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Event-based control of a damped linear Schrödinger equation

Florent Koudohode, Lucie Baudouin, Sophie Tarbouriech,
LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France.

Abstract— This paper presents the design of an event-
triggering mechanism for the damped linear Schrödinger equa-
tion. Localized damping is considered. The absence of any
accumulation points of the time updates sequence is proven,
ensuring the avoidance of Zeno behavior. The global exponential
stability is ensured through some energy estimates exploiting
observability inequality. An illustrative example based on the
one dimensional Schrödinger equation demonstrates the effi-
ciency of the results.

Keywords: Schrödinger equation, Event-triggering mecha-
nism, Global exponential stability, Observability inequality

I. INTRODUCTION

Event-triggered control is a control technique used to
implement aperiodically a feedback law only when some
triggering conditions occur. More precisely, as soon as some
specific energy condition is met, the feedback controller is
updated and the new control value is transmitted to the
actuators. This allows to avoid possible waste of ressources
(e.g., computation, communication, and energy) [25]. Event-
based control is well studied for classical finite dimensional
systems but has been investigated only recently for infinite
dimensional system e.g. described by partial differential
equations (PDE). For instance, in the context of finite di-
mensional system, we refer to the seminal works [1], [2]
or the most recent ones [24], [10], [9] (for linear systems),
[19], [12] (for nonlinear systems). In parallel in the context of
inifinite dimensional systems, we refer to [21], [7] regarding
parabolic systems and [8], [26], [27] regarding hyperbolic
ones.

The Schrödinger equation, most known in quantum the-
ory, arises for instance in nonlinear optics for laser beam
propagation or in cold atom physics to describe Bose Ein-
stein condensation. Its solution describes the shape of the
probability wave function that governs the motion of small
particles, and the equation specifies how these waves are
altered by external influences [23]. Several control problems
for the linear Schrödinger equation have been studied e.g.
in [16] and [17] about exact controllability and stabiliza-
tion problems, discussed through multiplier techniques and
construction of energy functionals. On the other hand, back-
stepping approach is used in [28], [15], [20] to deal with
stabilization issues.

In this paper, considering a possibly locally damped
Schrödinger equation, we design an event-triggering update
mechanism for the damping, aiming at maintaining the
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exponential stability of the closed-loop system. We also need
to avoid the occurrence of infinitely many updates of the
control in a bounded time interval which is known as the
Zeno effect. Our approach follows an emulation method,
where only the event-triggering rules have to be designed,
as in [19], [8], [7], contrary to the co-design method such as
in [22], [11] where the joint design of the control law and
the event-triggering conditions are tackled.

In order to avoid the risk of Zeno behavior, the majority
of the previous works in the event-triggered control literature
added some specific term to the triggering condition as in [8,
Definition 2], [5, Definition 3], [3] or constructed dynamical
event-triggering mechanism as in [9], [6]. When the event-
triggering law is built on the comparison between an error
term (the difference of the state value at the last triggering
instant and the current one) and a proportion of the energy,
it was usually added a term exponentially decreasing and
depending on the initial condition as in [3], [8], [13]. Some
recent exception to these approaches is detailed in [14] for
the wave equation. The current paper deals with Schrödinger
equation and follows the same route in order to prove the
absence of Zeno phenomenon without any extra exponential
term in the event-triggering law. Hence, using an observ-
ability inequality for the linear Schrödinger equation, the
exponential stability of the closed-loop system under state-
based event-triggered control is established. Furthermore,
following the same reasoning as in [14] the avoidance of
Zeno behavior is guaranteed by showing the absence of
accumulation points in the sequence of time updates.

The rest of the paper is organized as follows. In Section II
we set up the problem and the PDE system under consid-
eration. The main results on the proposed event-triggering
mechanism are presented in Section III. The well-posedness
of the associated closed-loop system, some useful interme-
diate result, the avoidance of the Zeno phenomenon and the
exponential stability are exposed. Section IV numerically
illustrates the theoretical results. Concluding remarks and
perspectives are given in Section V.
Notation. Given an open set Ω ⊂ RN , L2(Ω) is the Hilbert
space of square integrable scalar functions endowed with
the norm ‖z‖ = (

∫
Ω
|z(x)|2dx)

1
2 . The gradient and the

Laplacian of z are denoted ∇z = (∂x1
z, . . . ∂xN

z) and
∆z =

∑N
i=1 ∂

2
xi
z. We define the Sobolev spaces H1

0 (Ω) =

{z ∈ L2(Ω),∇z ∈
(
L2(Ω)

)N
, z = 0 on ∂Ω}, with norm

‖z‖H1
0 (Ω) = ‖∇z‖ and H2(Ω) = {z ∈ L2(Ω),∇z ∈(

L2(Ω)
)N

, ∂xj∂xiz ∈ L2(Ω)}, the set of all function such
that

∫
Ω

(
|z|2 + |∇z|2 + |∆z|2

)
dx is finite. The dual space



of the Sobolev space H is H ′. We will often write
∫

Ω
g(t)

instead of
∫

Ω
g(x, t)dx to ease the reading. Im(z) and Re(z)

are respectively the imaginary part and real part of z ∈ C
and its complex conjugate is z̄.

II. PROBLEM FORMULATION

Consider a localized damped linear Schrödinger equation i∂tz(x, t) + ∆z(x, t) = −iα(x)z(x, t) (x, t) ∈ Ω× R+,
z(x, t) = 0 (x, t) ∈ ∂Ω× R+

z(x, 0) = z0(x) x ∈ Ω,
(1)

where Ω ⊂ RN is an open bounded domain with smooth
boundary ∂Ω and α ∈ L∞(Ω;R) is the damping coefficient.
For x0 ∈ RN , set Γ0 = {x ∈ ∂Ω, (x − x0) · ν(x) > 0}
where ν(x) denotes the unit outward normal vector to Ω at
x ∈ ∂Ω and · denote the scalar product in RN . Let ω ⊂ Ω
be a neighborhood of Γ0 and assume there exist α0, α1 > 0
such that {

0 < α < α1 a.e. in Ω
α ≥ α0 a.e. in ω ⊂ Ω.

(2)

We are interested by the implementation of the control
term −αz, so that the control signal applied to the plant
is updated only at certain instants {tk}k∈N, defined by an
event-triggering law. We assume that the control action is
held constant between two successive updates. Furthermore,
differently from classical periodic sampling techniques, the
inter-sampling time tk+1− tk is not assumed to be constant.
The closed-loop system can then be described for all t ∈
[tk, tk+1) as follows1: i∂tz + ∆z = −iαz(tk), in Ω× [tk, tk+1), k ∈ N

z = 0, on ∂Ω× R+,
z(·, 0) = z0 in Ω

(3)
where 0 = t0 < t1 < · · · < tk < tk+1.

Therefore, we can summarize the problem we intend to
solve as the one of designing a simple triggering condition
in order to guarantee (i) the well-posedness of the closed-
loop system (3), (ii) the avoidance of any Zeno behavior and
(iii) the exponential stability of the closed loop.

In this direction, we will strongly exploit and expand for
system (3) the results associated to system (1), as the well-
posedness and exponential stability widely studied in the
literature. For instance, in [4], it is proven that for any initial
conditions z0 ∈ L2(Ω), there exists a unique weak solution
to (1) satisfying

z ∈ C0(R+;L2(Ω)) ∩ C1(R+; (H2(Ω) ∩H1
0 (Ω))′). (4)

Furthermore, for initial data z0 ∈ H2(Ω) ∩H1
0 (Ω), we can

prove that the solution to (1) satisfies

z ∈ C0(R+;H2(Ω) ∩H1
0 (Ω)) ∩ C1(R+;H1

0 (Ω)), (5)

and the following exponential stability theorem holds.

1The dependence in x and t is omitted to simplify.

Theorem 2.1: For any initial condition in L2(Ω), there
exist C > 0 and δ > 0 such that the weak solution z to
(1) verifies for all t > 0

E(t) ≤ CE(0)e−2δt (6)

where the L2−energy E is defined by

E(t) =
1

2
‖z(t)‖2. (7)

III. EVENT-TRIGGERING STRATEGY

In order to expand the event-triggering strategy developed
in the context of finite-dimensional systems (ODE) as for
example in [24], [19], [9], let us introduce the following
deviation between the last sampled state and the current one:

ek(x, t) = z(x, t)− z(x, tk) (8)

∀x ∈ Ω and t ∈ [tk, tk+1). In the sequel, we use the
shortcut notation ek(t) or ek. Therefore, we can characterize
the event-triggering law we propose:

tk+1 = inf
{
t ≥ tk such that ‖ek(t)‖2 > 2γE(t)

}
(9)

where γ > 0 is a design parameter. In other words, as soon
as the deviation term gets larger than a γ−proportion of the
energy, an update event is generated.

In the following we split the study into three steps i), ii)
and iii) previously mentioned.

A. Well-posedness

Let us begin by defining the maximal time T under which
the system (3) subjected to the event-triggering law (9) has
a solution:{

T = +∞ if (tk) is a finite sequence,
T = lim sup

k→+∞
tk if not. (10)

The absence of Zeno behavior will actually be stemming
from the proof that T = +∞ since no accumulation point
of the sequence (tk)k≥0 will therefore be possible.

Leveraging on some regularity of the classical solutions
to the Schrödinger equation we prove the following:

Theorem 3.1: Let Ω be an open bounded domain of class
C2. For any initial conditions z0 ∈ H2(Ω) ∩ H1

0 (Ω), there
exists a unique strong solution to (3) under the event-
triggering mechanism (9), satisfying

z ∈ C0([0, T ];H2(Ω)∩H1
0 (Ω))∩C1([0, T ];H1

0 (Ω)). (11)
Proof: The well-posedness on every sampled interval

[tk, tk+1] is proven by induction.

• Initialization. On the first time interval [0, t1], the
control system (3) reads simply i∂tz + ∆z = −αz0, in Ω× [0, t1),

z = 0 on ∂Ω× (0, t1),
z(0) = z0, in Ω.

(12)

This is a Schrödinger equation with initial data z0 ∈
H2(Ω)×H1

0 (Ω) and source term f(t, x) = −iαz0(x). Since



z0 ∈ H1
0 (Ω), f ∈ L1(0, t1;H2(Ω) ∩H1

0 (Ω)). (5) allows to
deduce that there exists a unique solution satisfying

z ∈ C([0, t1];H2(Ω) ∩H1
0 (Ω)) ∩ C1([0, t1];H1

0 (Ω)).

• Heredity. Let us bring to the forefront that this solu-
tion satisfies z(t1) ∈ H2(Ω) ∩ H1

0 (Ω) so that system (3)
considered on the next time interval [t1, t2) has an initial
condition in H2(Ω) ∩H1

0 (Ω) and a source term iαz(t1) ∈
L1(t1, t2;H2(Ω) ∩H1

0 (Ω)).
Hence, the same reasoning holds again and the heredity

is proved similarly at any step k ∈ N.

• Conclusion. By induction, the following regularity holds
for any k ∈ N, z ∈ C0([tk, tk+1];H2(Ω) ∩ H1

0 (Ω)) ∩
C1([tk, tk+1];H1

0 (Ω)). Therefore, from the extension by
continuity at the update instants tk, one can conclude that
(3) has a unique solution in the class (11).

B. Avoidance of Zeno behavior

In this section, we address the proof of the absence of
Zeno behavior, based on the proof that the maximal time of
existence of a solution to the closed-loop system can only
be T = +∞. Indeed, proving that no accumulation point of
the sequence (tk)k≥0 is possible, we ensure the absence of
infinite updates in finite time.

Before proving that this phenomenon cannot occur, let
us show that the natural energy of the closed-loop system,
defined in (7), has a useful property stated in the following
lemma. From (8), the closed-loop system reads: i∂tz + ∆z = −iαz + iαek, in Ω× [tk, tk+1),

z = 0, on ∂Ω× R+,
z(·, 0) = z0, in Ω.

(13)

Lemma 1: Under the triggering law (9) there exists a
constant C > 0 such that for all t ∈ (0, T ) :

E(0)e−2Ct ≤ E(t) ≤ E(0)e2Ct. (14)

Proof: The time-derivative of E(t) along the trajecto-
ries of system (13) is given by

Ė(t) = Re
(∫

Ω

z̄(t)∂tz(t)

)
= Im

(∫
Ω

iz̄(t)∂tz(t)

)
= −Im

∫
Ω

(
z̄(t)∆z(t)− iα(x)|z(t)|2 + iα(x)ek(t)z̄(t)

)
.

By the Green’s formula (Lemma 4 in Appendix) with
z = 0 on ∂Ω, and since α takes its values in R,

Ė(t) = −
∫

Ω

α(x)|z(t)|2 + Re
(∫

Ω

α(x)ēk(t)z(t)

)
. (15)

Then, from Cauchy Schwarz’s inequality (see Lemma 3 in
Appendix) and assumption (2), we deduce

Ė(t) ≤ α1‖ek(t)‖‖z(t)‖.

Thus, by using the event-triggering law:

‖ek(t)‖ ≤
√

2γ ‖z(t)‖, ∀t ∈ [tk, tk+1). (16)

Using (16) and the definition (7) of the energy E, we get:

|Ė(t)| ≤ 2α1E(t) +
√

2α1E(t)
√

2E(t)

≤ 2α1E(t) + 2α1
√
γE(t)

|Ė(t)| ≤ 2CE(t) with C = α1(1 +
√
γ). (17)

This shows that −2CE(t) ≤ Ė(t) ≤ 2CE(t). By
Gronwall’s Lemma on [tk, t], the second inequality gives
E(t) ≤ E(tk) exp

(∫ t
tk

2Cdu
)
,∀t ≥ tk, that is E(t) ≤

E(tk)e2C(t−tk). By applying also the Gronwall’s Lemma to
the first inequality one gets:

E(t) ≥ E(tk)e−2C(t−tk).

Hence,

E(tk)e−2C(t−tk) ≤ E(t) ≤ E(tk)e2C(t−tk). (18)

Then taking t = tk+1, inequality (18) becomes

E(tk)e−2C(tk+1−tk) ≤ E(tk+1) ≤ E(tk)e2C(tk+1−tk).

Inferring (18) for E(tk) allows to deduce

E(tk−1)e−2C(tk+1−tk−1) ≤ E(tk+1)
leE(tk−1)e2C(tk+1−tk−1).

Since t0 = 0, by induction we get

E(0)e−2Ctk+1 ≤ E(tk+1) ≤ E(0)e2Ctk+1 .

Then inequality (18) yields

E(0)e−2Ctke−2C(t−tk) ≤ E(t) ≤ E(0)e2Ctke2C(t−tk),

showing that (14) holds for all t ∈ R+.
We can now state the main result of this section.

Theorem 3.2: There is no Zeno Phenomenon for the sys-
tem (3) under the event-triggering mechanism (9). Equiva-
lently, the maximal time defined by (10) is T = +∞.

Proof: Following the same reasoning as in [24], [9],
the proof is based on the study of the function ϕ defined on

[tk, tk+1) by ϕ : t 7→ ϕ(t) =
‖ek(t)‖2

2γE(t)
.

The function ϕ is non negative and satisfies, ∀k ∈ N,
ϕ(t+k ) = 0 and jumps from ϕ(t−k+1) = 1 to ϕ(t+k+1) = 0. Of
course, we need to assume that E(t) 6= 0, ∀t > 0, recalling
that E(t) = 0 would mean stopping the updates since, then,
E remains null. Let us study the time-derivative of ϕ :

ϕ̇(t) =
Re
(∫

Ω
∂tek(t)ēk(t)

)
γE(t)

− Ė(t)‖ek(t)‖2

2γ (E(t))
2 . (19)

We have from (8), ∂tek = ∂tz a.e. in Ω, and using
equation (13) and the Cauchy Schwartz’s inequality we get,

∀t ∈ [tk, tk+1), Re
(∫

Ω

∂tek(t)ēk(t)

)
= Im

(∫
Ω

∆z(t)ēk(t)

)
− Re

(∫
Ω

αz(t)ēk(t) + α|ek(t)|2
)

≤ ‖ek(t)‖‖∆z(t)‖+ α1‖ek(t)‖‖z(t)‖+ α1‖ek(t)‖2.



Since for any z0 ∈ H2(Ω)×H1
0 (Ω), the closed-loop system

(13) under the event-triggering mechanism (9) has a unique
solution z ∈ C0([0, T ];H2(Ω) ∩ H1

0 (Ω)), then there exists
a constant C1 > 0 such that ∀t ∈ [0, T ],

‖∆z(t)‖ ≤ ‖∆z‖L∞(0,T ;L2(Ω)) ≤ C1, (20)

where C1 depends on ‖z0‖H2(Ω) + ‖z0‖H1
0 (Ω). Then using

‖z(t)‖2 = 2E(t) and (16) it follows :

Re
(∫

Ω

∂tek(t)ēk(t)dx

)
/γE(t)

≤
C1

√
2γE(t)

γE(t)
+
α1

√
2γE(t)

√
2E(t)

γE(t)
+ 2α1ϕ(t)

≤ C1

√
2√

γE(t)
+

2α1√
γ

+ 2α1ϕ(t) (21)

On the other hand, using (17) we get:

−Ė(t)‖ek(t)‖2

2γ (E(t))
2 ≤ 2α1(1 +

√
γ)ϕ(t). (22)

Gathering the terms (21) and (22) we have:

ϕ̇(t) ≤ C1

√
2√

γE(t)
+

2α1√
γ

+ 2α1(2 +
√
γ)ϕ(t).

Since ϕ(t) ≤ 1 from the event-triggering law, it follows

ϕ̇(t) ≤ C1

√
2√

γE(t)
+

2α1√
γ

+ 2α1(2 +
√
γ),

or equivalently, with A =
2α1√
γ

+α1(2 +
√
γ), B = C1

√
2

γ
,

ϕ̇(t) ≤ A+
B√
E(t)

.

Using Lemma 1, one has ∀t ∈ [0, T ], E(t) ≥ E(0)e−2CT ,
and then

ϕ̇(t) ≤ A+
BeCT√
E(0)

.

Therefore, ∀k ∈ N, integrating on [tk, tk+1] knowing that
ϕ(tk) = 0 and ϕ(tk+1) = 1 we obtain:

1 ≤

[
A+

BeCT√
E(0)

]
(tk+1 − tk). (23)

Now let tk → T as k → +∞ in (23), then we get a
contradiction if T 6= +∞. We therefore need to get T = +∞
leading to the absence of any accumulation points. Hence,
the avoidance of Zeno behavior is guaranteed.

C. Exponential stability

Let us now propose sufficient conditions to ensure the
exponential stability of system (3)-(9).

Inspired by [16], we start with the following Lemma.

Lemma 2: Consider the solution z to system (13). For any
τ > 0 there exist some constant K1,K2 > 0 such that

E(τ) ≤ K1

∫ τ

0

∫
Ω

α(x)|z(t)|2dxdt+K2

∫ τ

0

E(t)dt. (24)

Proof: Let τ > 0 and let us recall that the time-
derivative of E(t) is

Ė(t) = −
∫

Ω

α(x)|z(t)|2 + Re
(∫

Ω

α(x)ēk(t)z(t)

)
.

Integrating this relation on [0, τ ], using (2) and the fact that∫
Ω
α(x)|z(t)|2 ≥ 0, we get:

E(τ) ≤ E(0) + 2α1
√
γ

∫ τ

0

E(t)dt. (25)

Let us introduce the variables y and ϕ such that z = y+ϕ
where z is solution to (13) and y = y(x, t) and ϕ = ϕ(x, t)
are solution to the following systems i∂ty + ∆y = −iαz + iαek in Ω× [tk, tk+1),
y = 0 on ∂Ω× R+,
y(·, 0) = 0 in Ω,

(26)

and  i∂tϕ+ ∆ϕ = 0 in Ω× R+,
ϕ = 0 on ∂Ω× R+,
ϕ(·, 0) = z0 in Ω.

(27)

Besides, for system (27) the following observability inequal-
ity is well-known (owing to [16], [18] and thus, relying on
the geometrical condition on ω): ∀τ > 0,∃C0 > 0 such that,

‖ϕ(0)‖2 ≤ C0

∫ τ

0

∫
ω

|ϕ(x, t)|2dxdt.

Hence, from (25), assumption (2), and the fact that ϕ = z−y
and that for any a, b ∈ R, |a− b|2 ≤ 2(a2 + b2), we have:

E(τ) ≤ 1

2
‖ϕ(0)‖2 + 2α1

√
γ

∫ τ

0

E(t)dt

≤ C0

2α0

∫ τ

0

∫
ω

α(x)|ϕ(x, t)|2dxdt+ 2α1
√
γ

∫ τ

0

E(t)dt

≤ C0

α0

∫ τ

0

∫
Ω

α(x)|z(t)|2dt+
C0α1

α0
‖y‖2L∞(0,τ ;L2(ω))

+ 2α1
√
γ

∫ τ

0

E(t)dt.

Using classical energy estimate (see [4]), on the Schrödinger
equation (26), for a L2((0, τ)×Ω)-source term, there exists
C > 0 such that

‖y‖2L∞(0,τ ;L2(ω) ≤ C‖α(ek − z)‖2L2(0,τ ;L2(Ω))

≤ Cα2
1

∫ τ

0

‖ek(t)‖2dt+ Cα1

∫ τ

0

∫
Ω

α(x)|z(t)|2dt.

From the event-triggering mechanism, at any time t ∈ [0, T ],
one has ‖ek(t)‖2 ≤ 2γE(t), so that

‖y‖2L2(0,τ ;L2(ω))

≤ 2Cα2
1γ

∫ τ

0

E(t)dt+ Cα1

∫ τ

0

∫
Ω

α(x)|z(t)|2dt.

Hence,

E(τ) ≤
(
C0

α0
+
C0Cα

2
1

α0

)∫ τ

0

∫
Ω

α(x)|z(t)|2dt

+

(
2α1
√
γ +

2C0Cα
3
1γ

α0

)∫ τ

0

E(t)dt.



Therefore we get inequality (24) with

K1 =
C0

α0

(
1 + Cα2

1

)
;K2 = 2α1

√
γ+2C0Cα

3
1γα

−1
0 . (28)

Then we can state and prove the following main exponen-
tial stability result.

Theorem 3.3: There exists γ0 > 0 such that for all γ ∈
(0, γ0), for any initial condition z0 ∈ H2(Ω) ∩H1

0 (Ω), the
closed-loop system (3) under the event-triggering mechanism
(9) is exponentially stable with decay rate δ > 0. In other
words, there exists K > 0 such that

E(t) ≤ KE(0)e−2δt, ∀t > 0. (29)

Proof: Let us first discuss the case when the damping
does not vanish in Ω (corresponding to ω = Ω). In that
case, one obtains from (15), assumption (2) on the damping,
the Cauchy-Schwarz’s inequality and the event-triggering
law (16) that Ė(t) ≤

(
−2α0 + 2α1

√
γ
)
E(t). Thus, δ =

α0−α1
√
γ brings Ė(t) ≤ −2δE(t) and if γ is small enough

compared to α0 and α1, then δ > 0 and (29) holds.
In the general case, the damping may vanish outside ω

which is a neighborhood of Γ0 and we will need to use
Lemma 2. Integrating (15) on [0, τ ], we obtain:

E(τ)− E(0) ≤ 2α1
√
γ

∫ τ

0

E(t)dt−
∫ τ

0

∫
Ω

α(x)|z(t)|2dt.
(30)

We can rewrite (24) of Lemma 2 as follows

−
∫ τ

0

∫
Ω

α(x)|z(t)|2dxdt ≤ − 1

K1
E(τ) +

K2

K1

∫ τ

0

E(t)dt,

Combining this last inequality with (30), we get(
1 +

1

K1

)
E(τ) ≤ E(0) +

(
2α1
√
γ +

K2

K1

)∫ τ

0

E(t)dt.

It brings by Gronwall’s Lemma,

E(τ) ≤ K1

K1 + 1
exp

[
K1

K1 + 1

(
2α1
√
γ +

K2

K1

)
τ

]
E(0),

that can be written as E(τ) ≤ peC1τE(0) with p =
K1

K1+1 , C1 = K1

K1+1

(
2α1
√
γ + K2

K1

)
.

Next, we use the fact that the linear Schrödinger equation
is invariant by translation in time, and this argument applied
on the interval [(n − 1)τ, nτ ], for n = 1, 2, . . . , yields
(denoting a = peC1τ ):

E(nτ) ≤ aE((n− 1)τ) ≤ · · · ≤ anE(0) = e−nτκE(0),

where we set an = exp (−nτ 1
τ ln

(
1
a

)
) and κ = 1

τ ln
(

1
a

)
.

Note that κ > 0 if and only if a < 1, so that we must have
peτC1 < 1 which is equivalent to

τ < − ln p

C1
=

(K1 + 1) ln
(
K1+1
K1

)
(
2K1α1

√
γ +K2

) .

Now, for every positive time t, there exists n ∈ N∗ such
that (n − 1)τ < t ≤ nτ. Using (30) and integration on
[(n− 1)τ, t] we have:

E(t) ≤ E((n− 1)τ) + 2α1
√
γ

∫ t

(n−1)τ

E(s)ds

≤ e−nτκeτκE(0) + 2α1
√
γ

∫ t

0

E(s)ds. (31)

Since e−nτκ ≤ e−κt for t ≤ nτ , and eτκ = 1/a, we get

E(t) ≤ 1

a
e−κtE(0) + 2α1

√
γ

∫ t

0

E(s)ds.

Then by Gronwall’s Lemma, it follows:

E(t) ≤ 1
ae
−κte2α1

√
γtE(0) and if γ ≤ κ2

4α2
1

then

2δ = κ− 2α1
√
γ ≥ 0

and we obtain E(t) ≤ 1
ae
−2δtE(t). The proof of Theo-

rem 3.3 is complete.
Remark 3.1: The existence of design parameter γ depends

on the domain ω.
• If ω = Ω, then the design parameter has to satisfy γ ∈
(0,

α2
0

α2
1
) where α0 and α1 are given in (2).

• If ω ⊂ Ω is a neighborhood of Γ0, then the design
parameter γ is solution to the inequatility κ − 2α1

√
γ ≥ 0,

which gives:

2C0Cα
3
1

α0(K1 + 1)
β2 + 4α1β +

1

τ
ln

(
K1

K1 + 1

)
≤ 0 (32)

where β =
√
γ, K1 is given by (28), C0 is the contant

of observability and C is the constant in the classical
energy estimate which are detailed in [18, Theorem 2.2 and
equation (5.5)]. Since we have α0(K1+1)

2C0Cα3
1

ln
(

K1

K1+1

)
< 0,

then it is guaranteed that (32) admits two opposit sign roots.

IV. NUMERICAL SIMULATION

We consider the one dimensional Schrödinger
equation (3) on Ω = (0, π) with initial condition
z(x, 0) = z0(x) = sin(x), x ∈ [0, π]. For numerical
simulations, we use the divided differences on a uniform
grid for the space variable and the discretization with respect
to time was done using the Crank Nicolson scheme.

We stabilize the system under the event-triggering
mechanism (9). With respect to (2), we select the damping
coefficient α(x) = 0 if x < π/10 and α(x) = x − π/10
otherwise, so that we can take α0 = π/10, α1 = 9π/10
and ω = (2π/10, π). Using [18, Theorem 2.2 and eq. (5.5)]
we select the constants C0 = 2.8 and C = 0.18 and we get
K1 = 14.513 from (28) and γ ∈ (0, 0.3416) from (32).

A simulation is done with an appropriate γ = 0.1 and
Figure 1 allows to compare the very much alike imaginary
part Imz of the numerical solution z to the continuous closed-
loop systems (1) (top) and the event triggered one (3)-(9)



Fig. 1: Imaginary part of the solution: of the closed-loop
system (3) under the event-triggering mechanism (9), with
γ = 0.1 (bottom), and of the solution of the continuous
closed-loop system (1) (top).

(bottom). It also illustrates the guarantee of the exponential
stability of the solution as studied in Theorem 3.3. This
is confirmed even more clearly with Figure 2 where we
depicted the evolution of the energy of the solution to
systems (3) and (1).

Fig. 2: Time-evolution of the L2−norm of the solution of
the closed-loop systems (3)-(9) (dotted) and (1) (solid line).

V. CONCLUSION

We considered the problem of exponential stabilization
of a damped linear Schrödinger equation under an event-
triggering mechanism. Thanks to some regularity of the
classical solution to the Schrödinger equation we prove the
well-posedness property of the closed loop. We also proved
absence of accumulation points in the updates sequence
leading to the avoidance of the Zeno behavior. Furthermore,
in order to ensure the exponential stability of the closed loop
we exploited observability inequality results. Let us mention
that we do not know any result proving the exponential
stability for periodic sampling.

This paper paves the way for future works. Interesting
issues could be to study the presence of input nonlinearity,
as saturation, for example.
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APPENDIX

Lemma 3 (Cauchy-Schwarz’s inequality): For any u, v ∈
L2(Ω) it holds∫

Ω

u(x)v(x)dx ≤ ‖u‖L2(Ω)‖v‖L2(Ω).

Lemma 4 (Green’s formula): Let Ω ⊂ RN , N ≥ 2 be a
bounded domain with Lipschitz boundary. For all u ∈ H2(Ω)
and v ∈ H1(Ω), n being the outward pointing unit normal
vector field, one has∫

Ω

∇v · ∇u dx = −
∫

Ω

v∆u dx+

∫
∂Ω

(n · ∇v)u ds.
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