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Abstract—In this paper, a general event-triggered framework
is developed to deal with the finite-horizon H∞ filtering problem
for discrete time-varying systems with fading channels, ran-
domly occurring nonlinearities and multiplicative noises. An
event indicator variable is constructed and the corresponding
event-triggered scheme is proposed. Such a scheme is based on
the relative error with respect to the measurement signal in
order to determine whether the measurement output should be
transmitted to the filter or not. The fading channels are described
by modified stochastic Rice fading models. Some uncorrelated
random variables are introduced, respectively, to govern the
phenomena of state-multiplicative noises, randomly occurring
nonlinearities as well as fading measurements. The purpose of
the addressed problem is to design a set of time-varying filter
such that the influence from the exogenous disturbances onto
the filtering errors is attenuated at the given level quantified
by a H∞-norm in the mean square sense. By utilizing stochastic
analysis techniques, sufficient conditions are established to ensure
that the dynamic system under consideration satisfies the H∞ fil-
tering performance constraint, and then a recursive linear matrix
inequality (RLMI) approach is employed to design the desired
filter gains. Simulation results demonstrate the effectiveness of
the developed filter design scheme.

Index Terms—Event-triggered mechanism; Finite-horizon fil-
tering; Fading measurements; Multiplicative noise; Nonlinear
time-varying systems.

I. INTRODUCTION

For decades, filtering or state estimation techniques have

been playing an important role in a variety of application areas

such as target tracking, image processing, signal processing

and control engineering, and a great number of important

results have been reported in the literature, see, for example

[1], [9], [13], [16], [17], [25], [30] and the references therein.

Among the existing filtering methods, the H∞ filtering ap-

proach is closely related to many robustness problems such as

stabilization and sensitivity minimization of uncertain systems,

and has therefore gained persistent research attention. For
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example, the H∞ filtering problem has been investigated for a

variety of complex dynamic systems including linear uncertain

systems [3], Markovian jumping systems [20], fuzzy systems

[18], time-delay systems [9], [10], stochastic systems [21]

and nonlinear systems [24], etc. It is worth pointing out that,

although fruitful results have been available for H∞ filter

design, most of them have been concerned with time-invariant

systems only. On the other hand, virtually almost all models

for real-time systems are time-varying over a finite-horizon

and the corresponding filtering process could provide a better

transient performance especially when the noise inputs are

nonstationary [4], [24], [28]. As such, it makes more sense

to consider filter design problems for time-varying systems

over a finite-horizon.

Nonlinear control has been a mainstream of research topics

due primarily to the fact that nonlinearity is a ubiquitous

feature in a large class of practical systems and, if not properly

coped with, the nonlinearity would inevitably degrade the

system performance or even lead to the instability of the

controlled systems. As discussed in [6], [7], [29], in today’s

popular networked systems such as the internet-based three-

tank system for leakage fault diagnosis, the occurrence of

nonlinearities is often of random nature resulting from sudden

environment changes, intermittent transmission congestion,

random failure and repairs of components, etc. Accordingly,

the so-called randomly occurring nonlinearities (RONs) have

started to gain some research interest and several initial results

have been reported on the filtering problems subject to additive

noises, see e.g. [4], [24]. Note that many plants may be

modeled by systems with multiplicative noises and some

characteristics of nonlinear systems can be closely approx-

imated by models with multiplicative noises rather than by

linearized models. In the context of nonlinear finite-horizon

H∞ filtering, the results on state-multiplicative noises have

been very few, and this constitutes partial motivation for the

present research on the H∞ filtering issue for the time-varying

stochastic systems with RONs, exogenous disturbance and

state-multiplicative noises.

So far, most available filter algorithms have implicitly

adopted the time-triggered strategy whose communication in-

terval is designed a priori to reduce the complexity for analysis

and design. Such a communication strategy, however, does not

consider efficient usage of limited communication resources

such as channel bandwidth or capacity in the network envi-

ronment. To alleviate the unnecessary waste of computation

and communication resources in a conventional time-triggered
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strategy, the event-triggered strategy has recently been pro-

posed in [19] where the signal is transmitted only when certain

conditions are satisfied. In comparison with conventional time-

triggered communication, event-triggering allows a consider-

able reduction of the network resource occupancy while main-

taining the guaranteed filtering performance. Clearly, when

energy saving becomes a concern, the event-triggered strategy

stands out as a competent candidate because of its capability

of reducing the data communication frequency and network

bandwidth usages. In the past few years, a growing number of

results have been reported on the applications of event-based

strategies to various engineering systems such as networked

control systems [15], [19], sensor networks [26] and neural

networks [22], etc. However, when it comes to the filtering or

state estimation problems, the corresponding results have been

relatively few, most of which have been concerned with the

implementation problems rather than the system analysis and

synthesis issues.

On another active research front, due to the rapid develop-

ment of network technologies, network-induced phenomena

such as packet dropouts [21], [28], communication delays

[9] and signal quantization [12] have been well studied for

filtering and control problems of networked systems. However,

the network-induced channel fading problem has received

little attention despite its practical significance in wireless

mobile communications. Generally speaking, the main causes

for fading effects are the multi-path propagation and the

shadowing from obstacles, which are widely regarded as a

kind of channel unreliability described by a random process

reflecting the random changes of amplitude and phase of

the transmitted signal. If not dealt with adequately, the phe-

nomenon of network-induced channel fading would inevitably

deteriorate the filtering performance of systems under inves-

tigation. To date, some pioneering work has appeared in the

literature concerning networked control systems with fading

channels, see [5] and the references therein. Nevertheless,

the corresponding event-triggered filtering problem for time-

varying systems with fading measurements has not yet been

fully investigated, not to mention the case when the combined

influences from both the RONs and the state-multiplicative

noises are also involved. It is, therefore, the main purpose of

this paper to shorten such a gap by addressing the event-based

finite-horizon filtering problem for nonlinear time-varying

systems with fading channels and multiplicative noises.

Motivated by the above discussions, in this paper, we aim to

provide a systematic approach to the understanding, analysis

and design of the event-based filters for time-varying systems

with fading channels, RONs and multiplicative noise. The

event-triggered scheme is based on the relative error with

respect to the measurement signal and the fading channels

are described by modified stochastic Rice fading models.

Several uncorrelated random variables are introduced to cater

for the random occurrences of the state-multiplicative noises,

RONs and fading measurements. Some sufficient conditions

are established, via intensive stochastic analysis, to guarantee

the existence of the desired filter gains, and then such finite-

horizon filter gains are obtained by solving sets of recursive

matrix inequalities. A simulation example is finally presented

to illustrate the effectiveness of the proposed design scheme.

The main contributions of this paper are highlighted as

follows:

1) An event indicator variable is introduced to reflect the

event-triggered information in the filter analysis with the

hope of decreasing the data transmission frequency and

also reduce conservatism in the filter design.

2) The event-triggered filter algorithm is proposed for dis-

crete time-varying nonlinear stochastic systems with fad-

ing channels, randomly occurring nonlinearities and mul-

tiplicative noise. The system model addressed is quite

comprehensive, hence reflecting reality more closely.

3) The developed finite-horizon filter design algorithm is

recursive and is thus suitable for online applications.

The rest of this paper is organized as follows: In Sec-

tion II, the discrete time-varying nonlinear stochastic system

with fading channels, randomly occurring nonlinearities and

multiplicative noise is introduced and the problem under

consideration is formulated. In Section III, the design problem

of the event-based finite-horizon filtering problem is solved

and a simulation example is given in Section IV to demonstrate

the main results obtained. Finally, we conclude the paper in

Section V.

Notation. The notation used here is standard except where

otherwise stated. Rn and R
n×m denote, respectively, the n-

dimensional Euclidean space and the set of all n × m real

matrices. The notation X ≥ Y (respectively, X > Y ), where

X and Y are real symmetric matrices, means that X − Y
is positive semi-definite (respectively, positive definite). MT

represents the transpose of the matrix M . 0n (or simply

0) represents n-dimensional zero matrix. The n-dimensional

identity matrix is denoted as In or simply I , if no confusion

is caused. diag{· · · } stands for a block-diagonal matrix. E{x}
and E{x| y} will, respectively, denote expectation of the

stochastic variable x and expectation of x conditional on y.

Prob{·} means the occurrence probability of the event “·”.

In symmetric block matrices, “∗” is used as an ellipsis for

terms induced by symmetry. The symbol ⊗ denotes the Kro-

necker product. 1n = [1, 1, . . . , 1]T ∈ R
n. Matrices, if they

are not explicitly specified, are assumed to have compatible

dimensions.

II. PROBLEM FORMULATION

Consider a discrete time-varying nonlinear stochastic system

described by the following state-space model:































x(k + 1) =
(

A(k) +
r

∑

i=1

wi(k)Ai(k)
)

x(k) + α(k)g(k, x(k))

+D1(k)v(k)

ỹ(k) = C(k)x(k) +D2(k)v(k)

z(k) = L(k)x(k)
(1)

where x(k) ∈ R
nx represents the state vector; ỹ(k) ∈ R

ny

is the process output; z(k) ∈ R
nz is the signal to be

estimated; wi(k) ∈ R (i = 1, 2, ..., r) with wi(k) ∼ N (0, 1);
v(k) ∈ R

nv is a deterministic disturbance noise that belongs



FINAL VERSION 3

to l2([0, N ] where l2[0, N ] denotes the space of square-

summable sequences; A(k), Ai(k), C(k), D1(k), D2(k) and

L(k) are known, real, time-varying matrices with appropriate

dimensions.

The nonlinear vector-valued function g : [0, N ] × R
nx →

R
nx is continuous, and satisfies g(k, 0) = 0 and the following

sector-bounded condition:
[

g(k, x)− g(k, y)− Φ(k)(x− y)
]T [

g(k, x)− g(k, y)

−Ψ(k)(x− y)
]

≤ 0 (2)

for all x, y ∈ R
nx , where Φ(k) and Ψ(k) are real matrices

with appropriate dimensions.

The variable α(k) in (1), which accounts for the randomly

occurring nonlinearity phenomena, is a Bernoulli distributed

white sequences taking values on 0 or 1 with

Prob{α(k) = 1} = ᾱ, Prob{α(k) = 0} = 1− ᾱ, (3)

where ᾱ ∈ [0, 1] is a known constant.

In this paper, we consider an unreliable wireless network

medium utilized for the signal transmission. In this case, the

fading channels become a concern and the actually measured

output y(k) is described by

y(k) =

lk
∑

s=0

βs(k)ỹ(k − s) +D3(k)ξ(k) (4)

where lk = min{l, k} with l being the given number of

paths, ξ(k) ∈ l2[0, N ] is an external disturbance, and βs(k)
(s = 0, 1, · · · , lk) are the channel coefficients that are mutually

independent random variables taking values on the interval

[0, 1] with E
{

βs(k)
}

= β̄s and Var
{

βs(k)
}

= νs.

For simplicity, we set {ỹ(k)}k∈[−l,−1] = 0,

C(k)k∈[−l,−1] = 0 and [vT (k) ξT (k)]k∈[−l,−1] = 0.

Remark 1: The Rice fading model (4), which is capa-

ble of accounting for channel fading, time-delay and data

dropout simultaneously, has been widely utilized in the area

of signal processing and remote control. Also, it can be

seen from (1) that both the parameter system matrices Ai(k)
(i = 1, 2, . . . , r) and the nonlinear function g(k, x(k)) enter

the system in probabilistic ways depicted by the random

variable wi(k) and α(k), separately. As such, the system

model described in (1)-(4) could better reflect the engineering

practice in networked environments.

For the purpose of reducing data communication frequency,

the event generator is constructed which uses the previously

measurement output to determine whether the newly measure-

ment output will be sent out to the filter or not. In this paper,

such an event generator function f(., .) is defined as follows:

f(σ(k), δ) = σT (k)Ωσ(k)− δyT (k)Ωy(k) (5)

where σ(k) := y(ki)−y(k) with y(ki) being the measurement

at the latest event time ki and y(k) is the current measurement.

Ω is a symmetric positive-definite weighting matrix and δ ∈
[0, 1) is the threshold.

The execution (i.e. the transmission of the measurement

output to the filter) is triggered as long as the condition

f(σ(k), δ) > 0 (6)

is satisfied. Therefore, the sequence of event-triggered instants

0 ≤ k0 ≤ k1 ≤ · · · ≤ ki ≤ · · · is determined iteratively by

ki+1 = inf{k ∈ N|k > ki, f(σ(k), δ) > 0}. (7)

Accordingly, any measurement data satisfying the event con-

dition (6) will be transmitted to the filter.

Remark 2: Different from the traditional filtering problems,

in this paper, the event trigger is adopted in order to reduce the

data communication frequency and network bandwidth usages.

With the event trigger applied here, unnecessarily frequent

transmission could be avoided when the change rate of the

measurement signals is relatively small. Obviously, the set

of event instants is only a subset of the time sequences, i.e.,

{k0, k1, k2, . . .} ∈ {0, 1, 2, . . .}. Note that, when δ = 0, all the

measurement sequences would be transmitted, and the problem

addressed reduces to the traditional filtering one.

For system (1), the following time-varying filter structure is

proposed:































x̂(k + 1) = A(k)x̂(k) + ᾱg(k, x̂(k))−K(k)

(

y(ki)

−
l

∑

s=0

β̄sC(k − s)x̂(k − s)

)

ẑ(k) = L(k)x̂(k)

(8)

where x̂(k) ∈ R
nx is the estimate of the state x(k), ẑ(k) ∈

R
nz represents the estimate of the output z(k), and K(k) is

the filter gain matrix to be designed.

By letting e(k) = x(k) − x̂(k), η(k) =
[

xT (k) eT (k)
]T

,

z̃(k) = z(k) − ẑ(k), ϖ(k) =
[

vT (k) ξT (k)
]T

, ḡ(k) =
[

gT (k, x(k)) gT (k, x(k))− gT (k, x̂(k))
]T

, α̃(k) = α(k) −
ᾱ and β̃s(k) = βs(k)− β̄s, we have the following augmented

system to be investigated:












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



















































η(k + 1) = Yl(k) +

( r
∑

i=1

wi(k)Āi(k) + β̃0(k)C̄2(k)

)

× η(k) + β̃0(k)D̄2(k)ϖ(k) + α̃(k)S1ḡ(k)

+

l
∑

s=1

β̃s(k)C̄2(k − s)η(k − s)

+
l

∑

s=1

β̃s(k)D̄2(k − s)ϖ(k − s)

z̃(k) = L̄(k)η(k)
(9)
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where

Yl(k) = Ā(k)η(k) + ᾱḡ(k) +

l
∑

s=1

β̄sC̄1(k − s)η(k − s)

+ K̄(k)σ(k) +
l

∑

s=1

β̄sD̄2(k − s)ϖ(k − s)

+ D̄1(k)ϖ(k),

S1 =

[

I 0
I 0

]

, C̄2(k − s) =

[

0 0
K(k)C(k − s) 0

]

,

D̄1(k) =

[

D1(k) 0
D1(k) + β̄0K(k)D2(k) K(k)D3(k)

]

,

K̄(k) =

[

0
K(k)

]

, D̄2(k − s) =

[

0 0
K(k)D2(k − s) 0

]

,

Ā(k) = diag{A(k), A(k) + β̄0K(k)C(k)},

C̄1(k−s) = diag{0,K(k)C(k − s)},
Āi(k) = 12 ⊗

[

Ai(k) 0
]

, L̄(k) =
[

0 L(k)
]

.

Our objective of this paper is to design a time-varying

filter of the form (8) such that, for the given positive scalar

γ, the dynamic system (9) satisfies the following filtering

performance requirement:

J := E

{

N−1
∑

k=0

(

∥z̃(k)∥2 − γ2∥ϖ(k)∥2U
)

}

− γ2
0

∑

i=−l

E
{

ηT (i)

× Viη(i)
}

< 0 (∀{ϖ(k)}, η(i) ̸= 0) (10)

where U and Vi are some given positive definite weighted

matrices. ∥ϖ(k)∥2U = ϖT (k)Uϖ(k).

III. MAIN RESULTS

In this section, let us investigate both the event-based

filtering performance analysis and filter design problems for

system (9). Firstly, we propose the following event-based

filtering performance analysis results for a class of nonlinear

time-varying systems with multiplicative noises and fading

channels.

Theorem 1: Consider the discrete time-varying nonlinear

stochastic system described by (1)–(4). Let the disturbance

attenuation level γ > 0, the positive definite weighted matrices

U > 0, Vi > 0 (i = −l,−l + 1, . . . , 0), the event weighted

matrix Ω > 0, the scalar δ ∈ [0, 1) and the filter gain

matrix {K(k)}k∈[0, N−1] in (8) be given. For the augmented

system (9), the performance criterion (10) is guaranteed for

all nonzero ϖ(k) if there exist families of positive scalars

{λ(k)}k∈[0, N−1], positive definite matrices {P (k)}k∈[0, N ] >
0 and {Q(i, j)}i∈[−l, N ],j∈[1, l] > 0 satisfying

Γ(k) = Γ̄(k) +

[

T11(k) ∗
T21(k) T22(k)

]

< 0 (11)

with the initial condition

γ2V0 − P (0) > 0, γ2V−i −
l

∑

j=i

Q(−i, j) > 0

(i = 1, 2, . . . , l) (12)

where

T11(k) =





Γ11(k) ∗ ∗
δβ̄0(Λβ C̄l(k))TΩC̄(k) Γ22(k) ∗

Γ31(k) Γ32(k) Γ33(k)



 ,

T21(k) =





δβ̄0(ΛβD̄l(k))
TΩC̄(k) Γ42(k) Γ43(k)

λ(k)U1(k) 0 0
0 0 0



 ,

T22(k) = diag{Γ44(k),−λ(k)I,−ΩI},
U1(k) = I ⊗ (Φ(k) + Ψ(k))/2,

U2(k) = I ⊗ (ΦT (k)Ψ(k) + ΨT (k)Φ(k))/2,

Γ̄(k) =
[

Γ̄ij(k)
]

{i=1,2,...,6;j=1,2,...,6}
,

Q̄(k, l) = diag{Q(k − 1, 1), Q(k − 2, 2), · · · , Q(k − l, l)},
Γ̄11(k) = ĀT (k)P (k + 1)Ā(k)− P (k) + ν0C̄

T
2 (k)

× P (k + 1)C̄2(k) +

r
∑

i=1

ĀT
i (k)P (k + 1)Āi(k),

+

l
∑

j=1

Q(k, j), P̄ (k + 1) = Il ⊗ P (k + 1),

Γ̄21(k) = (Λβ C̄1l(k))TP (k + 1)Ā(k),

Γ̄22(k) = (Λβ C̄1l(k))TP (k + 1)Λβ C̄1l(k)− Q̄(k, l)

+ (Λ̄γ C̄2l(k))T P̄ (k + 1)Λ̄γ C̄2l(k),
Γ̄31(k) = D̄T

1 (k)P (k + 1)Ā(k) + ν0D̄
T
2 (k)P (k + 1)C̄2(k),

Γ̄32(k) = D̄T
1 (k)P (k + 1)Λβ C̄1l(k),

Γ̄33(k) = D̄T
1 (k)P (k + 1)D̄1(k) + ν0D̄

T
2 (k)P (k + 1)D̄2(k),

Γ̄41(k) = (ΛβD̄2l(k))
TP (k + 1)Ā(k),

Γ̄42(k) = (ΛβD̄2l(k))
TP (k + 1)Λβ C̄1l(k)

+ (Λ̄γD̄2l(k))
T P̄ (k + 1)Λ̄γ C̄2l(k),

Γ̄43(k) = (ΛβD̄2l(k))
TP (k + 1)D̄1(k),

Γ̄44(k) = (ΛβD̄2l(k))
TP (k + 1)ΛβD̄2l(k) + (Λ̄γD̄2l(k))

T

× P̄ (k + 1)Λ̄γD̄2l(k),

Γ̄51(k) = ᾱP (k + 1)Ā(k), Γ̄52(k) = ᾱP (k + 1)Λβ C̄1l(k),
Γ̄53(k) = ᾱP (k + 1)D̄1(k), Γ̄54(k) = ᾱP (k + 1)ΛβD̄2l(k),

Γ̄55(k) = ᾱ2P (k + 1) + ᾱ(1− ᾱ)ST
1 P (k + 1)S1,

Γ̄61(k) = K̄T (k)P (k + 1)Ā(k),

Γ̄62(k) = K̄T (k)P (k + 1)Λβ C̄1l(k),
Γ̄63(k) = K̄T (k)P (k + 1)D̄1(k),

Γ̄64(k) = K̄T (k)P (k + 1)ΛβD̄2l(k),

Γ̄65(k) = ᾱK̄T (k)P (k + 1),

Γ̄66(k) = K̄T (k)P (k + 1)K̄(k),

Γ11(k) = −λ(k)U2(k) + L̄T (k)L̄(k)

+ δ(β̄2
0 + ν0)C̄

T (k)ΩC̄(k),

Γ22(k) = δ(Λβ C̄l(k))TΩΛβ C̄l(k) + δ(Λ̄γ C̄l(k))TΩΛ̄γ C̄l(k),
Γ31(k) = δ

(

(β̄2
0 + ν0)D̄(k) + β̄0D̄3(k)

)T
ΩC̄(k),

Γ32(k) = δ(β̄0D̄(k) + D̄3(k))
TΩΛβ C̄l(k),
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Γ33(k) = − γ2

l + 1
U + δ

(

β̄0D̄(k) + D̄3(k)
)T

Ω
(

β̄0D̄(k)

+ D̄3(k)
)

+ δν0D̄
T (k)ΩD̄(k),

Γ42(k) = δ(ΛβD̄l(k))
TΩΛβ C̄l(k) + δ(Λ̄γD̄l(k))

TΩΛ̄γ C̄l(k),
Γ43(k) = δ(ΛβD̄l(k))

TΩ(β̄0D̄(k) + D̄3(k)),

Γ44(k) = − γ2

l + 1
Il ⊗ U + δ(ΛβD̄l(k))

TΩΛβD̄l(k)

+ δ(Λ̄γD̄l(k))
TΩΛ̄γD̄l(k),

C̄1l(k) = diag{C̄1(k − 1), C̄1(k − 2), . . . , C̄1(k − l)},
D̄2l(k) = diag{D̄2(k − 1), D̄2(k − 2), . . . , D̄2(k − l)},
C̄2l(k) = diag{C̄2(k − 1), C̄2(k − 2), . . . , C̄2(k − l)},
D̄l(k) = diag{D̄(k − 1), D̄(k − 2), . . . , D̄(k − l)},
C̄l(k) = diag{C̄(k − 1), C̄(k − 2), . . . , C̄(k − l)},
D̄3(k) =

[

0 D3(k)
]

, C̄(k − s) =
[

C(k − s) 0
]

,

D̄(k − s) =
[

D2(k − s) 0
]

,Λβ =
[

β̄1I β̄2I · · · β̄lI
]

,

Λ̄γ = diag{√ν1I,
√
ν2I, . . . ,

√
νlI}.

Proof: Consider the following Lyapunov functional can-

didate for system (9):

V (k) = V1(k) + V2(k)

= ηT (k)P (k)η(k) +
l

∑

j=1

k−1
∑

i=k−j

ηT (i)Q(i, j)η(i) (13)

where P (k) > 0 and Q(i, j) > 0 are symmetric positive

definite matrices with appropriate dimensions. Calculate the

difference of V (k) along the solution of system (9) and take

the mathematical expectation. Then, we have

E {∆V1(k)} = E {V1(k + 1)− V1(k)}

=E

{(

YT
l (k)P (k + 1)Yl(k) + ᾱ(1− ᾱ)ḡT (k)ST

1 P (k + 1)

× S1ḡ(k) + ηT (k)

( r
∑

i=1

ĀT
i (k)P (k + 1)Āi(k)

)

η(k)

+
l

∑

s=0

νs

(

C̄2(k − s)η(k − s) + D̄2(k − s)ϖ(k − s)

)T

× P (k + 1)

(

C̄2(k − s)η(k − s) + D̄2(k − s)ϖ(k − s)

)

− ηT (k)P (k)η(k)

}

(14)

Similarly, by noting the equation (13), one has

E {∆V2(k)}

=E

{ l
∑

j=1

ηT (k)Q(k, j)η(k)− ηTl (k)Q̄(k, l)ηl(k)

}

(15)

where ηl(k) =
[

ηT (k − 1) ηT (k − 2) · · · ηT (k − l)
]T

.
Therefore, by denoting

ϖl(k) =
[

ϖT (k − 1) · · · ϖT (k − l)
]T

,

η̃(k) =
[

ηT (k) ηTl (k) ϖT (k) ϖT
l (k) ḡT (k) σT (k)

]T

and combining (13)–(15), one immediately obtains

E {∆V (k)} = E
{

η̃T (k)Γ̄(k)η̃(k)
}

. (16)

Moreover, it follows from the constraint (2) that

[

ḡ(k)−(I⊗Φ(k))η(k)
]T [

ḡ(k)−(I⊗Ψ(k))η(k)
]

≤ 0. (17)

Then, substituting (17) into (16) results in

E {∆V (k)} ≤ E

{

η̃T (k)Γ̄(k)η̃(k)− λ(k)
[

ḡ(k)− (I ⊗ Φ(k))

× η(k)
]T [

ḡ(k)− (I ⊗Ψ(k))η(k)
]

}

. (18)

Considering the event condition (6), we have

E {∆V (k)}
≤ E

{

η̃T (k)Γ̄(k)η̃(k)− λ(k)
[

ḡ(k)− (I ⊗ Φ(k))η(k)
]T

×
[

ḡ(k)− (I ⊗Ψ(k))η(k)
]

− σT (k)Ωσ(k)

+δyT (k)Ωy(k)
}

. (19)

Due to {ϖ(k)}k∈[−l, −1] = 0, adding the zero term

z̃T (k)z̃(k)− γ2ϖT (k)Uϖ(k)− (z̃T (k)z̃(k)

−γ2ϖT (k)Uϖ(k)) (20)

to (19) results in

E {∆V (k)}

≤E

{

η̃T (k)Γ(k)η̃(k)
}

+ E

{

γ2

l + 1

l
∑

s=0

∥ϖ(k − s)∥2U

− γ2∥ϖ(k)∥2U

}

− E

{

∥z̃(k)∥2 − γ2∥ϖ(k)∥2U

}

. (21)

Summing up (21) on both sides from 0 to N − 1 with respect

to k, we obtain

N−1
∑

k=0

E {∆V (k)}

≤E

{

N−1
∑

k=0

η̃T (k)Γ(k)η̃(k)
}

+ E

{

γ2

l + 1

l
∑

s=0

N−1
∑

k=0

(∥ϖ(k − s)∥2U

− ∥ϖ(k)∥2U )
}

− E

{

N−1
∑

k=0

(∥z̃(k)∥2 − γ2∥ϖ(k)∥2U )
}

(22)

It can be obtained from (11) and (12) that

E

{

N−1
∑

k=0

(

γ2∥ϖ(k)∥2U − ∥z̃(k)∥2
)

+ γ2
0

∑

i=−l

ηT (i)Viη(i)

}

> E {V (N)}+ E

{

γ2
0

∑

k=−l

ηT (i)Viη(i)− V (0)

}

≥ 0

(23)

which is equivalent to (10), and the proof is now complete.

Based on the analysis results, we are now ready to solve the

filter design problem for system (9) in the following theorem.
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For convenience of later analysis, we denote

Γ̂11(k) =





T11(k) ∗ ∗
T21(k) −Q̄(k, l) + Γ22(k) ∗
Γ31(k) Γ32(k) Γ33(k)



 ,

T11(k) = −P (k) +
l

∑

j=1

Q(k, j) + Γ11(k),

T21(k) = δβ̄0(Λβ C̄l(k))TΩC̄(k),

Γ̂21(k) =





δβ̄0(ΛβD̄l(k))
TΩC̄(k) Γ42(k) Γ43(k)

λ(k)U1(k) 0 0
0 0 0



 ,

Γ̂22(k) = diag
{

Γ44(k),−λ(k)I,−ΩI
}

,

Γ̂32(k) =
[

ΛβK̂(k)D̄l(k) ᾱI H0K(k)
]

,

Γ̂31(k) =
[

T311(k) D̂0(k) +H0K(k)D̂3(k)
]

,

T311(k) =
[

Â0(k) + β̄0H0K(k)Ĉ0(k) ΛβK̂(k)Ĉ0l(k)
]

,

Γ̂41(k) =





C (k) 0 D(k)

0 ΛβK̂(k)Ĉ0l(k) 0

0 Λ̄γK̂(k)C̄l(k) 0



 ,

C (k) =
√
ν0H0K(k)C̄(k), D(k) =

√
ν0H0K(k)D̄(k),

Γ̂44(k) = diag
{

−R(k + 1),−R(k + 1),−R̄(k + 1)
}

,

Γ̂51(k) =
[

Γ̂511(k) Γ̂512(k) 0
]

, K̂(k) = Il ⊗H0K(k),

Γ̂511(k) =
[

0 0 ĀT
r (k)

]T
, R̄(k + 1) = Il ⊗R(k + 1),

Γ̂512(k) =
[

(

Λ̄γK̂(k)C̄l(k)
)T

0 0
]T

,

Γ̂52(k) = diag{Λ̄γK̂(k)D̄l(k),
√

ᾱ(1− ᾱ)S1, 0},
Γ̂55(k) = diag{−R̄(k + 1),−R(k + 1),−R̂(k + 1)},
Ār(k) =

[

ĀT
1 (k) ĀT

2 (k) · · · ĀT
r (k)

]T
,

Â0(k) = I2 ⊗A(k), R̂(k + 1) = Ir ⊗R(k + 1),

Ĉ0(k) =
[

0 C(k)
]

, D̂0(k) = 12 ⊗
[

D1(k) 0
]

,

D̂3(k) =
[

β̄0D2(k) D3(k)
]

, H0 =
[

0 I
]T

,

Ĉ0l(k) = diag

{

Ĉ0(k − 1), Ĉ0(k − 2), . . . , Ĉ0(k − l)

}

.

(24)

Theorem 2: Consider the discrete time-varying nonlinear

stochastic system (1) with the time-varying filter (8). For

the given disturbance attenuation level γ > 0, the positive

definite weighted matrices U > 0, Vi > 0 (i = −l,−l +
1, . . . , 0), the event weighted matrix Ω > 0 and the scalar

δ ∈ [0, 1), the filtering error z̃(k) satisfies the perfor-

mance criterion (10) if there exist families of positive scalars

{λ(k)}k∈[0,N−1], positive definite matrices {P (k)}k∈[0,N ] >
0, {Q(i, j)}i∈[−l,N ],j∈[1,l] > 0, {R(k)}k∈[0,N ] > 0 and real-

valued matrices K(k)k∈[0,N−1] satisfying

Γ̂(k) =















Γ̂11(k) ∗ ∗ ∗ ∗
Γ̂21(k) Γ̂22(k) ∗ ∗ ∗
Γ̂31(k) Γ̂32(k) −R(k + 1) ∗ ∗
Γ̂41(k) 0 0 Γ̂44(k) ∗
Γ̂51(k) Γ̂52(k) 0 0 Γ̂55(k)















< 0 (25)

and the initial condition

γ2V0 − P (0) > 0, γ2V−i −
l

∑

j=i

Q(−i, j) > 0

(i = 1, 2, . . . , l) (26)

with the parameters updated by P (k + 1) = R−1(k + 1).
Proof: In order to avoid partitioning the positive de-

fine matrices {P (k)}k∈[0,N ], {Q(i, j)}i∈[−l,N ],j∈[1,l] and

{R(k)}k∈[0,N ], we rewrite the parameters in Theorem 1 in

the following form:

Ā(k) = Â0(k) + β̄0H0K(k)Ĉ0(k), C̄1l(k) = K̂(k)Ĉ0l(k),
C̄1(k − s) = H0K(k)Ĉ0(k − s), C̄2l(k) = K̂(k)C̄l(k),
C̄2(k − s) = H0K(k)C̄(k − s), D̄2l(k) = K̂(k)D̄l(k),

D̄1(k) = D̂0(k) +H0K(k)D̂3(k), K̄(k) = H0K(k),

D̄2(k) = H0K(k)D̄(k − s). (27)

Noticing (27) and using the Schur Complement Lemma [2],

(25) can be obtained by (11) after some straightforward

algebraic manipulations. The proof of this theorem is now

complete.

Remark 3: Theorem 1 presents sufficient conditions for the

existence of admissible filters. It is worth noting that the

technique used for deriving these conditions is quite different

from the previous results in the filtering area, e.g. [10], [23],

[24]. In this paper, to reduce the design conservatism, the pos-

itive definite matrices {P (k)}k∈[0,N ], {Q(i, j)}i∈[−l,N ],j∈[1,l]

and {R(k)}k∈[0,N ] remain in its original form. Therefore, the

difficulty of dilating positive definite matrices does not occur

in our result. Besides, it can be observed from Theorem 2 that

the main results established contain all the information of the

addressed general systems including the time-varying systems

parameters, multiplicative noise, the threshold of event trigger,

the occurrence probabilities of the random nonlinearity as well

as the statistics characteristics of the channel coefficients. In

the next section, a simulation example is provided to show the

effectiveness of the proposed finite-horizon filtering technique.

For implementation purpose and based on Theorem 2,

we can summarize the Finite-Horizon Filter Design (FHFD)

algorithm at the top of the next page.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, we aim to demonstrate the effectiveness and

applicability of the proposed method. The system model is

concerned with one of the test runs of an aircraft which is

powered by energy from two F-404 engines. Both engines are

mounted close together in the aft fuselage. We are interested

in tracking such an aircraft through wireless communications

subject to fading channels and multiplicative noises. In this

simulation, the nominal system matrix A and the measurement

output matrix C are taken from the linearized model of an F-

404 aircraft engine system in [8]:

A(k) =





−1.4600 0 2.4280
0.1643 −0.4000 −0.3788
0.3107 0 −2.2300



 ,

C(k) =

[

1 0 0
0 1 0

]

.
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The Finite-Horizon Filter Design (FHFD) Algorithm:
Step 1. Given the disturbance attenuation level γ, the positive definite weighted matrices U > 0, Vi > 0 (i = −l,−l +

1, . . . , 0), the event weighted matrix Ω > 0 and the saclar δ ∈ [0, 1).
Step 2. Set k = 0. Solve the matrix inequalities (25) and the recursive matrix inequalities (12) to obtain the values of

matrices P (0),
∑l

j=i Q(−i, j) (i = 1, 2, . . . , l), R(1) and the filter gain matrix K(0).

Step 3. Set k = k + 1, update the matrices P (k + 1) = R−1(k + 1) and then obtain the filter gain matrix K(k) by
solving the recursive matrix inequalities (25).

Step 4. If k < N , then go to Step 3, else go to Step 5.
Step 5. Stop.

Setting the sampling time T = 0.5s, we obtain the following

discretized nominal system matrices

A(k) =





0.5227 0 0.5009
0.0458 0.8187 −0.0783
0.0641 0 0.3638



 ,

C(k) =

[

0.6487 0 0
0 0.6487 0

]

.

As discussed in [27], virtually all aircraft engine systems are

in some way disturbed by uncontrolled external forces. The

disturbances may assume a myriad of forms such as wind

gusts, gravity gradients, structural vibrations, or sensor and

actuator noise, and may enter the systems in many different

ways. These perturbations generally degrade the performance

of the system and, in some cases, may even jeopardize the

outcome of the engineering task. For example, the random

vibration of an aircraft engine system would have a major

impact on the accurate fatigue analysis as well as the design

of engine control systems [14]. As in [11], we suppose that

the motion of the F-404 aircraft engine can be determined by

the system of stochastic differential equations derived from

the basic aerodynamics, and the stochastic part of the motion

is due to the changing wind.

In the F-404 aircraft engine model, x1(k) and x2(k) rep-

resent the horizontal position and x3(k) is the altitude of the

aircraft. Our purpose is to design a time-varying filter in the

form of (8) in a network environment. The movement of the

aircraft is affected by the wind that acts as stochastic distur-

bances. In fact, when modeling the aircraft engine system,

there exist modeling errors (state-multiplicative noises) and

linearization errors (nonlinear disturbances). Moreover, in the

scenario of tracking the aircraft through wireless communica-

tions, both fading channels and multiplicative noises are often

unavoidable. To this end, the corresponding parameters are

given as follows:

A1(k) =





0.05 −0.1 0
0 0.02 sin(k) 0.1

0.01 0 0.2



 ,

A2(k) =





0.05 sin(k) 0 0
0 0.02 0
0.1 0.01 0.02



 ,

D1(k) =
[

0.2 −0.05 0.01
]T

, L(k) =
[

1 1 1
]

,

D2(k) =
[

0.3 −0.05
]T

, D3(k) =
[

0 0.1
]T

.

To track the state of the F-404 aircraft engine system, the

RONs should be taken into account due to the unpredictable

changes of the environmental circumstances. In practice, the
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Fig. 1. The measurement y(k) and the measurement y(ki) for event-
triggered instants when δ = 0.6

probability α(k) can be determined beforehand thorough sta-

tistical tests. In this illustrative example, the probability of

randomly occurring nonlinearities is taken as ᾱ = 0.7 and the

nonlinear vector-valued function g(k, x(k)) is chosen as

g(k, x(k)) =







−0.5x1(k) + 0.4x2(k) + 0.1x3(k)

0.1x1(k) +
sin x1(k)√

x2

1
(k)+x2

2
(k)+10

0.5x2(k)







where xi(k) (i = 1, 2, 3) denotes the i-th element of the

system state x(k). It is easy to see that the constraint (2) is

met with

Φ(k) =





−0.2 0.4 0.1
0.05 0 0
0 0.2 0



 , Ψ(k) =





−0.8 0.4 0.1
0.15 0 0
0 0.8 0



 .

The order of the fading model is l = 1 and the probability

density functions of channel coefficients are as follows
{

ϱ(β0(k)) = 0.0005(e9.89β0(k) − 1), 0 ≤ β0(k) ≤ 1,
ϱ(β1(k)) = 8.5017e−8.5β1(k), 0 ≤ β1(k) ≤ 1.

The mathematical expectation β̄s and variance νs (s = 0, 1)

can be obtained as 0.8991, 0.1174, 0.0133 and 0.01364,

respectively.

The H∞ performance level γ, the positive definite weighted

matrices U , Vi (i = −1, 0) are chosen as γ = 1, U = I ,

V−1 = V0 = 5I , respectively. Choose event weighted matrix

Ω = I and the threshold δ = 0.6. As long as it goes beyond

the established threshold, updates are triggered such that the

value ∥σ(k)∥ is reset to zero again. By applying Algorithm

FHFD, the desired filter parameters are obtained and listed in

Table I.
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TABLE I
THE FILTER PARAMETERS K(k)

k 0 1 2 · · · 50

K(k)





0.3376 0.4775
0.4476 0.4285
0.4575 0.4726









0.3302 0.4091
0.4149 0.2967
0.4657 0.4363









0.1377 0.0046
0.2056 −0.0236
0.3276 0.0040



 · · ·





0.1270 −0.1241
0.3614 −0.2708
0.1956 −0.1346




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Fig. 2. The output z(k) and its estimation when δ = 0.6
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Fig. 3. The estimation error z̃(k) when δ = 0.6
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Fig. 4. The measurement y(k) and the measurement y(ki) for event-
triggered instants when δ = 0
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Fig. 5. The output z(k) and its estimation when δ = 0
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Fig. 6. The estimation error z̃(k) when δ = 0

In the simulation, the initial value of the state is x(0) =
[

−0.55 −0.16 0
]T

and the exogenous disturbance inputs

are selected as

ξ(k) = 0.5e−2k sin(4k), v(k) =
4

k + 20
sin(k). (28)

Fig. 1 plots the measurement y(k) and the measurement

y(ki) for event-triggered instants, and the outputs z(k) and

the filtering errors z̃(k) are depicted in Fig. 2 and Fig. 3,

respectively.

For δ = 0, that is, no event triggering happens, Fig. 4

plots the measurement y(k) and the measurement y(ki) for

event-triggered instants. The corresponding outputs z(k) and

the filtering errors z̃(k) are depicted in Fig. 5 and Fig. 6,

respectively. It can be seen from the simulation results that

the larger δ the worse the filtering performance, which is in

agreement with the fact that event triggering is based on the

relative error with respect to the output signal. Clearly, the

bandwidth utilization cannot be reduced too much in order

to guarantee certain filtering performance. All the simulation
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results confirm that the approach addressed in this paper

provides a satisfactory filtering performance.

V. CONCLUSION

In this paper, we have dealt with the event-based filter-

ing problem for time-varying systems with fading channels,

randomly occurring nonlinearities and multiplicative noise.

An event indicator variable has been constructed and the

corresponding event-triggered scheme has been proposed to

determine whether the measurement output is transmitted to

the filter or not. The event-triggered scheme has been based on

the relative error with respect to the measurement signal, and

the fading channels have been described by modified stochastic

Rice fading models. Some uncorrelated random variables have

been introduced, respectively, to govern the phenomena of

state-multiplicative noises, randomly occurring nonlinearities

and fading measurements. By employing the stochastic analy-

sis techniques, some sufficient conditions have been provided

to ensure that the dynamic system under consideration satisfies

the filtering performance constraint. Furthermore, the explicit

expression of the desired filter gains have been derived in terms

of solving recursive matrix inequalities. Finally, an illustrative

example has highlighted the effectiveness of the event-based

filtering technology presented in this paper.
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