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Abstract

Event cameras have a lot of advantages over traditional

cameras, such as low latency, high temporal resolution, and

high dynamic range. However, since the outputs of event

cameras are the sequences of asynchronous events over

time rather than actual intensity images, existing algorithms

could not be directly applied. Therefore, it is demanding

to generate intensity images from events for other tasks. In

this paper, we unlock the potential of event camera-based

conditional generative adversarial networks to create im-

ages/videos from an adjustable portion of the event data

stream. The stacks of space-time coordinates of events are

used as inputs and the network is trained to reproduce im-

ages based on the spatio-temporal intensity changes. The

usefulness of event cameras to generate high dynamic range

(HDR) images even in extreme illumination conditions and

also non blurred images under rapid motion is also shown.

In addition, the possibility of generating very high frame

rate videos is demonstrated, theoretically up to 1 million

frames per second (FPS) since the temporal resolution of

event cameras are about 1 µs. Proposed methods are eval-

uated by comparing the results with the intensity images

captured on the same pixel grid-line of events using online

available real datasets and synthetic datasets produced by

the event camera simulator.

1. Introduction

Event cameras are bio-inspired vision sensors that mimic

the human eye in receiving the visual information [14].

While traditional cameras transmit intensity frames at a fixed

rate, event cameras transmit the changes of intensity at the

time of the changes, in the form of asynchronous events

that deliver space-time coordinates of the intensity changes.

They have lots of advantages over traditional cameras, e.g.

low latency in the order of microseconds, high temporal res-

∗These two authors contributed equally

Figure 1. From left to right, input events, active pixel sensor (APS)

images from the DAVIS camera, and our results. Our methods

construct HDR images with more details that normal cameras could

not reproduce as in APS frames.

olution (around 1 µs) and high dynamic range. However,

since the outputs of events cameras are the sequences of

asynchronous events over time rather than actual intensity

images, most existing algorithms cannot be directly applied.

Thus, although it has been recently shown that event cam-

eras are sufficient to perform some tasks such as 6-DoF pose

estimation[24] and 3D reconstruction [22, 11], it will be a

great help if we can generate intensity images from events

for other tasks such as object detection, tracking and SLAM.

Actually, it has been stated that event cameras, in princi-

ple, transfer all the information needed to reconstruct images

or a full video stream [2, 25, 24]. However, this statement has

never been thoroughly substantiated. Motivated by recent

advances of deep learning in image reconstruction and trans-

lation, we tackle the problem of generating intensity images

from events, and further unlock the potential of event cam-

eras to produce high quality HDR intensity images and high

frame rate videos with no motion blur, which is especially

important when the robustness to fast motion and to extreme

illumination conditions is critical as in autonomous driving.

To the best of our knowledge, our work is the first attempt

focusing on pure events to HDR images and high frame
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rate video translation, and proving that event cameras can

produce high-quality non-blurred images and videos even

under fast motion and extreme illumination conditions. We

first propose the event-based domain translation framework

that generates better quality images from events compared

with active pixel sensor (APS) frames and other previous

methods. For this framework, two novel and initiative event

stacking methods are also proposed based on shifting over

the event stream, stacking based on time (SBT) and stack-

ing based on the number of events (SBE), such that we can

reach high frame rate and HDR representation with no mo-

tion blur, which is, in contrast, impossible for the normal

cameras. It turns out that it is possible to generate a video

with up to 1 million FPS using these stacking methods.

To verify the robustness of the proposed methods, we con-

duct intensive experiments and evaluation/comparison. In

experiments, real datasets from a dynamic and active-pixel

vision sensor, DAVIS, which is a joint event and intensity

camera [20], are used. The sensor’s pixel grid-line of the

events and the intensity are on the same location which helps

reducing extra steps of rectification and warping for adjust-

ing two images to each other. We make an open dataset

that includes more than 17K images captured by the DAVIS

camera to learn a generic model for event-to-image/video

translation. In addition, we make a synthetic dataset con-

taining 17K images by using the event camera simulator [23]

for experiments1.

2. Related work

2.1. Intensity-image reconstruction from events

One of the early attempts on visually interpreting or re-

constructing the intensity image from events is the work

by Cook et al. [6], in which recurrently interconnected ar-

eas called maps were utilized to interpret intensity and optic

flow. Kim et al. [10] used pure events on rotation only scenes

to track the camera and also built a super-resolution accu-

rate mosaic of the scene based on probabilistic filtering. In

[3], intensity images were reconstructed using a patch-based

sparse dictionary both on simulated and real event data in the

presence of noise. Bardow et al. [2] took a few steps further

by reconstructing the intensity image and the motion field for

generic motion in contrast to previous rotation only schemes.

Meanwhile, Reinbacher et al. [25] introduced a variational

denoising framework that iteratively filters incoming events.

They guided the events through a manifold regarding their

timestamps to reconstruct the image. The measurements

and simulations on the event camera with RGBW color fil-

ters were proposed by Moeys et al. in [19]. They presented

the naive and computational method for reconstructing the

intensity image. The aforementioned methods did create

intensity images mainly by pure events, however, the recon-

1Available online at http://vi.kaist.ac.kr

struction was not photorealistic. Recently, Shedligeri et al.

[28] introduced a hybrid method that fuses intensity images

and events to create photorealistic images. Their method

relies on a set of three autoencoders. This method produces

promising results for normally illuminated scenes, but it fails

in recovering HDR scenes under extreme illumination con-

ditions since it only utilizes event data for finding the 6-DoF

pose.

2.2. Deep learning on events

Although deep learning has not been much applied to

event-based vision, some recent studies have demonstrated

that deep learning successfully performs with event data.

Moeys et al. [18] utilized both event data and APS images

to train a convolutional neural network (CNN) for control-

ling the steering of a predator robot. Other methods on

steering prediction for self-driving cars by using pure events

and/or by incorporating the APS images in an end-to-end

fashion have been also studied in [4, 15]. On the other

hand, a stacked spatial LSTM network was introduced in

[22], which relocalizes the 6-DoF pose from events, and the

optical flow estimation based on a self-supervised encoder-

decoder network was proposed in [33]. Supervised learning

is adopted to create pseudo labels for detecting objects under

ego-motion in [5]. The pseudo labels are transferred to the

event image by training a CNN on APS images. And, as

mentioned in the previous section, the fusion of event data

and APS images was introduced in [28], which utilized au-

toencoders to create photorealistic images. To the best of our

knowledge, we are the first to apply generative adversarial

networks on event data.

2.3. Condition GANs on image translation

Actually, there is no qualitative research showing the ef-

fectiveness of conditional GANs (cGANs) on event data.

Prior works have focused on cGANs for image prediction

from a normal map[29], future frame prediction[16] and im-

age generation from sparse annotations[9]. The difference

between using GANs for image-to-image translation con-

ditionally and unconditionally is that unconditional GANs

highly rely on the confining lost function to control the out-

put to be conditioned. cGANs have been successfully ap-

plied to style transfer [13, 1, 8, 34, 12] in the frame image

domain, and these applications mostly focused on convert-

ing an image from one representation to another based on

the supervised setting. Besides, it requires input-output

pairs for graphics tasks while assuming some relationship

between domains. When comes to event vision, cGANs

have not yet been examined qualitatively and quantitatively,

and therefore, we seek to unlock the potential of cGANs for

image reconstruction based on event data. However, since

the general approach for frame-based image translation is

typically different from event-based one, we first propose a
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deep learning framework to accomplish this task and fully

take advantages of an event camera such as low latency, high

temporal resolution, high dynamic range with the proposed

framework. We then qualitatively and quantitatively evalu-

ate the proposed framework with real and synthetic datasets.

3. Proposed method

To reconstruct HDR and high temporal resolution images

and videos from events, we exploit currently available deep

learning models, such as cGANs, as potential solutions for

event vision. cGANs are generative models that learn a

mapping from observed image x and random noise vector

z to the output image y, G : {x, z}→y. The generator G

is trained to produce output that is not distinguishable from

original images by an adversarially trained discriminator,

D [7]. The objective is to minimize the distance between

ground truth and output from generator, and to maximize

the observation from discriminator.

cGANs such as Pix2Pix [8] and CycleGANs [34] have

proved their capability in image-to-image translation bring-

ing breakthrough results. The key strength of cGANs is that

there is no need to tailor the loss function regrading given

specific tasks, and it can generally adapt its own learned

loss to the data domain where it is trained. However, event

data is quite different from those used for traditional vision

approaches based on cGANs, so we propose new methods

that can provide off-the-shelf inputs for neural networks in

Sec. 3.1 first and build a network in Sec. 3.2.

3.1. Event stacking

In an event camera, each event e is represented as a tuple

(u, v, t, p), where u and v are the pixel coordinates and t is

the timestamp of the event, and p = ±1 is the polarity of

the event, which is the sign of the brightness change (p = 0

for no event). These events are shown as a stream on the

left of Fig. 2. Based on the frame rate of intensity camera,

we have synchronized APS images and asynchronous events

in-between two consecutive APS frames. To feed event data

input to the network, new representations of event data are

required. One simple way is to form the 3D event volume as

p(u, v, t) for some time duration ensuring event data enough

for image reconstruction. When denoting the temporal res-

olution of an event camera by δt and the time duration by td ,

the size of the 3D volume is (w, h, n), where w and h repre-

sent the spatial resolution of an event camera and n = td/δt.

This is equivalent to have the n-channel image input for the

network. This representation preserves all the information

about events. However, the problem is that the number of

channels is very huge. For example, when td is set to 10ms,

then n is about 10K , which is extraordinarily large, since the

temporal resolution of an event camera is about 1 µs. For

this reason, we construct the 3D event volume with small

n by forming each channel via merging and stacking the

events within a small time interval. Event stacking can be

done in different ways, but the temporal information of event

is necessarily sacrificed in return.

3.1.1 Stacking Based on Time (SBT)

In this approach, the streaming events in-between the time

references of two consecutive intensity images (APS) of the

event camera, denoted as ∆t, are merged. But not all events

are merged into a single frame. Instead, the time duration of

the event stream is devided into n equal-scale portions, and

then n grayscale frames, Si
p(u, v), i = 1, 2, .., n, are formed

by merging the events in each time interval [
(i−1)∆t

n
, i∆t

n
].

Si
p(u, v) is the sum of polarity(p) values at (u, v). These

n grayscale frames are stacked together again to form one

stack Sp(u, v, i) = Si
p(u, v), i = 1, 2, .., n, which is fed to the

network as the input. As mentioned, this stacking method

loses the time information of events within time interval ∆t
n

.

However, the stack itself, as the sequence of frames from

one to n, still holds the temporal information to some extent.

Therefore, larger n can keep more temporal information.

Figure 2 illustrates how to merge and stack the events.

When n = 3 (i.e. stacking frames FA, FB, and FC into one

stack), the stack can be visualized as a pseudo color frame,

as shown in the left part of Fig. 2 above the APS image.

Based on the time shown at the event manifold in the middle

of Fig. 2, starting from time zero on the 3D view, the location

of APS image is around the location of the third red rectangle

near 0.03 sec (the frame rate of the APS image is 33 FPS).

3.1.2 Stacking Based on the number of Events (SBE)

Unfortunately, SBT brings an intrinsic limitation originated

from the event camera, which is the lack of events when

there is no movement of the scene or the camera. When

the event data within the time interval are not enough for

the image reconstruction, it is hard to get good HDR images

inevitably. This is the case for the fourth and fifth frame of

the event stream at the left of Fig. 2. Furthermore, another

flaw comes from the case of having too many events in one

time frame as in the third time frame.

SBE more coincides with the nature of an event camera,

which is being asynchronous to time, and can overcome the

aforementioned limitations of SBT. In this method, a frame

is formed by merging the events based on the number of

incoming events as illustrated in Fig. 2. The first Ne events

are merged into frame 1 and next Ne events into frame 2,

and this is continued up to frame n to create one stack of

n frames. Then, this n-frame stack containing nNe events

in total is used as an input to the network. This method

guarantees rich event data enough to reconstruct images

depending on the Ne value. FE , FF , FG , and FH in Fig. 2

are the frames corresponding to different numbers of events,

Ne, 2Ne, 3Ne, 4Ne, respectively. Since we count the number

of events with time, we can adaptively adjust the number of

events in each frame and also in one stack.
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Figure 2. The event stream and construction of stacks by SBT and SBE. Two main color tuples of (Red(+), Blue(-)) and (Green(+), Cyan(-))

express the event polarity (plus, minus) throughout this paper. In the main 3D view two types of stacking (SBT on left and SBE on right)

are shown using the yellow highlighted time. The 3D view followed by its side view are color coded with (Red, Blue) and (Green, Cyan)

periodically (every 5000 events) for better visualization. All the images and plotted data are from the "hdr boxes" sequence of [20].

3.1.3 Stacking for video reconstruction

Both SBT and SBE can be applied for video reconstruction

from events using the proposed network, and in both meth-

ods, the frame rate of the output video can be adjusted by

controlling the amount of time shift of two adjacent event

stacks used as inputs to the network. When the events in

the time interval [i − ∆t, i] are used for one input stack for

the image I(i) in a video, the next input stack for the image

I(i + ts) in a video can be constructed by using the events in

the time interval [i−∆t ′, i+ ts] (for SBT ∆t ′ = ∆t − ts), with

the time shift ts . Then, the frame rate of the output video

becomes 1
ts

. It is also worthy of notice that two stacks have

large time overlap [i−∆t ′, i] with duration ∆t ′. If ∆t ′ >> ts ,

the temporal consistency is naturally enforced for nearby

frames. Since the temporal resolution of an event camera is

about 1 µs, we can reach up to one million FPS video with

temporal consistency. This will be demonstrated in Sec. 4

3.2. Network architectures

In this paper, we describe our generator and discriminator

motivated by [13]. Details of the architectures including the

size of each layer can be found in Fig. 3 and Fig. 4.

3.2.1 Generator architecture

The core of the event-to-image translation is how to map

a sparse event input to a dense HDR output with details,

sharing the same structural image features, such as edges,

corners, blobs, etc. Encoder-Decoder network is the mostly

used network for image to image translation tasks. The input

is continuously downsampled through the network, and then

upsampled back to get the translated result. Since, in the

event-to-image translation problem, there is a huge amount

of high-frequency important information from event data

passing through the network, it is likely to lose detailed

features of events during this process and induce noise to the

outputs. For that reason, we consider the similar approaches

proposed in [8], where we further add skip connections to

the "U-net" network structure in [25]. In Fig. 3, the detailed

information including number of layers and inputs/output

are depicted.

3.2.2 Discriminator architecture

Our network is originated from the network in [31]. Fig-

ure 4 illustrates the details of our network architecture. Our

discriminator can be considered as a method to minimize

the style transfer loss between events and intensity images.

Mathematically, the objective function is defined as

LcGAN (G,D) = Ee,g[log D(e, g)]+

Ee,ǫ [log (1 − D(e,G(e, ǫ)))].
(1)

where e indicates the original event, g indicates the gener-

ated image, and ǫ indicates the Gaussian noise as input to the

generator. Meanwhile, G tries to minimize the difference of

images from events, and D is to maximize it. Here, for the

regularization, the L1 norm is used to shrink blurring as

LL1(G) = Ee,g,ǫ [‖g − G(e, ǫ)‖1]. (2)

This L1 norm is aimed to make the discriminator more

focus on high-frequency structure of generated images from

events. Eventually, the objective is to estimate the total loss

from event-to-image translation as

G∗
= arg min

G
max
D

[LcGAN (G,D) + λLL1(G)], (3)

where λ is a parameter to adjust the learning rate. With the

noise ǫ , the network could learn a mapping from event e and
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Figure 3. Generator network: A U-network[26, 8] architecture (with skip connections) that takes an input with the dimension of 256×256×n

(n = 3 for this example), followed by gray boxes corresponding to multi-channel feature maps. The number of channels is denoted inside

each box. The first two numbers(from bottom to top) indicate the filter sizes and the last number indicates the number of filters.

Figure 4. The proposed framework with the generator and discriminator networks. Our discriminator network is similar to PatchGAN [31],

which takes two images (original APS image and the image generated by the generator from events). The discriminator first concatenates

the condition of feature maps from the last layer of the generator and discriminates whether the generated image respects the condition of

domain transfer from event to intensity.

ǫ to g, which could match the distribution based on events

and help to produce more deterministic outputs.

3.3. Dataset preparation

Our training and test datasets are prepared based on three

folds of methods. We create the first group of datasets by re-

ferring to [20], where many real-world scenes are included.

We also make the second group of datasets by ourselves for

various training and test purposes and also for opening to

public afterwards. The datasets are captured using DAVIS

camera, and have many series of scenarios. The third type of

datasets is generated from ESIM[23], an open-source event

camera simulator. The real datasets contain many different

indoor and outdoor scenes captured with various rotations

and translations of the DAVIS camera. Our training data

consist of pairs of stacked events as explained in Sec. 3.1 to-

gether with the APS frames from both the real-world scenes

and the ground truth (GT) frames generated in ESIM. Here,

to use real data for training the network, we carefully prepare

the training data to refrain the network from learning im-

proper properties of the APS frames. Actually, APS frames

suffer from motion blur under fast motion, and also have lim-

ited dynamic range resulting in the loss of details as shown

in Fig. 11. Therefore, directly using the real APS frames

as ground truth is not a good way for training the network,

since our goal is to produce HDR images with less blur by

fully exploiting the advantages of event cameras.

For that reason, the events relevant to the black and white

regions of the training data are removed from the input

to make the network learn to generate HDR images from

events. In addition, the APS images are classified as blurred

and non-blurred based on BRISQUE scores (that will be ex-

plained later) and manual inspection, and we refrain from us-

ing the blurred APS images in the training set. The simulated

sequences are mainly generated from ESIM, where events

are produced while a virtual camera moves in all directions

to capture different scenes in given images. Since the events

and APS images are generated from a controlled simula-

tion environment, the APS frames are counted directly as

the ground truth for image reconstruction. Therefore, the

aforementioned training data refinement is not required for

simulated datasets.
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4. Experiments and evaluation

To explore the capability of our method, we conduct in-

tensive experiments on the datasets depicted in Section 3.3,

and also use another open-source dataset with three real se-

quences (Face, jumping, and ball) [2] for comparison. We

create a training dataset about 60K event stacks with cor-

responding APS image pairs based on their precise times-

tamps, and test our method on both scenes with normal

illumination and also HDR scenes. From both the real and

simulated datasets, we randomly chose 1,000 APS or ground

truth images with corresponding event stacks, not used in

the training step, for testing. Here, it is worthy of notice

that, since real datasets do not include ground truth images

for training and testing, we use their APS images as ground

truth for training purposes. However, the APS image itself

suffers from motion blur and low dynamic range. Thus, us-

ing APS images might not be the best way for training and

also for evaluating the results. For that reason, we prepare

the training APS images as described in Sec. 3.3, and assess

the results using the structure similarity (SSIM) [30], feature

similarity (FSIM) [32] computed by comparing the results

with APS images, as well as by using the no-reference qual-

ity measure. In order to reach a holistic measure of quality,

especially when evaluating the quality of reconstruction of

real datasets without ground truth, the Blind/Referenceless

Image Spatial Quality Evaluator (BRISQUE) [17], which

utilizes normalized luminance coefficients to quantify the

naturalness in images, is applied.

On the other hand, to assess the similarity between ground

truth and generated images for synthetic datasets created us-

ing ESIM [23], each ground truth is matched with the corre-

sponding reconstructed image with the closest timestamp, as

mentioned in [27]. The SSIM, FSIM, and the peak signal-to-

noise ratio (PSNR) are adopted to evaluate non-HDR scenes

and scenes that we have reliable ground truth.

4.1. SBT versus SBE

We compare two event stacking methods, SBT and SBE,

using our real datasets. 17K event stack-APS image pairs

are used for training, where we set ∆t for SBT to 0.03s and

the number of events in one stack to 60K for SBE. To clearly

see the effect of a stacking method, the number of frames

(n) in one stack is set to 3 for both methods.

Figure 5 shows reconstructed images on our real-world

datasets using SBE and SBT, respectively, for qualitative

comparison. It is shown that our methods (both SBT and

SBE) are robust enough to reconstruct the images on dif-

ferent sequences, and the generated images are quite close

to APS images considered as ground truth. Our methods

could successfully reconstruct shapes, appearance of hu-

man, building, etc. When comparing SBT and SBE, SBE

produces better results in general. Table 1 shows quantita-

tive evaluation results of using SBE. Note that large SSIM

Figure 5. Reconstruction results using input event stacks (visualized

as pseudo color images) on different real-world sequences [20].

From top to bottom, APS images as ground truth, event stacks

using SBE, reconstructed images with SBE, event stacks using

SBT, and reconstructed images with SBT.

Table 1. Quantitative evaluation of SBE on real-world datasets.

BRISQUE FSIM SSIM

Ours(n = 3) 37.79±5.86 0.85±0.05 0.73±0.16

and FSIM values in Table 1 do not always mean the better

output quality because they just present the similarity with

APS images suffering from motion blur and low dynamic

range.

4.2. Quantitative evaluation with simulated datasets

In Section 4.1, we investigate the potential of our method

on real-world data which indicate that SBE is more robust

than SBT. Therefore, we conduct experiments based on SBE

and show the robustness of our methods on datasets from

ESIM [23], which can generate large amount of reliable

event data. Since the simulator produces noise-free APS

images with corresponding events for a given image, APS

images can be regarded as ground truth, leading to evaluate

the results quantitatively. In addition, although our method

is capable of stacking, namely, any number of frames (n)

into a stack, we choose the number of channels n = {1, 3}

to examine the effect of different numbers of channels. The

number of events in one stack is set to 60K .

Table 2 shows the quantitative evaluation of our method

with n = 1 and n = 3. It is shown that our method with

n = 3 produces better results than with n = 1, proving that
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GT

n = 1

n = 3

Figure 6. Reconstructed outputs from the inputs generated by ESIM [23]. Using 3 frames per stack (n = 3) results in a more robust

reconstructions in comparison to one-frame stack in which images are distorted due to over-accumulated events.

Figure 7. Comparing our method (image 2, 4, and 6 from left) to Reinbacher et al. [25] (image 1, 3, and 5) on the dataset of [2]. Our

method produces more details ( e.g. face, beard, jumping pose, etc) as well as more natural gray variations in less textured areas.

Table 2. Experiments on ESIM (simulator) datasets. Having more

frames in one stack yields better results.

PSNR (dB) FSIM SSIM

Ours(n = 1) 20.51±2.86 0.81±0.09 0.67±0.20

Ours(n = 3) 24.87±3.15 0.87±0.06 0.79±0.12

having more frames in one stack really improves the per-

formance since it can preserve more temporal information

as mentioned in Sec. 3.1. In Fig. 6, we show a few recon-

structed images as well as input event stacks and ground

truth images. One thing needs to mention is that the face re-

constructed with n = 1 and the top of the building are a little

bit distorted, which may be induced by too many events ac-

cumulated in one single channel. Further challenging scenes

togtether with the GT are presented in Fig. 11.

4.3. Comparison to relevant works

We also qualitatively compare our methods on the se-

quences (face, jumping, and ball) with the results of mani-

fold regularization (MR) [21] and intensity estimation (IE)

[2] in Fig. 7. Since we deal with highly dynamic data, we

provide more persuasive and explicit explanation and re-

sults in the supplementary video, which shows the whole

sequence of several hundred of frames.

To compare the performance quantitatively, we use the

BRISQUE score because no ground-truth image is available

for these sequences. We compare the outputs of our method

(SBE, n = 3) on sequences (face, jumping, and ball) to the

results of MR [21] and IE [2] in Table 3. The results are quite

Table 3. Quantitative comparison of our method to the methods

in [2] and [21]. The reported numbers are the mean and standard

deviation of the BRISQUE measure applied to all reconstructed

frames of the sequences. Our method shows better BRISQUE

scores for all sequences.

Sequence Face Jumping Ball

Bardow [2] 22.27±8.81 29.39±7.27 29.37±9.61

Munda [21] 27.29±7.27 48.18±6.70 34.98±9.31

Ours(n = 3) 48.26±3.14 48.34±2.18 39.18±3.49

consistent to the visual impression of Fig. 7. Our outputs

on all face, jumping, and ball sequences show much more

details and result in relatively higher BRISQUE score.

5. Discussion

Although creating intensity images from an event stream

itself is challenging, the resultant images can also be used

for other vision tasks such as object recognition, tracking,

3D reconstruction, SLAM etc. In that sense, the proposed

method can be applied to many applications that use event

cameras. Here, since the proposed method can fully exploit

the advantages of events cameras such as high temporal

resolution and high dynamic range, it can generate HDR

images even better than APS images and very high frame

rate videos as mentioned in Sec. 3.1.3, greatly increasing

the usefulness of the proposed method.

Events to HDR images: In this paper, it is clearly shown

that event stacks have rich information for HDR image re-

construction. In many cases, some parts of the scene are
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Figure 8. HDR imaging against direct sunlight (extreme illumina-

tion). Left to right: APS, event stack, our reconstruction result.

(sequence from [27]).

Figure 9. High frame rate (up to 106 FPS) video reconstruction.

not visible in the APS image because of its low dynamic

range. But many events really exist in those regions in the

event camera as in the region under the table in Fig. 11 or

the checkerboard pattern at the top left part of the stacked

image in Fig. 2. Although both examples are from dark

illumination but normal cameras also fail in rather bright

illumination. Figure 8 shows the ability of the proposed

method for HDR image generation in such cases.

Events to high frame rate videos: The motion blur

due to fast motion of a camera or the scene is one of the

challenging problems, and this makes the vision methods

unreliable. However, our method can actually generate very

high frame rate (HFR) videos with much less motion blur

under the fast motion as mentioned in Sec. 3.1.3. To prove

this ability, we conducted the tracking experiments using the

reconstructed HFR video: with the event-based high frame

rate video reconstruction framework, we can recover clear

motion of a star-shape object attached on a fan with rotation

speed of 13000 RPM, and the result in Fig. 9 shows that it

is capable of generating the video up to 1 million fps.

Effect of the loss function: We also conduct ablation

studies on different combination of the loss terms. The

results are shown in Table 4 and Fig. 10. In terms of PSNR,

the L1 norm reaches higher values, while we use cGAN +

L1 throughout our experiments since it reflected a higher

BRISQUE score in the simulated inputs. Higher PSNR

does not always mean the better output quality because it

just presents the similarity with APS images (used as GT)

suffering from noise, motion blur and, low dynamic range.

For example, higher PSNR means that the result with L1 in

Fig. 10 is more similar to the low-quality APS image. Since

we want to reconstruct images more realistic and better than

APS images (used as GT), we do not use L1 but use cGAN

+ L1. Moreover, the L1 norm by itself blurs the image and

averages out fine details.

Table 4. Effect of GAN, CGAN, and standard L1 loss function on

real world (R) and simulated (S) inputs.

cGAN+L1 cGAN L1 GAN+L1 GAN

PSNR (S) 24.82 22.91 28.59 25.13 8.09

BRISQ. (S) 40.7 39.2 39.7 40.3 39.7

SSIM (S) 0.809 0.729 0.897 0.823 0.120

PSNR (R) 20.36 18.51 21.34 19.78 13.71

BRISQ. (R) 35.06 33.37 39.47 36.20 36.53

SSIM (R) 0.587 0.543 0.670 0.568 0.271

APS ↑, GT↓ cGAN + L1 L1

Figure 10. Results with different loss functions (real↑, simulated↓)

Figure 11. Our results(↓) with simulated events from GT images(↑)

6. Conclusion

We demonstrated how our cGANs-based approach can

benefit from the properties of event cameras to accurately re-

construct HDR non-blurred intensity images and high frame

rate videos from pure events. We first proposed two initia-

tive event stacking methods (SBT and SBE) for both image

and video reconstruction from events using the network.

We then showed the advantages of using event cameras to

generate high dynamic range images and high frame rate

rate videos through experiments based on our datasets made

of online available real-world sequences and simulator. In

order to show the robustness of our method, we compared

our cGANs-based event-to-image framework with other ex-

isting reconstruction methods and showed that our method

outperforms other methods on public available datasets. We

also showed it is possible to generate high dynamic range

images even in extreme illumination conditions and also

non-blurred images under rapid motion.
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