simulation experiment in Section 5. Section 6
summarizes this paper.

/e following notations are used in this paper. ⊗ denotes
the Kronecker product. IN denotes the N-dimensional
identity matrix. Rn and R

m×n indicate the set of n dimen-
sional real vectors and m × n dimensional real matrices,
respectively.

2. Preliminaries

2.1.%eory ofGraph. For a multiagent system composed of a
leader and follower agents, its communication topology can
be represented by an undirected graph G � (V, E), where
V � 0, 1, . . . , N{ }. 0 denotes the leader, and 1, . . . , N denote
the followers. E⊆V ×V denotes the edges set. /e con-
nection matrix between the follower agent i(i � 1, . . . , N)
and leader 0 is D � diag a10, . . . , aN0{ }, where ai0 is the
connection weight between the leader 0 and follower i. If
ai0 > 0, the follower agent i can receive state information of
leader 0; otherwise, ai0 � 0.

/e communication network among the followers is
denoted by G � (V, E, A), where V � 1, 2, . . . , N{ } and
E⊆V ×V are obtained from E by removing all edges
among the leader 0 and followers in V, and
A � (aij) ∈ RN×N is the weighted adjacency matrix of graph
G, where aij > 0 for (i, j) ∈ E if agent i obtains information
from agent j. We assume that (i, i) ∉ E, and hence aii � 0.
For a given graph G with the adjacency matrix A, the
Laplacian matrix used in this paper is L � D − A, where D is
a diagonal matrix, its diagonal elements are dii � ∑j∈Ni

|aij|,
and defineNi as the neighbor set of agent i inV. /erefore,
the elements of L are

Lik �
∑
j∈Ni

aij

∣∣∣∣∣ ∣∣∣∣∣, k � i,

− aik, k≠ i.

 (1)

A path from the vertex i to vertex k is a sequence of
adjacent edges in the form (i, i + 1), (i + 1, i + 2), . . . ,
(k − 1, k). /e undirected graph is said to be connected if
there exists a path between any two distinct vertices.

2.2. SystemModel. Consider a multiagent system composed
of the leader 0 and N followers. /e dynamics of leader 0 is

_x0(t) � Ax0(t) , (2)

where x0(t) ∈ Rn is the state and A ∈ Rn×n is constant
matrix.

Accordingly, each follower has the following linear
dynamic equation:

_xi(t) � Axi(t) + Bui(t), i � 1, . . . , N, (3)

where xi(t) ∈ Rn and ui(t) ∈ Rp are the state and input of
the ith follower agent, respectively. A ∈ Rn×n andB ∈ Rn×p

are constant matrices. Denote the initial state of the ith
follower as xi(0).

Definition 1. If there is a control input ui(t), the leader 0 and
follower i for any initial state satisfy the following conditions:

lim
t⟶∞

xi(t) − x0(t)
  � 0, i � 1, 2, . . . , N. (4)

/en, the leader (2) is said to be successfully tracked by
follower (3).

Assumption 1. /e communication network topology G

among followers is connected.
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Assumption 2. /e pair (A, B) is stabilizable.
Based on Assumption 2, there is a symmetric positive

definite matrix P that satisfies the following algebraic Riccati
and Lyapunov inequality with β> 0:

ATP + PA − 2βPBBTP + βI< 0 , (5)

ATP + PA< 0. (6)

Lemma 1 (see [37]). For an undirected and connected graph
G, the eigenvalues of L are real and can be labelled as

0 � λ1(L)< λ2(L)≤ · · · ≤ λN(L). (7)

Lemma 2 (see [40]). For any x, y ∈ R and β> 0, one has the
following property:

xy≤ β
2
x2 +

1

2β
y2. (8)

Lemma 3 (see [41]). (Comparison Principle). Consider a
differential equation (du/dt) � f(t, u), u(t0) � u0, where
t> 0, f(t, u) is continuous and satisfies the local Lipschitz
condition in t. Let [t0, T) be the maximum existence interval
of the solution u, where Tcan be infinite. If, for any t ∈ [t0, T)
satisfies

dv

dt
≤f(t, v),

v t0( )≤ u0,
(9)

then v(t)≤ u(t), t ∈ [t0, T).

3. Leader-Following Control of Multiagent
Systems under Fixed Topology

In this part, we consider the leader-following control of
multiagent systems (2) and (3) under the event-triggered
strategy. Based on the general event-triggered control law,
we put forward two kinds of piecewise continuous control
mechanisms, which are centralized event-triggered mech-
anism and decentralized event-triggered mechanism with
state estimation in order to minimize the frequency of
controller updating. /e analysis shows that under the two
control mechanisms, multiagent system (3) can track the
system (2) successfully with appropriate event-triggering
function. /e minimum interval between any two consec-
utive event-triggering instants under the two control
mechanisms is greater than 0, and Zeno behavior can be
excluded.

3.1. Centralized Event-Triggered Control Strategy. Under the
centralized event-triggered strategy, all agents i in system (3)
are triggered synchronously at the time tk(k � 0, 1, . . . , ). At
the triggering instants, all agents send their states infor-
mation to neighbours and update the control law with the
received state information. Compared with the control

protocol in continuous time, each agent i only updates the
control input at the event instants under the event-triggered
mechanism. So, ui is a piecewise continuous function, and
the updating frequency can be reduced.

We consider the following control input for the ith
follower:

ui(t) � − K ∑
j∈Ni(t)

aij(t) xi tk( ) − xj tk( )( )
− Kai0(t) xi tk( ) − x0 tk( )( ), (10)

where t ∈ [tk, tk+1),K ∈ Rp×n is the control gain matrix to be
designed, and xi(tk) is the sampling state of agent i at the kth
triggering instant. Since there does not exist control input
for leader 0, we take x0(tk) � x0(t), t ∈ [tk, tk+1). For con-
venience, we make t0 � 0.

/e event-triggering time sequence tk{ } is determined by
the following triggering functions:

f(t) � − κ
ai0min

λmin(W) − αλmax(P)

ai0max
λmax(W) + 2λmax(D)λmax(W)

∑N
i�1

x̂Ti x̂i

+∑N
i�1

eTi ei ≥ 0.

(11)
/at is, tk+1 � inf t> tk |f(t)≥ 0{ }, where 0< κ < 1, 0<

α< (ai0min
λmin(W)/λmax(P)),W � PBBTP.

/e state error between the follower and leader is defined
as x̂i(t) � xi(t) − x0(t), x̂(t) � [x̂

T
1 , . . . , x̂

T
N]

T. For agent i,
the measurement error is defined as ei(t) � xi(tk) −
xi(t), t ∈ [tk, tk+1). /en, formula (10) is converted to

ui(t) � − K∑N
j�0

aij x̂i(t) − x̂j(t) + ei(t) − ej(t)( )
� − K ∑N

j�1

aij x̂i(t) − x̂j(t) + ei(t) − ej(t)( ) 
− Kai0 x̂i(t) + ei(t)( ).

(12)

Combining (2), (3), and (12), we get

_̂x(t) � IN ⊗A( )x̂(t) − IN ⊗BK( ) (L +D)⊗ In( )(x̂(t) + e(t))
� IN ⊗A( )x̂(t) − ((L +D)⊗BK)(x̂(t) + e(t)).

(13)

Remark 1. /rough the model transformation, the leader-
following control problem between systems (2) and (3) can
be interpreted by the stability problem of system (13).

Next, we will give the following consensus conditions
under the centralized event-triggering protocol (10).

Theorem 1. Under Assumptions 1 and 2, centralized event-
triggered control strategy (10) can make multiagent system (3)
track system (2) successfully under event-triggering condition
(4), where feedback gain matrix K satisfies K � BTP and
W � PBK.
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Proof. We consider a candidate Lyapunov function, as
follows:

V1 � e
αt ∑N
i�1
x̂Ti Px̂i. (14)

Along with the trajectories of the state as described in (8),
the time derivative of Lyapunov function is

_V1 � αeαt∑N
i�1

x̂Ti Px̂i + 2eαt∑N
i�1

x̂Ti P
_̂xi

� eαt∑N
i�1

x̂Ti αPx̂i + 2eαt∑N
i�1

x̂Ti P Ax̂i + Bui( )
� eαt∑N

i�1

x̂Ti αPx̂i + 2eαt∑N
i�1

x̂Ti PAx̂i + 2eαt∑N
i�1

x̂Ti PBui,

(15)
where

eαt∑N
i�1

x̂Ti PBui

� − eαt∑N
i�1

x̂Ti PBK ai0 x̂i + ei( ) +∑N
j�1

aij x̂i − x̂j + ei − ej( ) 
� − eαt∑N

i�1

x̂Ti Wai0 x̂i + ei( ) − eαt∑N
i�1

x̂Ti W∑N
j�1

aij x̂i − x̂j( )
− eαt∑N

i�1

x̂Ti W∑N
j�1

aij ei − ej( ),
(16)

where W � PBK.
According to the property of L � LT in undirected graph

G, we can deduce

eαt∑N
i�1

x̂Ti W∑N
j�1

aij x̂i − x̂j( )

� eαt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

� eαt∑N
i�1

∑N
j�1

ajix̂
T
jW x̂j − x̂i( )

� − eαt∑N
i�1

∑N
j�1

aijx̂
T
jW x̂i − x̂j( )

�
1

2
eαt∑N

i�1

∑N
j�1

aij x̂i − x̂j( )TW x̂i − x̂j( ).

(17)

Similarly,

eαt∑N
i�1

x̂Ti W∑N
j�1

aij ei − ej( )

�
1

2
eαt∑N

i�1

∑N
j�1

aij x̂i − x̂j( )TW ei − ej( ).
(18)

Hence,

eαt∑N
i�1

x̂Ti PBui

� − eαt∑N
i�1

x̂Ti Wai0 x̂i + ei( ) − 1

2
eαt∑N

i�1

∑N
j�1

aij x̂i − x̂j( )TW x̂i − x̂j( )

−
1

2
eαt∑N

i�1

∑N
j�1

aij x̂i − x̂j( )TW ei − ej( )

� − eαt∑N
i�1

x̂Ti Wai0 x̂i + ei( ) − eαt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

−
1

2
eαt∑N

i�1

∑N
j�1

aij x̂i − x̂j( )TW ei − ej( ).
(19)

Combining equality (15) yields

_V1 � e
αt∑N
i�1

x̂Ti αPx̂i + 2eαt∑N
i�1

x̂Ti PAx̂i

− 2eαt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

− eαt∑N
i�1

∑N
j�1

aij x̂i − x̂j( )TW ei − ej( )
− 2eαt∑N

i�1

x̂Ti Wai0 x̂i + ei( ).

(20)

In the light of Lemma 2, we have

− eαt∑N
i�1

∑N
j�1

aij x̂i − x̂j( )TW ei − ej( )

≤ 1
2
eαt∑N

i�1

∑N
j�1

aij x̂i − x̂j( )TW x̂i − x̂j( )+
1

2
eαt∑N

i�1

∑N
j�1

aij ei − ej( )TW ei − ej( ).

(21)

By substituting the abovementioned formula into
equation (20), we obtain
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_V1 ≤ eαt∑N
i�1

x̂Ti αPx̂i + 2eαt∑N
i�1

x̂Ti PAx̂i

− 2eαt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

+
eαt

2
∑N
i�1

∑N
j�1

aij x̂i − x̂j( )TW x̂i − x̂j( )

+
eαt

2
∑N
i�1

∑N
j�1

aij ei − ej( )TW ei − ej( )

− 2eαt∑N
i�1

x̂Ti Wai0 x̂i + ei( )

≤ eαt∑N
i�1

x̂Ti αPx̂i + 2eαt∑N
i�1

x̂Ti PAx̂i

− 2eαt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

+ eαt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

+
eαt

2
∑N
i�1

∑N
j�1

aij ei − ej( )TW ei − ej( )

− 2eαt∑N
i�1

x̂Ti Wai0 x̂i + ei( )

≤ eαt∑N
i�1

x̂Ti αPx̂i + 2eαt∑N
i�1

x̂Ti PAx̂i

− eαt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

+
eαt

2
∑N
i�1

∑N
j�1

aij ei − ej( )TW ei − ej( )

− 2eαt∑N
i�1

x̂Ti Wai0 x̂i + ei( ).

(22)

From Lemma 2, we have

eαt

2
∑N
i�1

∑N
j�1

aij ei − ej( )TW ei − ej( )≤ 2eαt∑N
i�1

∑N
j�1

aije
T
i Wei.

(23)
Together with (22), we can get that

_V1 ≤ eαt∑N
i�1

x̂Ti αPx̂i + 2eαt∑N
i�1

x̂Ti PAx̂i

− eαt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

+ 2eαt∑N
i�1

∑N
j�1

aije
T
i Wei

− 2eαt∑N
i�1

x̂Ti Wai0 x̂i + ei( ),

(24)

− eαt∑N
i�1

x̂Ti Wai0 x̂i + ei( )
� − eαt∑N

i�1

x̂Ti Wai0x̂i − e
αt∑N
i�1

x̂Ti Wai0ei

≤ − eαt∑N
i�1

x̂Ti Wai0x̂i +
1

2
eαt∑N

i�1

x̂Ti Wai0x̂i

+
1

2
eαt∑N

i�1

eTi Wai0ei

≤ − 1
2
eαt∑N

i�1

x̂Ti Wai0x̂i +
1

2
eαt∑N

i�1

eTi Wai0ei.

(25)

Combining (24) and (25), we arrive at

_V1 ≤ eαt∑N
i�1

x̂Ti αPx̂i + 2eαt∑N
i�1

x̂Ti PAx̂i

− eαt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

− eαt∑N
i�1

x̂Ti Wai0x̂i + e
αt∑N
i�1

eTi Wai0ei

+ 2eαt∑N
i�1

∑N
j�1

aije
T
i Wei

≤ eαtx̂T IN ⊗ αP( )x̂ + eαtx̂T IN ⊗ PA + ATP( )( )x̂
− eαtx̂T(L⊗W)x̂ − eαtx̂T(D⊗W)x̂
+ eαteT(D⊗W)e + 2eαteT(D⊗W)e.

(26)

Under Assumption 1, by using Lemma 1, x̂T(L⊗W)x̂≥
λ2(L)x̂

T(IN ⊗W)x̂ holds. Consequently,

_V1 ≤ eαtx̂T IN ⊗ PA + ATP − λ2(L)W( )( )x̂
+ eαt αλmax(P) − ai0min

λmin(W)( )‖x̂‖2
+ eαt ai0max

λmax(W) + 2λmax(D)λmax(W)( )‖e‖2.
(27)

Using inequality (5) and event-triggering condition (11),
we claim that the following inequality holds:

Complexity 5



_V1 ≤ (κ − 1)eαt ai0min
λmin(W) − αλmax(P)( )‖x̂‖2

− eαt
λ2(L)

2
x̂Tx̂ ≤ − eαtλ2(L)

2
x̂Tx̂.

(28)

It can be seen from (28) that V1 is not increasing;
therefore,

V1(0)≥V1(t) � eαt ∑N
i�1
x̂i(t)

TPx̂i(i)≥ eαtλmin(P)‖x̂(t)‖
2.

(29)

/at is to say, ‖x̂(t)‖≤
��������������
(V1(0)/λmin(P))

√
e− (α/2)t, i.e.,

limt⟶∞x̂(t) � 0 is equivalent to limt⟶∞‖x̂i(t)‖ � 0, which
means limt⟶∞||xi(t) − x0(t)|| � 0, i � 1, 2, . . . , N
holds. □

Theorem 2. Under the conditions of %eorem 1, system (13)
does not exhibit Zeno behavior. %e interval between any two
consecutive event-triggering instants of the system is not less
than

IN ⊗A
  +||(L +D)⊗BK||( )

3
× 1 +

����������������������������
κ ai0min

λmin(W) − αλmax(P)( )
ai0max

λmax(W) + 2λmax(D)λmax(W)

√√ 
3

− 1
 . (30)

Proof. From the mechanism of event-triggering strategy,
the event interval between tk and tk+1 is the time
that (||e(t)||/‖x̂(t)‖) grows from 0 to

������������������������������������������������������
(κ(ai0min

λmin(W)− αλmax(P))/(ai0max
λmax(W)+2λmax(D)λmax(W)))

√
.

/e time derivative of (‖e(t)‖/||x̂(t)||) has

d

dt

‖e(t)‖

‖x̂(t)‖
�

d

dt

e(t)Te(t)( )1/2
x̂(t)Tx̂(t)( )1/2

�
e(t)Te(t)( )(1/2)′‖x̂(t)‖ − e(t)Te(t)( )1/2 x̂(t)Tx̂(t)( )(1/2)′

‖x̂(t)‖2

�
e(t)T _e(t)

‖x̂(t)‖‖e(t)‖
−
‖e(t)‖x̂(t)T _̂x(t)

‖x̂(t)‖2‖x̂(t)‖

�
− e(t)T _̂x(t)

‖x̂(t)‖‖e(t)‖
−
‖e(t)‖x̂(t)T _̂x(t)

‖x̂(t)‖2‖x̂(t)‖

≤ ‖
_̂x(t)‖

‖x̂(t)‖
+
‖ _̂x(t)‖‖e(t)‖

‖x̂(t)‖2
�
‖ _̂x(t)‖

‖x̂(t)‖
1 +

‖e(t)‖

‖x̂(t)‖
( )

≤ IN ⊗A
  +‖(L +D)⊗BK‖( ) 1 +

‖e(t)‖

‖x̂(t)‖
( )

+
‖(L +D)⊗BK‖‖e‖

‖x̂(t)‖
1 +

‖e(t)‖

‖x̂(t)‖
( )

≤ IN ⊗A
  +‖(L +D)⊗BK‖( ) 1 +

‖e(t)‖

‖x̂(t)‖
( )

+
IN ⊗A
  +‖(L +D)⊗BK‖( )‖e‖

‖x̂(t)‖
1 +

‖e(t)‖

‖x̂(t)‖
( )

� IN ⊗A
  +‖(L +D)⊗BK‖( ) 1 +

‖e(t)‖

‖x̂(t)‖
( )2

.

(31)
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Denote z � (||e(t)||/‖x̂(t)‖), then

_z≤ IN ⊗A
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣ +||(L +D)⊗BK||( )(1 + z)2. (32)

Consider that a nonnegative function ψ(t,ψ0) satisfies
_ψ � (‖IN ⊗A‖ + ||(L +D)⊗BK||)(1 + ψ)2, and ψ0 � 0.
/en, from Lemma 3, z≤ψ(t, 0). It can be seen from (11)
that

ψ(τ, 0) �

����������������������������
κ ai0min

λmin(W) − αλmax(P)( )
ai0max

λmax(W) + 2λmax(D)λmax(W)

√√
. (33)

/erefore,

τ �
IN ⊗A
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣ +||(L +D)⊗BK||( )

3
(1 + ψ(τ))3 − 1( )

�
IN ⊗A
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣ +‖(L +D)⊗BK‖( )

3
× 1 +

����������������������������
κ ai0min

λmin(W) − αλmax(P)( )
ai0max

λmax(W) + 2λmax(D)λmax(W)

√√ 
3

− 1
 .

(34)

Obviously, τ > 0.
It is assumed that the Zeno behavior occurs, which

means that there exists a positive constant t∗ such that
limk⟶∞tk � t

∗. Let ε0 � (1/2)τ. /ere exists a positive in-
teger N0 such that t∗ − ε0 ≤ tk ≤ t∗ for the abovementioned
ε0 > 0 according to the definition of sequence limit, where
k≥N0. /erefore, t∗ + ε0 ≤ tk + 2ε0 ≤ tk+1 holds when
k≥N0. /is contradicts with t∗ ≥ tk+1 for k≥N0. /us, Zeno
behavior is strictly excluded. □

3.2. Decentralized Event-Triggered Control Strategy. /e
centralized event-triggered mechanism given in the previous
section sets a global state error threshold for all agents. Once
the system error reaches the threshold, all agents in the
system perform control tasks at the same time. In this
section, an error threshold based on the state of its neighbor
node is set for each agent. When the state error of the agent
reaches the set threshold, the agent triggers the event in-
dependently and executes the control task.

/e triggering time of the kth event of the i agent is
defined as tik(k � 0, 1, . . .). In the design of this section, it
should be noted that the agent triggers asynchronously, that
is, each agent has its own event-triggering sequence. /e
measurement error of agent i is defined as ei(t) �
xi(t

i
k) − xi(t), t ∈ [tik, tik+1). It is clear that ei(t

i
k) � 0 when

t � tik.
For a multiagent system composed of (2) and (3), we

consider the following decentralized event-triggered control
protocol:

ui(t) � − K ∑
j∈Ni(t)

aij(t) xi t
i
k( ) − xj tik′( )( )

− Kai0(t) xi t
i
k( ) − x0(t)( ), (35)

where t ∈ [tik, tik+1), t
j

k′ � argmin
l∈N,t≥tj

l

t − t
j
l{ } represents

the latest event-triggering time before t for agent j.
According to (35), agent iwill update control input ui at both

its triggering instants (ti0, t
i
1, . . .) and neighbor agent j event

instants (t
j
0, t

j
1, . . .). /e event-triggering instant sequence

tik{ } for agent i is determined by the following decentralized
event-triggering function:

fi(t) � − (1 − κ)∑N
j�1

aij x̂i − x̂j( )TW x̂i − x̂j( )
+ λmax(W) ei

∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2∑N
j�1

4aij + 2ai0( )≥ 0,
(36)

where 0< κ< 1,W � PBBTP. According to the definition of
measurement error and x̂i(t) � xi(t) − x0(t), (35) can be
rewritten as

ui(t) � − K∑N
j�0

aij xi(t) − xj(t) + ei(t) − ej(t)( )
� − K∑N

j�0

aij xi(t) − x0(t) − xj(t) − x0(t)( )( )
− K∑N

j�0

aij ei(t) − ej(t)( )
� − K∑N

j�1

aij x̂i(t) − x̂j(t) + ei(t) − ej(t)( )
− Kai0 x̂i(t) + ei(t)( ).

(37)

Combining (2), (3), with (37) yields

_̂x(t) � IN ⊗A( )x̂(t) − ((L +D)⊗BK)(x̂(t) + e(t)) . (38)

Theorem 3. Under Assumption 1, the multiagent systems (3)
with protocol (35) can track system (2) successfully under the
event-triggering condition (36), where K � BTP and
W � PBBTP.
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Proof. Define the Lyapunov function

V2 �
1

2
∑N
i�1

x̂Ti Px̂i. (39)

Following the same proof as that of /eorem 1, the time
derivation of V2 along the trajectory of system (38) is
obtained:

_V2 ≤ ∑N
i�1
x̂Ti PAx̂i −

1

2
∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

−
1

2
∑N
i�1

x̂Ti Wai0x̂i +
1

2
∑N
i�1

eTi Wai0ei

+∑N
i�1

∑N
j�1

aije
T
i Wei

≤ x̂T IN ⊗PA( )x̂ − 1

4
∑N
i�1

∑N
j�1

aij x̂i − x̂j( )TW x̂i − x̂j( )

−
1

2
∑N
i�1

x̂Ti Wai0x̂i +∑N
i�1

∑N
j�1

aije
T
i Wei +

1

2
eTi Wai0ei

 

≤ x̂T IN ⊗PA( )x̂ + 1

4
∑N
i�1

∑N
j�1

eTi 4aij + 2ai0( )Wei

−
1

4
∑N
i�1

∑N
j�1

aij x̂i − x̂j( )TW x̂i − x̂j( )
≤ x̂T IN ⊗ PA + ATP( )( )x̂
+
1

4
∑N
i�1

λmax(W) ei
 2∑N

j�1

4aij + 2ai0( )

−
1

4
∑N
i�1

∑N
j�1

aij x̂i − x̂j( )TW x̂i − x̂j( ).
(40)

According to (6) and event-triggering condition (36), we
can find that

_V2 ≤
1

2
x̂T IN ⊗ PA + ATP( )( )x̂

−
κ

4
∑N
j�1

∑N
i�1

aij x̂i − x̂j( )TW x̂i − x̂j( )

≤ − κ
2
x̂T(L⊗W)x̂

≤ − κ
2
λmax(L)λmax(W)‖x̂‖

2

≤ 0.

(41)

It can be seen from the abovementioned formula that V2

is not increasing; therefore,

V2(0)≥V2(t) �
1

2
∑N
i�1

x̂i(t)
TPx̂i(t)≥

1

2
λmin(P)‖x̂(t)‖

2.

(42)

/at is to say, ||x̂(t)||≤
���������������
2(V2(0)/λmin(P))

√
� 0.

According to LaSalle’s invariance principle, we can
obtain that system (38) can achieve consensus, that is,
limt⟶∞x̂i � 0, which is equivalent to
limt⟶∞‖xi(t) − x0(t)‖ � 0, i � 1, 2, . . . , N. /e proof is
completed. □

Theorem 4. Under the conditions of %eorem 3, system (38)
does not exhibit Zeno behavior. %e interval between any two
consecutive event-triggering instants of the system is not less
than

‖A‖ + BK Li + ai0( )⊗ In( ) ( )
3

× 1 + (1 − κ)
ai0λmin(W)

2dii + ai0( )λmax(W)
( )1/2 3

− 1 . (43)

Proof. It is similar to the proof of /eorem 2. /e event
interval between tik and t

i
k+1 is (‖ei(t)‖/‖x̂i(t)‖) which grows

from 0 to ((1 − κ)(ai0λmin(W)/(2dii + ai0)λmax(W)))
1/2. /e

time derivative of (||ei(t)||/‖x̂i(t)‖) is

8 Complexity



d

dt

ei
 
x̂i
 
≤

_̂xi(t)
 
x̂i(t)
  +

_̂xi(t)
  ei(t) 

x̂i(t)
 2

�
_̂xi(t)
 
x̂i(t)
  1 +

ei(t)
 
x̂i(t)
 ( )

� ‖A‖ + BK Li + ai0( )⊗ In( ) ( ) 1 +
ei(t)
 
x̂i(t)
 ( )

+
BK Li + ai0( )⊗ In( )  ei 

x̂i(t)
  1 +

ei(t)
 
x̂i(t)
 ( )

≤ ‖A‖ + BK Li + ai0( )⊗ In( ) ( ) 1 +
ei(t)
 
x̂i(t)
 ( )

+
‖A‖ + BK Li + ai0( )⊗ In( ) ( ) ei 

x̂i(t)
  1 +

ei(t)
 
x̂i(t)
 ( )

� ‖A‖ + BK Li + ai0( )⊗ In( ) ( ) 1 +
ei(t)
 
x̂i(t)
 ( )2

,

(44)
where Li is the row i of the Laplace matrix L.

Let zi � (‖ei(t)‖/||x̂i(t)||), then

_zi ≤ ‖A‖ + BK Li + ai0( )⊗ In( ) ( ) 1 + zi( )2. (45)

Consider that a nonnegative function ψ(t,ψ0) satisfies
_ψ � (||A|| + ‖BK((Li + ai0)⊗ In)‖)(1 + ψ)2 and ψ0 � 0,
according to Lemma 3, zi ≤ψ(t, 0). It can be seen from (36),

ψ τik, 0( ) � (1 − κ)
ai0λmin(W)

2dii + ai0( )λmax(W)
( )1/2

. (46)

Hence,

τik �
‖A‖+ BK Li + ai0( )⊗ In( )∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣( )

3
(1 + ψ(τ))3 − 1( ),

�
‖A‖+ BK Li + ai0( )⊗ In( ) ( )

3

× 1 + (1 − κ)
ai0λmin(W)

2dii + ai0( )λmax(W)
( )1/2 3

− 1 .
(47)

Similar to /eorem 2, that Zeno behavior that does not
occur can be proved by contradiction, which is omitted
here. □

4. Leader-Following Control of Multiagent
Systems under Switching Topologies

In this part, we consider the extended case that the inter-
connection network switches according to signal σ(t) and is
not connected all the time. It is worth noting that, unlike the
fixed topology, the controller updates only when the event is
triggered. In the switching topologies, the controller updates
in the following two cases: (1) event-triggering instant. (2)
Communication topology switching instant.

/e control input of the ith agent is defined as follows:

ui(t) � − K ∑
j∈Ni(t)

aij(t) xi t
i
k( ) − xj tik′( )( )

− Kai0(t) xi t
i
k( ) − x0(t)( ), (48)

where t ∈ [tik, tik+1). Different from control protocols (10) and
(35),Ni(t) and aij(t) in (48) are changed under the switching
topologies. Matrices Lσ(t) and Dσ(t) in Gσ(t) represent Lap-
lacian matrix and connection matrix between leader and
agent, respectively. Switching signal σ(t): [0,∞)⟶ P is a
piecewise continuous constant function, which is used to
describe the switching law of communication topology. Also,
Gσ(t): p ∈ P{ } is a set of graphs that are switched within a

finite setP � 1, 2, . . .{ } in any finite time interval. Consider a
nonempty and continuous infinite sequence [ts, ts+1), where
k � 0, 1, . . . and t0 � 0. Suppose thatGσ(t) is switched only at
and remains unchanged in t ∈ [ts, ts+1).

Remark 2. It should be noted that graph Gσ(t) may be
connected or unconnected in interval [ts, ts+1).

By replacing the similar variables in Section 3.2, we can
derive that

_̂x(t) � IN ⊗A( )x̂(t) − Lσ(t) +Dσ(t)( )⊗BK( )(x̂(t) + e(t)) .
(49)

Theorem 5. Under Assumptions 1 and 2, if feedback gain
matrix K satisfies K � BTP andW � PBK, then the protocol
(48) still makes the multiagent system with (3) track the
system (2) successfully if the event-triggering condition
satisfies

fi(t) � − κ
ai0min

λmin(W) − αλmax(P)

ai0max
λmax(W) + 2diimax

λmax(W)
∑N
i�1

x̂Ti x̂i

+∑N
i�1

eTi ei ≥ 0,

(50)

where 0< κ< 1, 0< α≤ (ai0σ(t)λmin(W)/λmax(P)).

Proof. Construct the Lyapunov function for system (49) as
follows:

V3 � e
αt ∑N
i�1
x̂Ti Px̂i. (51)

Similar to Section 3.2, taking the derivative of V3 along
the trajectory of system (49) yields
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_V3 ≤2eαt∑N
i�1

x̂Ti PAx̂i − e
αt∑N
i�1

∑N
j�1

aijx̂
T
i W x̂i − x̂j( )

+ eαt∑N
i�1

eTi Wai0ei + 2e
αt∑N
i�1

∑N
j�1

aije
T
i Wei

+ eαt∑N
i�1

x̂Ti αPx̂i − e
αt∑N
i�1

x̂Ti Wai0x̂i

≤ eαtx̂T IN ⊗ PA +ATP( )( )x̂ − eαtx̂T Lσ(t) ⊗W( )x̂
+ eαt∑N

i�1

eTi ai0σ(t)W + 2diiσ(t)W( )ei
+ eαt∑N

i�1

x̂Ti αP − ai0σ(t)W( )x̂i.

(52)

(i) If the graph Gp is not connected during t ∈ [ts, ts+1),
according to the event-triggering condition (50) and
equation (6), one has

_V3 ≤ eαtx̂T IN ⊗ PA + ATP( )( )x̂
+ eαt∑N

i�1

αλmax(P) − ai0σ(t)λmin(W)( ) x̂i
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2

+ eαt∑N
i�1

ai0σ(t)λmax(W) + 2diiσ(t)λmax(W)( ) ei 2
≤ 0.

(53)
It can be seen from the abovementioned formula that V3

is not increasing; hence,

V3(t)≥V3 ts+1( ) � eαts+1 ∑N
i�1

x̂i ts+1( )TPx̂i ts+1( )
≥ eαts+1λmin(P) x̂ ts+1( )∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2,

(54)

i.e., ‖x̂(ts+1)‖≤
��������������
(V3(t)/λmin(P))

√
e− (α/2)ts+1 ≤��������������

(V3(0)/λmin(P))
√

e− (α/2)ts+1 .

(ii) If the graph Gp is connected during t ∈ [ts, ts+1),
then

_V3 ≤ eαtx̂T IN ⊗ PA + ATP − λ2 Lσ(t)( )W( )( )x̂
+ eαt∑N

i�1

αλmax(P) − ai0σ(t)λmin(W)( ) x̂i 2

+ eαt∑N
i�1

ai0σ(t)λmax(W) + 2diiσ(t)λmax(W)( ) ei 2.
(55)

According to event-triggering condition (50) and
equation (5),

_V3 ≤ eαtx̂T IN ⊗ PA + ATP − λ2 Lσ(t)( )W( )( )x̂
≤ − eα(t)

λ2 Lσ(t)( )
2

x̂Tx̂.

(56)

It can be seen from (56) that V3 is not increasing; hence,

V3(t)≥V3 ts+1( ) � eαts+1 ∑N
i�1

x̂i ts+1( )TPx̂i ts+1( )
≥ eαts+1λmin(P) x̂ ts+1( )∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣2,

(57)

i.e., ‖x̂(ts+1)‖≤
��������������
(V3(t)/λmin(P))

√
e− (α/2)ts+1 ≤��������������

(V3(0)/λmin(P))
√

e− (α/2)ts+1 .

1 2

3 4 0

Figure 1: Communication topology G.

1 12 2

3 34 40 0

Figure 2: Communication topology G1 and G2.
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Figure 3:/e 1st state error trajectory of each agent under protocol
(10).
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In summary, ||x̂(ts+n)||≤
������������������
(V3(ts+(n− 1))/λmin(P))

√
e− (α/2)ts+n ≤ · · · ≤

��������������
(V3(0)/λmin(P))

√
e− (α/2)ts+n , i.e., ‖x̂(t)‖≤��������������

(V3(t)/λmin(P))
√

e− (α/2)t ≤ · · · ≤
��������������
(V3(0)/λmin(P))

√
e− (α/2)t,

so limt⟶∞‖x̂(t)‖ � 0 is equivalent to limt⟶∞‖x̂i(t)‖ � 0,
and accordingly limt⟶∞‖xi(t) − x0(t)‖ � 0, i � 1, 2, . . . , N
is established. □

Remark 3. Index (α/2) can be approximated as the con-
vergence rate of multiagent system (49), and the conver-
gence rate can be changed by adjusting α.

Theorem 6. Under the conditions of %eorem 5, system (49)
does not have Zeno behavior. %e interval between any two

consecutive event-triggering instants of the system is not less
than

IN⊗A
∣∣∣∣ ∣∣∣∣∣∣∣∣ ∣∣∣∣ +||(L +D)⊗BK||( )

3

× 1 +
κ ai0σ(t)λmin(W) − αλmax(P)( )
ai0σ(t)λmax(W) + 2diiσ(t)λmax(W)

 
1/2 

3

− 1
 .

(58)

Proof. /e proof is similar to that of /eorem 2. □
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Figure 4:/e 2st state error trajectory of each agent under protocol
(10).
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Figure 5: Event times instants for four agents in /eorem 1.
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Figure 6:/e 1st state error trajectory of each agent under protocol
(35).

x
i2

(t
)

–10

–5

0

5

10

0 2 4 6 8 10

t (s)

x12(t) – x02(t)

x22(t) – x02(t)

x32(t) – x02(t)

x42(t) – x02(t)

Figure 7: /e 2nd state error trajectory of each agent under
protocol (35).
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5. Simulation

In this part, we consider the trajectories of the state errors
between the follower and leader under the fixed topology
and the switching topology, respectively, where the dynamic
equations of the leader and the follower are given by (2) and
(3), respectively, and the communication network topology
among agents is shown in Figures 1 and 2. Assume that

xi � [xi1, xi2]
T, and A and B are chosen as follows:

A �
0 0.5
− 4.8 0

[ ], B � 0
− 0.5

[ ], it is easy to prove that the

Assumption 2 is satisfied. By solving Riccati equation by
MATLAB, we know that feedback gain matrix K � BTP �
[− 0.4995, − 1.1343]T. Let the leader’s initial state be x0(0) �
[2, 3]T and the follower’s initial state be x1(0) � [− 1, 1]

T,
x2(0) � [− 2, − 3]

T, x3(0) � [5, − 6]
T, x4(0) � [4, 2]

T.

Example 1. Under the centralized event-triggering pro-
tocol (10), the leader-following consensus of the multi-
agent system composed of (2) and (3) is considered. /e
communication network among agents is shown in Fig-
ure 1, and the corresponding weights are all 1. It can be
seen from Figures 3 and 4 that followers can successfully
follow the leader. Figure 5 shows the event instants of each
follower with the centralized event-triggering protocol
(10). It can be seen that protocol (10) can effectively reduce
the number of communications among agents, thus re-
ducing the waste of resources. Also, there is no Zeno
behavior.

Example 2. In this example, we illustrate the leader-fol-
lowing consensus of the multiagent system under the dis-
tributed event-triggering protocol (35). /e communication
network among agents is shown in Figure 1. It can be seen
from Figures 6 and 7 that followers can successfully follow
the leader. Figure 8 shows the event triggering time of each
follower under the decentralized event triggering protocol

(35), and Zeno behavior is excluded. /e simulation results
verify /eorems 3 and 4.

Example 3. Finally, the leader-following consensus of the
multiagent system under the control protocol (48) is
considered. /e communication network among agents
will randomly switch between G1 and G2, as shown in
Figure 2, where G1 is a connected graph and G2 is an
unconnected graph. /e state errors between the follower
agent i and leader 0 are shown in Figures 9 and 10, re-
spectively. It indicates that all followers can successfully
follow the leader. Figure 11 shows the event-triggering
instants of each follower under (48), and there is no Zeno
behavior.
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Figure 8: Event times instants for four agents in /eorem 3.
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6. Conclusions and Future Work

In this paper, the leader-following control of general linear
multiagent systems based on event-triggering mechanism
under both fixed topology and switching topologies have
been studied. Under the fixed topology, two different control
protocols are designed in order to reduce waste of resources.
Based on these two control protocols, we propose two
different triggering functions, i.e., centralized event-trig-
gering function and decentralized event-triggering function
with state error between the follower and leader. When the
triggering function exceeds 0, the agent will update the
control input at the triggering instants. /rough theoretical
analysis, the sufficient conditions are derived for the system
to achieve leader-following consensus under two control
protocols and event-triggering conditions. /e conditions
obtained under fixed topology are extended to switching
topologies (different from the fixed topology, the controller
update at the triggering time, and also the switching time).
/e results show that the conditions to achieve leader-fol-
lowing are also valid under switching topologies. Finally, it is
proved that the system can realize leader-following control
without Zeno behavior. /e simulation results verify the
effectiveness of the theoretical analysis. In the future, we will
further study the leader-following control of the linear
multiagent system with interference, delay, and other
factors.
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