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Event-based Recursive Distributed Filtering over
Wireless Sensor Networks

Qinyuan Liu, Zidong Wang, Xiao He and D. H. Zhou

Abstract—In this paper, the distributed filtering problem is investigated
for a class of discrete time-varying systems with an event-based commu-
nication mechanism. Each intelligent sensor node transmits the data to its
neighbors only when the local innovation violates a predetermined Send-
on-Delta (SoD) data transmission condition. The aim of the proposed
problem is to construct a distributed filter for each sensor node subject
to sporadic communications over wireless networks. In terms of an event
indicator variable, the triggering information is utilize d so as to reduce
the conservatism in the filter analysis. An upper bound for the filtering
error covariance is obtained in form of Riccati-like difference equations
by utilizing the inductive method. Subsequently, such an upper bound
is minimized by appropriately designing the filter parameters iteratively,
where a novel matrix simplification technique is developed to handle the
challenges resulting from the sparseness of the sensor network topology
and filter structure preserving issues. The effectiveness of the proposed
strategy is illustrated by a numerical simulation.

Index Terms—Distributed filtering, wireless sensor networks, event-
based mechanism, Send-on-Delta concept.

I. I NTRODUCTION

A wireless sensor network is composed of a large number of
sensor nodes geographically distributed in certain areas.Generally,
the sensors involved in the networks are intelligent nodes with limited
computation capability and constrained power supply, and they com-
municate with each other via wireless communication channels. In the
past decades, wireless sensor networks have attracted an increasing
attention from researchers due primarily to their attractive application
insights in a variety of real-world situations including environmen-
tal monitoring, interactive virtual worlds, warehouse inventory and
integrated patient monitoring, see [18] for a survey.

An important practical problem with the wireless sensor networks
is how to find distributed estimators or filters to extract theinfor-
mation about the state vectors of the target plants from observations
contaminated with external disturbances. It is generally known that
the traditional Kalman filter algorithm [1], [2], [6], [21],[22] is
a recursive least mean square (LMS) one dealing with a single
node and is optimal for linear systems with exact system models.
On the other hand, to make use of the spatial information of the
sensor nodes, distributed filtering problems have recentlygained
much research attention. Different from the traditional single node, in
the distributed filtering schemes, the local filters estimate the system
state based on the information not only from itself but also from
its neighboring sensors according to the topology of networks. Up
to now, many important results have been reported in the literature
concerning the distributed filters and several effective strategies have
been proposed, see e.g. [3], [5], [8], [11], [12], [17], [19]. Among
others, theH∞ filter performance has gained particular research
attention [3], [5], [11], [19] due to its capability of ensuring certain
worst-case performance with respect to external disturbances. In [12],
the robust distributed state estimation problem has been addressed for
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stochastic sensor network systems based on the mean square error
analysis method. Furthermore, in [17], the distributed Kalman filter
algorithm has been developed using dynamic consensus protocols
with applications to the target tracking problems.

It is worth pointing out that, most available results on distributed
filtering problems have implicitly adopted the periodic communi-
cation strategy whose communication interval is designeda priori
to guarantee desirable performance under the worst conditions. For
some engineering systems where the communication bandwidth is
not a concern, the periodic strategy could be an acceptable one for
its simplicity in system analysis and design. Such a communication
strategy, however, would probably lead to many unnecessarytrans-
missions and therefore cause a waste of bandwidth resources. For
example, in the case of wireless sensor networks communication
constraints, frequent exchanges of signals would inevitably give rise
to serious network congestions, which might further inducenetwork-
related adverse phenomena such as packet losses and communication
delays.

In recent years, there have been a growing number of results
reported on event-based schedules whose aim is to decrease the
unnecessary executions of the systems [14]. In an earlier work [26],
the event-based sampling strategy has been compared with the time-
driven one and it has been concluded that the former gave better
performance for some simple systems. Later, much research efforts
has been devoted to the applications of the event-based strategy to
various engineering systems such as networked control systems [7],
[23], [24] and multi-agent systems [4], [9], [25]. Unfortunately, when
it comes to the state estimation problems, the available results in
the literature have been scattered, most of which have focused on
the practical implementation issues and there is a lack of adequate
investigation on systematic analysis on the filtering performance. To
be specific, a Send-on-Delta (SoD) regulation has been proposed
in [15] for triggering mechanism whose effectiveness against time-
driven sampling has been fully discussed. In [13], a modifiedKalman
filter has been investigated with intermittent measurementupdates
under the framework of event-based sampling. Another estimation
problem with a SoD sampling strategy has been addressed in [16]
without considering the communication delays and packet losses. In
[20], the hybrid update strategy has been considered to reduce the
estimation error based on the assumption that the difference between
the present and the latest measurement values is limited within a
bounded subset of the measurement space when no event is triggered.
Besides, the event-basedH∞ filtering problems have been addressed
in [10] for continuous-time systems with transmission delays.

Summarizing the above discussion, although the event-based es-
timation/filtering problem has stirred some initial research attention,
the correspondingdistributedfiltering problem overwireless sensor
networkshas not yet been adequately investigated due probably to
the difficulties in accommodating the topological information of the
sensor networks. Note that the sparseness of the sensor network
topology and the structure of the distributed filters add substantial
challenges to the filter analysis and design, not to mention the
difficulties brought from the event-based mechanism, especially when
the filtering error variances are required to be locally minimized. As
such, we are motivated to deal with the distributed filteringproblem
over wireless sensor networks according to the event-basedstrategy
by employing a SoD concept. The employed SoD principle ensures
that the executions are triggered if certain signal exceedsa time-
independent threshold defined as an important change of its value,
and therefore the communication load and energy consumption in
practice can be alleviated by avoiding unnecessary transmissions.
With the proposed strategy, the sensor broadcasts its information to
the neighboring nodes only when the function of its local innovation
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exceeds a fixed time-independent threshold. Obviously, ourproposed
strategy would reduce the number of transmissions over the wireless
communication channel, thereby saving the resource.

The main contributions can be highlighted as follows: 1) a dis-
tributed filter is proposed for discrete time-varying systems in the
framework of a novel event-based communication protocol; 2) a
new event indicator variable is introduced to reflect the triggering
information in the filter analysis with hope to reduce possible
conservatism in the filter analysis; 3) an upper bound of the filtering
error variance is obtained by a recursive algorithm; and 4) the
obtained upper bound is minimized at each iteration with proper
filter parameters computed via a simplified matrix approach.

Notations. Throughout the paper, the notation used is fairly
standard.Rn andR

n×m denote then-dimensional Euclidean space
and the set of alln × m matrices, respectively. The superscript
“T” denotes the transpose and the notationX ≥ Y (respectively,
X > Y ), where X and Y are symmetric matrices, means thatX−Y
is positive semidefinite (respectively, positive definite). Furthermore,
diagn{Ai} represents the block-diagonal matrixdiag{A1, · · · , An}.
The notationcoln{xi} denotes the column vector{xT

1 , · · · , x
T
n}

T .
In represents the identity matrix withn rows andn columns.E{x}
stands for the expectation of the stochastic variablex.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a discrete linear time-varying system described by the
following state-space model:

x(k + 1) = Akx(k) +Bkw(k) (1)

where x(k) ∈ R
nx is the system state andw(k) ∈ R

nw is the
sequence of process noises.Ak, Bk are known system matrices of
appropriate dimensions.

In this paper, a sensor network consisting ofn sensor nodes is
investigated to measure the output of the target plant. We denote the
topology of the network by a fixed directed graphG = (V, E ,H)
of ordern with the set of nodesV ={1, 2, · · · , n}, the set of edges
E ⊆ V × V , and the weighted adjacency matrixH =[aij ]. The
weighted adjacency matrix of the graph is a matrix with nonnegative
elementsaij satisfying the propertyaij > 0 ⇐⇒ (i, j) ∈ E , which
means that theith node can receive the information from thejth
node. In this case, we can say that theith nodes is the neighbor of
the jth node. Moreover, all the neighbors of nodei plus the node
itself are denoted by the set asNi := {j ∈ V|(i, j) ∈ E}.

For theith sensor node, the model is described by:

yi(k) = Ci,kx(k) +Di,kv(k) (2)

whereyi(k) ∈ R
ny stands for the measurement output received by

sensori, and v(t) ∈ R
nv is the sequence of measurement noises.

Ci,k, Di,k are known matrices of appropriate dimensions.
Throughout the paper, the following assumptions are made.
Assumption 1:w(k) and v(k) are mutually uncorrelated zero-

mean Gaussian white-noise sequences with respective covariances
Qk > 0 andRk > 0.

Assumption 2:The initial statex(0) has the mean̄x0 and covari-
anceP0, and is uncorrelated with bothw(k) andv(k).

A. Traditional distributed filter structure

Up to now, a large number of results have been developed with
respect to the distributed filtering problems over the sensor networks.
The traditional distributed filter structures have the general form as
follows:

x̂i(k + 1) = Akx̂i(k) +
∑

j∈Ni

aijGij,krj(k) (3)

for i = 1, 2, · · · , n, where x̂i(k) ∈ R
nx is the estimation of the

plant state in theith sensor node.Gij,k is the filter parameter to
be designed. Besides,ri(k) = yi(k) − Ci,kx̂i(k) is the innovation
sequence exchanged via the network.

So far, to the best of the authors’ knowledge, almost all established
results for distributed estimation problems basically assume that
the sensor nodes should broadcast their local information at every
periodic sampling instant. Such a scheme, however, will probably lead
to a great deal of unnecessary data flow passing through the network,
thereby inevitably aggravating the burden of communication network
and increasing the power consumption. In order to significantly
improve the network utilization efficiency, in the following, we
propose to abandon the traditional periodic paradigm. Instead, we
consider a novel event-based mechanism to suitably represent how
sensors communicate with each other in a highly efficient way. The
main advantage of the modified event-based mechanism lies inits
capability of broadcasting the important messages only rather than
all messages.

B. Event-based distributed filter structure

For the purpose of characterizing the SoD triggering mechanism, it
is necessary to define event generator functionsfi(., .) : R

ny ×R →
R (i = 1, · · · , n) as follows:

fi(ei(k), δi) = eTi (k)ei(k)− δi. (4)

Here,ei(k) = rti(k)−ri(k) whererti(k) is the broadcast innovation
at latest event time,ri(k) is the innovation sequence as defined
before, andδi is a positive scalar. The executions are triggered as
long as the conditionfi(ei(k), δi) > 0 is satisfied. Therefore, the
sequence of event triggering instants0 ≤ si0 ≤ si1 ≤ · · · ≤ sil ≤ · · ·
is determined iteratively by

sil+1 = min{k ∈ N|k > sil, fi(ei(k), δi) > 0}. (5)

Bearing in mind the event-based communication strategy, wecan
solve the distributed filtering problem via the following steps. Firstly,
the sensors synchronically measure the system state according to a
time sequence{kh} (k = 0, 1, · · · ,∞) where h is the sampling
interval of the sensor nodes. Secondly, the event generatorconstructed
in each sensor system only utilizes its local messages to check
whether the triggering rule is fulfilled. Thirdly, if the triggering condi-
tion is satisfied, the sensor node transmits the estimation information,
namely, ri(k), to its adjacent nodes via wireless networks. Here,
all the sensor nodes keep monitoring the wireless network and, as
soon as receiving broadcasts or triggering pre-defined events, the
corresponding sensor nodes update the input of local filters.

Remark 1:From the event generator function (4)-(5), it is indi-
cated that once the variation of the differenceei(k) is intense enough
and overweighs a certain threshold, the node has to inform all its
neighboring sensor nodes of the newest messages so as to keepa
satisfactory estimation performance of the wireless sensor network.

Remark 2:Note that the thresholdδi is a parameter that regulates
the triggering frequency. The smaller threshold means the higher
frequency of event triggering. Whenδi = 0 (i = 1, 2, · · · , n), the
event-based approach reduces to a time-driven one, which requires
the sensor nodes to broadcast their information at every sampling
instant.

For simplicity, let us consider the time periodk ∈ [sil , s
i
l+1). In

the sequel, the event-based filter structures are adopted asfollows:

x̂i(k + 1) = Akx̂i(k) +
∑

j∈Ni

aijGij,kr
t
j(k), (6)

for i = 1, 2, ..., n, k ∈ [sil , s
i
l+1), whereGij,k is the filter parameter

to be designed.
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It is worth mentioning that the transmission interval in theevent-
based schemes is usually larger than that in the periodic transmission
schemes. Obviously, compared with existing filtering schemes, the
event-based method has its inherently attractive featuresof reducing
the burden of wireless network as well as the energy consumption of
sensor systems, thereby helping relieve the network congestion and
increase the lifespan of the batteries in sensor nodes.

Remark 3:Due to the distributed nature of the filter algorithm,
each sensor node could only access the local estimation and the
messages of its neighbors at event triggering instants. Hence, for
sensor nodei, the current filtering messagesrj(k) (j ∈ Ni) remain
unavailable but, instead, we could take into account the latest updated
values from its adjacent nodes, i.e.rtj(k) (j ∈ Ni).

The dynamics of the estimation error

x̃i(k + 1) = xi(k + 1) − x̂i(k + 1),

can be obtained from (1), (2) and (6) as follows

x̃i(k + 1) = Akx̃i(k)−
∑

j∈Ni

aijGij,kCj,kx̃j(k) +Bkw(k)

−
∑

j∈Ni

aijGij,kej(k)−
∑

j∈Ni

aijGij,kDj,kv(k).
(7)

For the whole sensor network, we rewrite (7) in a more compact
form and arrive at the following augmented filtering error system:

x̃(k + 1) = (Ak −
n∑

i=1

EiGkHiCk)x̃(k)−
n∑

i=1

EiGkHie(k)

−
n∑

i=1

EiGkHiDkϑ(k) + Bkω(k),

(8)

where

x̃(k) = coln{x̃i(k)}, e(k) = coln{ei(k)}, ω(k) = coln{w(k)},

ϑ(k) = coln{v(k)}, Gk = { Gij,k }n×n, Ak = diagn{Ak},

Bk = diagn{Bk}, Ck = diagn{Ci,k}, Dk = diagn{Di,k},

Hi = diag{ai1I, . . . , ainI}, Ei = diag{0, . . . , 0
︸ ︷︷ ︸

i−1

, I, 0, . . . , 0
︸ ︷︷ ︸

n−i

}.

The aim of the addressed distributed filtering problem is to design
the filter parameters,Gij,k, in the filter (6) such that the filtering error
covariance is bounded and such a bound is subsequently minimized
iteratively by means of Riccati-like difference equations.

III. M AIN RESULTS

In this section, we will first obtain an upper bound for the
estimation error covariance of the system (8) and then look for an
appropriate filter parameterGk to minimize such an upper bound at
each time-stepk.

For presentation convenience, we denote

P0 := E

{

x̃(0)x̃T (0)
}

, Pk := E

{

x̃(k)x̃T (k)
}

,

Qk := E

{

ω(k)ωT (k)
}

, Rk := E

{

ϑ(k)ϑT (k)
}

.

Before proceeding further, we need to introduce the following
lemma that will be utilized in the subsequent analysis.

Lemma 1:For 0 ≤ k ≤ N , suppose thatX = XT ≥ 0, Y =
Y T ≥ 0 andXk(.) : R

nnx×nnx → R
nnx×nnx . If

Xk(X) ≤ Xk(Y ), ∀X ≤ Y, (9)

then the solutionsWk+1 and Mk+1 to the following difference
equations

Wk+1 = Xk(Wk), Mk+1 ≤ Xk(Mk), M0 = W0 (10)

satisfy

Mk+1 ≤ Wk+1. (11)

Proof: It follows from (10) thatM0 ≤ W0. Assuming, induc-
tively, thatMk ≤ Wk, we have

Mk+1 ≤ Xk(Mk) ≤ Xk(Wk) = Wk+1. (12)

The inductive hypothesis implies thatMk+1 ≤ Wk+1 is always true,
which ends the proof.

Before deriving the upper bound for the filtering error variance,
let us define the event indicator variablesβi(k), which takes binary
values0 and1, as follows:βi(k) = 0 if the event generator conditions
are satisfied at the current instantk for node i, while βi(k) = 1 if
no event is triggered. Furthermore, denote

β̃k = diagn{βi(k)Inv}, β̄k = Innv − diagn{βi(k)Inv}, (13)

which, according to the triggering condtion (4)-(5), should be avail-
able at the current instantk for the purpose of calculating the filtering
error covariance at the instantk + 1.

Theorem 1:Consider the linear time-varying system (1) with the
distributed filters (6) and event generator condition (4)-(5). Letα be a
positive scalar. For0 ≤ k ≤ N−1, assume that there exist two sets of
real-valued matricesΞk > 0 andGk satisfying the following Riccati-
like difference equation with the initial conditionΞ0 = P0 ≥ 0:

Ξk+1 = Xk(Ξk)

:= (1 + α)(Ak −
n∑

i=1

EiGkHiCk)Ξk(Ak −
n∑

i=1

EiGkHiCk)
T

+∆(1 + α−1)(

n∑

i=1

EiGkHi)(

n∑

i=1

EiGkHi)
T + BkQkB

T
k

+ (

n∑

i=1

EiGkHiDk)(β̄kRkβ̄k − β̃kRkβ̃k)(

n∑

i=1

EiGkHiDk)
T

(14)

where∆ =
∑n

i=1 δi. Then, the matrixΞk is the upper bound of the
estimation error covariance matrixPk, that is,Ξk ≥ Pk.

Proof: The estimation error covariance at time-stepk + 1 is
computed as follows:

Pk+1 = E[x̃(k + 1)x̃T (k + 1)]

= (Ak −
n∑

i=1

EiGkHiCk)E{x̃(k)x̃
T (k)}(Ak −

n∑

i=1

EiGkHi

× Ck)
T + (

n∑

i=1

EiGkHi)E{e(k)e
T (k)}(

n∑

i=1

EiGkHi)
T

+ (
n∑

i=1

EiGkHiDk)E{ϑ(k)ϑ
T (k)}(

n∑

i=1

EiGkHiDk)
T

+ BkE{ω(k)ω
T (k)}BT

k + Pk + P
T
k + Lk + L

T
k

+ Rk + R
T
k + Qk + Q

T
k + Tk + T

T
k + Sk + S

T
k

(15)
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where

Pk = −(Ak −
n∑

i=1

EiGkHiCk)E{x̃(k)e
T (k)}(

n∑

i=1

EiGkHi)
T ,

Lk = −(Ak −
n∑

i=1

EiGkHiCk)E{x̃(k)ϑ
T (k)}(

n∑

i=1

EiGkHiDk)
T ,

Rk = (Ak −
n∑

i=1

EiGkHiCk)E{x̃(k)ω
T (k)}BT

k ,

Qk = (
n∑

i=1

EiGkHi)E{e(k)ϑ
T (k)}(

n∑

i=1

EiGkHiDk)
T ,

Tk = −(
n∑

i=1

EiGkHi)E{e(k)ω
T (k)}BT

k ,

Sk = −(
n∑

i=1

EiGkHiDk)E{ϑ(k)ω
T (k)}BT

k .

(16)

It follows immediately from

E{x̃(k)ϑT (k)} = 0, E{x̃(k)ωT (k)} = 0,

E{e(k)ωT (k)} = 0, E{ϑ(k)ωT (k)} = 0,
(17)

that Lk = 0,Rk = 0,Tk = 0,Sk = 0. However, different from the
traditional filtering problems, the expectations of some cross terms in
Pk andQk are no longer zero, which requires further investigations.

First, recall the definition of the gapei(k) = rti(k) − ri(k). For
the case that the current sampling instant happens to be the event
triggering instant of theith node, namely,k = sil, it is obvious
that ei(k) = 0 and thereforeE{ei(k)vT (k)} = 0. Otherwise, as
ei(k) = rti(k)− (Ci,kx̃(k)+Di,kv(k)), we haveE{ei(k)vT (k)} =
E{[rti(k)− (Ci,kx̃(k) +Di,kv(k))]v

T (k)} = −Di,kRk. It can now
be concluded that

E{e(k)ϑT (k)} = −Dkβ̃kRk, (18)

whereRk = [Rk]n×n. Subsequently, we have

Qk + Q
T
k = (

n∑

i=1

EiGkHiDk)[β̄kRkβ̄k − β̃kRkβ̃k −Rk]

× (

n∑

i=1

EiGkHiDk)
T .

(19)

In the next step, by using the elementary inequality(α
1

2M −

α−
1

2 N)(α
1

2M − α−
1

2 N)T > 0 whereM andN are matrices with
compatible dimensions, it follows from (16) that

Pk + P
T
k ≤ α(Ak −

n∑

i=1

EiGkHiCk)E{x̃(k)x̃
T (k)}(Ak −

n∑

i=1

Ei

×GkHiCk) + α−1(
n∑

i=1

EiGkHi)E{e(k)e
T (k)}(

n∑

i=1

EiGkHi)
T

(20)

In addition, under the event-based strategy, the gapei(k) would be
immediately reset to zero if the triggering condition are fulfilled.
Consequently, the following inequality is always satisfied:

eT (k)e(k) ≤ ∆, (21)

where∆ =
∑n

i=1 δi. Applying the properties of matrix operations,
we obtain

e(k)eT (k) ≤ ‖e(k)‖2I = eT (k)e(k)I ≤ ∆I, (22)

and hence
E{e(k)eT (k)} ≤ ∆I. (23)

Now, it follows from (17), (19), (20) and (23) that

Pk+1 ≤ Xk(Pk). (24)

Define a positive semidefinite matrixΞ0 = P0, andΞk+1 can be
calculated iteratively by the Riccati-like difference equation:

Ξk+1 = Xk(Ξk). (25)

Obviously, the conditions in Lemma 1 are satisfied. Therefore, for
all 0 ≤ k ≤ N , we have

Pk+1 ≤ Ξk+1, (26)

and the proof is now complete.
Remark 4: It is noticed that, in (14), the term

(
∑n

i=1 EiGkHi)(
∑n

i=1 EiGkHi)
T ≥ 0. Therefore, the upper

bound will increase as the threshold∆ increases. From the
engineering viewpoint, a larger threshold would lead to a fewer
number of transmissions over the network, which implies that the
threshold∆ does have a major impact on the tradeoffs between the
filtering performance and the sensor data transmission rate.

Remark 5: In the recursive calculation of theperformance index,
namely, the filtering error covariance, the triggering information at
the time instantk is explicitly exploited in (14) in terms of the binary
variableβi(k). This would definitely help reduce the conservatism
and tighten the upper bound. Comparing to the traditional event-
triggering mechanism where only the stability is the concern, the
introduction of such a binary variableβi(k) would play an important
role in estimating the filtering performance (i.e., the error covariance).

Remark 6: In the case of the thresholdδi = 0, it is not difficult to
see that the triggering rules are always fulfilled for every sensor nodes
and the indicator̃βk is a zero matrix with appropriate dimensions.
Consequently, the Riccati-like difference equation (14) would reduce
to the recursion of the estimation error covariance for the traditional
distributed filtering problem.

We are now ready to minimize the upper boundΞk on each
recursion by appropriately designing the filter parameters. For this
purpose, the following lemma is useful.

Lemma 2:For matricesM,X,N,L with compatible dimensions,
the following are true:

∂

∂X
tr(MXT ) = M,

∂

∂X
tr(XM) = MT ,

∂

∂X
tr(MXN) = MTNT ,

∂

∂X
tr(MXTN) = NM,

∂

∂X
tr(MXNXTL) = MTLTXNT + LMXN.

(27)

Furthermore, for any symmetric matrixP , the following holds

∂

∂X
tr{(MXN)P (MXN)T )} = 2MTMXNPNT . (28)

For presentation simplicity, we denote

A(i)
k = {0, . . . , 0

︸ ︷︷ ︸

i−1

, Ak, 0, . . . , 0
︸ ︷︷ ︸

n−i

},

Gk = {Gij,k}n×n, G
(i)
k = {Gi1,k, Gi2,k, · · · , Gin,k} ,

Mi,k = (1 + α)HiCkΞk(HiCk)
T +∆(1 + α−1)HiHi,

+HiDk(β̄kRkβ̄k − β̃kRkβ̃k)(HiDk)
T ,

Ni,k = (1 + α)A(i)
k Ξk(HiCk)

T .

(29)

Furthermore, let̄G(i)
k andN̄i,k be the simplified matrices by remov-

ing thejth (j /∈ Ni) column fromG
(i)
k andNi,k, respectively. Also,

let M̄i,k be a simplified matrix by removing both thejth (j /∈ Ni)
row andjth (j /∈ Ni) column fromMi,k.
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Theorem 2:Consider the linear time-varying system (1) with the
distributed filters (6) and event generator condition (4)-(5). The
solutionΞk to (14), which is an upper bound of the estimation error
covariance matrixPk, can be minimized at each iteration with the
filter parameterGk = {Gij,k}n×n given by

Ḡ
(i)
k = N̄i,kM̄

−1
i,k , for all 0 ≤ i ≤ n, 0 ≤ k ≤ N − 1, (30)

andGij,k = 0 for j /∈ Ni. Here,Ḡ(i)
k , N̄i,k andM̄i,k are defined

right after (29).
Proof: According to (14), one has

tr(Ξk+1) = (1 + α)tr
{

AkΞkA
T
k + (

n∑

i=1

EiGkHiCk)Ξk(
n∑

i=1

EiGk

×HiCk)
T −AkΞk(

n∑

i=1

EiGkHiCk)
T − (

n∑

i=1

EiGkHiCk)ΞkA
T
k

}

+∆(1 + α−1)tr
{

(

n∑

i=1

EiGkHi)(

n∑

i=1

EiGkHi)
T
}

+ tr
{

BkQkB
T
k

(

n∑

i=1

EiGkHiDk)(β̄kRkβ̄k − β̃kRkβ̃k)(

n∑

i=1

EiGkHiDk)
T
}

Resorting to the properties of trace, we have

tr
{

EiMΞk(EjN)T
}

= 0, if i 6= j,

whereM and N are matrices with appropriate dimensions. Next,
taking the partial derivation of the trace of the matrixΞk+1 with
respect to the parametersGk, and utilizing the equation (27) and
(28), we arrive at

∂

∂Gk
tr{Ξk+1} = 2(1 + α)

{ n∑

i=1

EiGkHiCkΞk(HiCk)
T −

n∑

i=1

Ei

×AkΞk(HiCk)
T
}

+ 2∆(1 + α−1)

n∑

i=1

EiGkHiHi

+ 2

n∑

i=1

EiGkHiDk(β̄kRkβ̄k − β̃kRkβ̃k)(HiDk)
T = 0.

Subsequently, asG(i)
k and A(i)

k represent, respectively, theith row
of matricesGk and theith row of Ak, we have

G
(i)
k Mi,k = Ni,k. (31)

Recalling the definitionHi = diag{ai1I, ai2I, , ..., ainI} and the
relation aij = 0 (j /∈ Ni), one can remove the corresponding
zero rows and zero columns fromMi,k and the corresponding zero
columns fromNi,k to obtain the simplified matrices̄Mi,k andN̄i,k.
Let Mi,k = {M̃ab,k}n×n and Ni,k = {Ñb,k}1×n. If b ∈ Ni, it
follows that

n∑

j=1

Gij,kM̃jb,k = Ñb,k. (32)

In other cases, the above equation is always satisfied since both sides
of it are zero. BecauseGij,k, j /∈ Ni are chosen as zero matrices of
appropriate dimensions and the corresponding rows ofMi,k are also
zeros, it can be seen that

Ḡ
(i)
k M̄(b′)

i,k = N̄ (b′)
i,k , (33)

whereḠ(i)
k is a simplified matrix ofG(i)

k by removingGij,k, j /∈ Ni,
b′ is the new column index of the simplified matrix, and̄M(b′)

i,k ,N (b′)
i,k

are theb′th column of matricesM̄i,k, N̄i,k, respectively. It is not
difficult to verify that the matrixM̄i,k is positive definite and the
filter parameters can be calculated as follows:

Ḡ
(i)
k = N̄i,kM̄

−1
i,k , (34)

which completes the proof.
Remark 7: In Theorem 2, a novel matrix simplification technique

is developed to handle the challenges resulting from the sparseness
of the sensor network topology and preserving structure of the
distributed filters. By using the employed SoD principle, the exe-
cutions are triggered when certain signal exceeds a time-independent
threshold defined as an important change of its value, and therefore
the communication load and energy consumption in practice can be
alleviated by avoiding unnecessary transmissions.

Remark 8: In the time-invariant case, all system parameters are
constant matrices and the boundedness problem ofΞk can be dealt
with by examining the Schur stability of the matrix(1+α)1/2(A−
∑n

i=1 EiGHiC). In this case, by properly designing the filter param-
eter, the estimate error can be guaranteed to be bounded.

Remark 9: In this paper, the distributed filtering problem is solved
for a class of discrete time-varying systems with an event-based
communication mechanism. By using an event indicator variable,
the triggering information is included in the Riccati-likedifference
equation whose solution serves as an upper bound for the filtering
error covariance which is, subsequently, minimized by appropriately
designing the filter parameters iteratively. Note that the main result
established in Theorem 2 contains all the information aboutthe
system parameters, the topology information as well as the triggering
information.

IV. A N ILLUSTRATIVE EXAMPLE

To illustrate the validity of the proposed filter design strategy, we
consider a second-order system (1) wherex(k) = (x1(k) x2(k))

T ∈
R

2, the random noisew(k) is a zero-mean Gaussian sequences with
covarianceQk = 1, and

Ak =

[
0.98 + 0.05sin(0.12k) 0.4

0.15 −0.75

]

,

Bk =
[
0.16 0.18

]T
.

Suppose the initial value of the statex(0) is uniformly distributed
over the region[−6, 6] so thatEx(0) = [0 0].

The sensor network is represented by a directed graphG =
(V, E ,A) where the set of nodesV = {1, 2, 3, 4}, the set of edges
E = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 4)},
and the adjacency elements associated with the edges of the graph
are aij = 1. The dynamics of the sensor nodes is modeled as (2)
with

C1,k = [0.82, 0.62 + 0.05cos(0.12k)],

C2,k = [0.75 + 0.05sin(0.1k), 0.80],

C3,k = [0.74 + 0.05sin(0.1k), 0.75 + 0.05cos(0.1k)],

C4,k = [0.75, 0.65].

In the simulation, let the measurement noisev(k) be a zero-mean
Gaussian white noise sequences with covarianceRk = 1. Choose the
thresholdsδi = 0.4 for i = 1, 2, 3, 4 and the scalarα = 0.1. The
initial estimations about the plant state arex̂1(0) = x̂2(0) = x̂3(0) =
x̂4(0) = [0 0]. The trace of mean square error for the estimation of
the state is averaged in500 runs of simulation. The suboptimal upper
bound and corresponding filter parametersGk can be calculated at
each iteration according to (14) and (30).

Simulation results are shown in Figs. 1-4. In Fig. 1 and Fig. 2,
the trajectories for the states and respective estimates are depicted,
from which we can see that the proposed strategy has a favorable
performance in estimating the state of a divergent system. Besides,
compared with time-driven mechanism, the broadcast times are
significantly reduced in Fig. 3, which embodies the superiority of



6 FINAL VERSION

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

Time k

x 1(k
) 

an
d 

its
 e

st
im

at
io

n

 

 
Plant
Node 1
Node 2
Node 3
Node 4

Fig. 1. The statex1 and its estimation
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Fig. 2. The statex2 and its estimation
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the event-based one. To this end, Fig. 4 shows the upper boundΞk

of the error covariance matrixPk.
To evaluate the influence of event thresholds and noise covariances

on the communication rate (total number of communications in the
network divided by running time), we have the following experimen-
tal results via 500 trials:

TABLE I
THE INFLUENCE OF THRESHOLDS

σi, i = 1, ...,4 0.1 0.2 0.4 0.8
Average Communication Rate 1.8908 1.3328 0.8160 0.5316

TABLE II
THE INFLUENCE OF NOISE COVARIANCES

(Qk , Rk) (0.5, 0.5) (1,1) (2,2) (4,4)
Average Communication Rate 0.3920 0.8160 1.9164 2.8608

Obviously, both the decrease of thresholds and the increaseof noise
covariances would contribute to a higher communication frequency.

V. CONCLUSIONS

In this paper, a novel event-based distributed filter has been pro-
posed in wireless sensor networks for the sake of reducing the sensor
data transmission rate and the energy consumption. Basing on a
SoD concept, each smart sensor node makes decisions independently
about when the local messages have to be broadcast. By using a
combination of trace properties, inductive method and event-induced
behaviors, we have computed the upper bound for the filteringerror
covariance recursively by solving a Riccati-like matrix equation.
Subsequently, the distributed filter gain has been properlydesigned
at every iteration to minimize such an upper bound. Finally,via
a numerical example, we have demonstrated the effectiveness of
the event-based communication protocol in reducing the number of
transmissions over the network.
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