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The nervous systems converts the physical quantities sensed by its primary receptors

into trains of events that are then processed in the brain. The unmatched efficiency

in information processing has long inspired engineers to seek brain-like approaches to

sensing and signal processing. The key principle pursued in neuromorphic sensing is to

shed the traditional approach of periodic sampling in favor of an event-driven scheme that

mimicks sampling as it occurs in the nervous system, where events are preferably emitted

upon the change of the sensed stimulus. In this paper we highlight the advantages and

challenges of event-based sensing and signal processing in the visual, auditory and

olfactory domains. We also provide a survey of the literature covering neuromorphic

sensing and signal processing in all three modalities. Our aim is to facilitate research

in event-based sensing and signal processing by providing a comprehensive overview of

the research performed previously as well as highlighting conceptual advantages, current

progress and future challenges in the field.

Keywords: event based signal processing, signal processing, artificial retina, artificial olfactory, artificial cochlea,

machine leading

1. INTRODUCTION

Neuromorphic computing has recently garnered much interest. This emerging technology
promises lower power and lower latency than established methods for sensing and computing
by emulating principles of information processing in the brain. A key concept of neuromorphic
computing is event-based sensing, inspired by the property of sensory neurons in the nervous
system to preferably respond to changes of the sensed quantity, rather than to continuously
report its current level. The latter approach is represented by the established principle of periodic
sampling, alongside the signal processing toolbox based on Discrete Fourier Transform (DFT).
While the periodic sampling/DFT approach has been extremely successful, it suffers from several
inherent weaknesses. First, it is in practice restricted to bandlimited signals due to the aliasing
problem. Second, periodic sampling may waste energy when signals change only intermittently.
Third, there is an inherent limitation of the minimum achievable latency imposed by the sampling
interval; when using DFT for signal processing this gets worse as it requires a window of samples.

Event-based sensing represents a family of sampling schemes where the signal drives the
sampling. A sensing element, such as a pixel, a filter bank element, or a gas sensor, emits an event
when the signal crosses a threshold. This sampling scheme is often called “send-on-delta.” Other,
largely synonymous terms are “event-driven sampling,” “absolute-deadband sampling,” “Lebesgue-
sampling,” among others; the specifics of event triggering allow for tuning of the algorithm
(Vasyutynskyy and Kabitzsch, 2010). Previous work has analysed the suitability of signal-driven
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sampling schemes for different kinds of signals (Liu et al.,
2019), highlighting that the send-on-delta sampling scheme is
particularly suitable for signals that are sparse, intermittent, and
not bandlimited.

The event-driven sensing paradigm has been pioneered in
vision, but recently also found its way into other sensory
modalities. Here, we provide a survey on event-based sensing
and signal processing approaches in modalities: vision, sound,
and olfaction. The purpose of this survey is designed to put
these three modalities in context and provide an overview of the
publications in the field.

Event-based vision sensors have evolved during the last decade
from an existence almost exclusively limited to a few select
research labs to now being widely available as commercial
products from several manufacturers worldwide, with several
established application domains. Their bio-inspired operation
differs from traditional vision systems in that their sampling
regime is not frame-based and periodic; instead, sampling at each
individual pixel is driven by the signal itself. Just as Ganglion cells
in the retina emit a spike when a certain feature (i.e., brightness)
in their receptive field changes, event-based vision sensors emit
an event when a pixel detects that brightness crosses a threshold
(“send-on-delta”). Vision signals are often very broad-band and
can require extremely short sensor latencies to be captured
accurately, while also being sparse in time. These are favorable
conditions for event-based sampling schemes (Liu et al., 2019).

The transition from periodic sampling to event-driven
sampling has also been implemented in the auditory domain
(Lyon and Mead, 1988). Again, close inspiration from biological
auditory systems has guided system development, mimicking
the operation of biological cochlea, the mechanical properties
of which implement a filter bank that enables spectral
decomposition of the audio signal, subsequently transduced by
hair cells into spikes. The output of an event-based silicon cochlea
is a sparse stream of digital address-events, that represent the
address of active channels, with each channel representating a
frequency band. In theory, silicon cochleas could increase the
sensitivity to rapid changes in the spectral composition of audio
signals, since they do not require windowed Fourier transform
which inherently introduces a lag in signal processing. However,
the bandlimited nature of auditory signals facilitates the choice of
a periodic sampling frequency that will allow efficient processing
within the expected variation of the signal (Liu et al., 2019).
Nevertheless, substantial amounts of research have explored the
principles of operation and demonstrated use cases for event-
based silicon cochlea, which we summarize below.

As a third example of event-based sensing we cover
Olfaction, the sense of smell. There is a long history of
seeking bioinspiration for electronic nose systems. One perhaps
representative example is the NEUROCHEM project that ran
from 2008 to 2011 (Marco et al., 2013). It brought together
scientists from different disciplines around bio-inspired olfaction
systems. Olfactory stimuli are carried by turbulent dispersal,
which imposes wide-band fluctuations on their concentration
at a given point in space. The physical properties of turbulent
processes indicate that odour dispersion results in an intermittent
signal where long periods of “blanks” are interspersed with brief

and wide-band “whiffs” (Celani et al., 2014). These turbulence-
induced fluctuations can be very rapid, and carry information
that could be helpful in locating odour sources—an essential
task for foraging or mate-seeking biological agents as well
as in robotic gas sensing, e.g., for environmental and factory
monitoring, or disaster management (Mylne and Mason, 1991;
Schmuker et al., 2016). Given that rapid fluctuations olfactory
signals carry useful information, it is not surprising that progress
in Olfactory Neuroscience has recently uncovered that animals
can decode very short transients in olfactory stimuli (Szyszka
et al., 2014; Erskine et al., 2019). In summary, olfaction signals
could be very well amenable to event-based sensing since they
combine sparseness and intermittent detection with very rapid
fluctuations. However, the olfactory domain has also seen the
least exploration from the three modalities that we cover in this
survey, highlighting the great potential for future research.

1.1. Principles of Event-Based Signal
Processing
Once an event is generated by detecting a threshold-crossing in
the signal, it is emitted as a data structure typically containing
two pieces of information: 1. An address, e.g., the coordinates of
the pixel that emitted the event, or the index of the filter bank,
or the gas sensor instance, and 2. the time of event creation. In
real-time systems, time can represent itself and only the address
of the sensor needs to be transmitted. This protocol is commonly
called Address-Event Representation (AER).

Algorithms for AER signal processing are largely independent
of periodic sampling, and therefore do not suffer from
aliasing. Moreover, information acquisition is driven by
the spatio-temporal changes in the signal itself, therefore
inherently capturing the dynamics of the underlying scene,
unlike frame-based systems where these dynamics first have
to be reconstructed from the sequence of samples. AER
algorithms also have promising properties for parallelization
and composition. AER processing modules have the inherent
capability to be assembled into hierarchical structures (Serrano-
Gotarredona et al., 2009). This is due to the fact that the
communication between the AER modules can be made
completely asynchronous, i.e., without having to rely on central
synchronization. Previous work has developed “glue modules,”
such as AER splitters, mergers and mappers that connect these
individual processors together (Gomez-Rodriguez et al., 2006).

Despite all these benefits, conventional signal processing
algorithms cannot be used for these systems. Unlocking the
full potential of AER systems often requires designing new
algorithms, starting from first principles in the event-based
paradigm. The review of existing event-based algorithms is
therefore an integral part of this survey. Notably, there exists a
research community around event-based signal processing and
control (Miskowicz, 2016), but so far the cross-pollination to
brain-inspired event-based sensing has been limited.

1.2. Structure of This Paper
In this paper, we survey the literature published on neuromorphic
and event-based sensing in vision, auditory and olfactory sensing
systems. Our goal was 2-fold: to identify shared challenges
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for event-based sensing in these modalities, and to provide a
collection of references covering relevant work in these three
areas to facilitate research bridging between areas.

Event-based vision is by far the most advanced modality
concerning event-based technology and applications, and
therefore it takes up most of the space in the survey section of
this paper. Auditory event-based sensing has received much less
attention, and olfactory even more so. Comprehensive review
and survey papers covering these modalities are much harder
to find than for vision, and we hope that our contribution will
help the inclined reader to identify relevant primary research in
these areas.

Finally, the focus on sensory systems indicates that there
is a gap in research in the area of more general event-based
processing. We discuss this at the end of the paper and point
out some domains that may show potential for event-based
approaches to data analytics.

The rest of this paper is organized as follows: in section 2
we review the existing surveys on event-based signal processing
approaches. Section 3 reviews primary literature on event-based
vision systems. Event-based auditory systems are covered in
section 4, and olfactory systems in section 5. Section 6 provides
a summary of the references covered. Finally, in section 7 we
conclude the paper by discussing the main takeaways from this
survey and potential future work in this area.

Readers may want to initially focus on sections 1 and 7
sections and treat the survey sections 2 to 5 as reference
collections that may enable a “deep-dive” into each field.

2. PREVIOUS SURVEYS AND
BENCHMARKS

Among the first papers that review a relevant field is a survey on
neuromorphic vision sensors (Etienne-Cummings and Van der
Spiegel, 1996). Performed more than two decades ago, when
the field was still at its infancy, that survey provides a history
of implementing neuromorphic sensors. More recently a short
survey of silicon retinas and cochleae has been presented
(Delbruck and Liu, 2012), providing a history of recent advances
in the area. In Delbruck (2016), a perspective on developments
of event-based vision sensors, algorithms and applications over
the period of 2002–2016 is presented. The most recent and
likely most comprehensive survey on event-based vision contains
“everything that has ever been written” on the topic (Delbrück,
personal communication; Gallego et al., 2020).

Specialising on the design of VLSI neuromorphic circuits for
event-based signal processing, in Indiveri (2008) an overview
of selective attention systems based on neuromorphic winner-
take-all networks, ranging from single-chip vision sensors to
multi-chip systems is presented. In another work, a very short
survey of neuromorphic chips is presented in Liu and Wang
(2009), which introduces the required hardware and summarizes
the applications.

A good discussion on recent developments in neuromorphic
optical sensing and artificial vision is presented in Posch et al.
(2014). The paper introduces the functionality of biological

retinas and then provides an overview of existing neuromorphic
vision systems and their implementation. Then the paper
expands to a discussion on the design of silicon retinas and
neuromorphic vision devices.

A mini-review of current neuromorphic approaches for
vision, auditory and olfactory sensors (Vanarse et al., 2016)
provides a useful review on some state-of-the-art approaches, but
it covers only a small proportion of research in this area.

A literature survey and taxonomy of artificial olfactory
systems is presented in Kowadlo and Russell (2008). In Moraud
and Chicca (2011), a short review on the field of bio-
inspired autonomous navigation and neuromorphic chemical
sensing is presented. In Chicca et al. (2013), a brief review
of neuromorphic olfactory sensors can be found. A review
on neuromorphic approaches for artificial olfactory systems is
performed in Vanarse et al. (2017).

To support continuous improvement of algorithms and
methods, there is a need for challenging event-based datasets.
Benchmark data sets exist that are specifically crafted to assist
model design, refinement and testing using event-based signal
processing algorithms. In one of the first major efforts, in Tan
et al. (2015) some guidelines for the creation of neuromorphic
vision benchmarks and challenges is presented. In Gibson
et al. (2014a), a data set of 11 moving scenes recorded by
a dynamic vision sensor is generated. In Li et al. (2017),
using a dynamic vision sensor, 10,000 frame-based images are
converted into event streams. The conversion is performed by
repeated closed-loop smooth movement of frame-based images.
In Serrano-Gotarredona and Linares-Barranco (2015), two sets
of data are proposed released for event-based object recognition.
One set was obtained by browsing poker card decks and the
other was generated by displaying 10,000 moving symbols. In
another work (Hu et al., 2016) mostly dynamic vision tasks like
action recognition or tracking are targeted for benchmark data
collection. In Zhu et al. (2018), a data set with a synchronized
stereo pair event-based camera system for 3D perception is
presented, which is collected in a variety of illuminations,
environments and camera mountings. A data set is presented
in Binas et al. (2017) which is a recording of DVS cameras
in driving applications. The data are collected under different
conditions like daytime, night, dry, wet surface, and different
driving speeds. Several event-based algorithms and a remarkable
JAVA framework for the DVS can be found at jAER (2021).

3. EVENT-BASED VISION SYSTEMS

Machine vision has seen the greatest uptake of event-based
sensing and signal processing approaches so far. There are
many approaches to develop silicon retinas, examples of which
include (Etienne-Cummings et al., 2000; Costas-Santos et al.,
2007; Delbruck, 2008; Lichtsteiner et al., 2008; Delbrück et al.,
2010; Matolin et al., 2010; Sulzbachner and Kogler, 2010;
Camunas-Mesa et al., 2011, 2012; Leñero-Bardallo et al., 2011;
Posch et al., 2011; Serrano-Gotarredona et al., 2013; Darwish
et al., 2015; García et al., 2016; Zheng et al., 2016).
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Event-based vision has clear advantages over frame-based
approaches. First, event-based vision systems report the exact
times of relative brightness changes rather than providing a
snapshot of absolute brightness at all locations in the visual field.
Absolute pixel illumination is not an invariant property of the
environment (Lowe, 2004), and it has been hypothesized that this
is the reason why many current algorithms fail in uncontrolled
conditions (Reinhard et al., 2010).

Second, periodic sampling imposes restrictions on the amount
of information that can be extracted from a scene. For example, it
has been shown that the human eye can resolve visual dynamics
at up to 1 KHz, because this is where natural scenes contain most
of the information; Even a sampling rate of 60 Hz can lead to an
information loss of around 75% (Akolkar et al., 2015a).

Third, event based sensors can achieve very short latencies
that are only constrained by the minimal response time of
the sensor, because they only collect data when something is
happening, whereas frame-based systems are forced to obey
the fixed inter-frame interval. Moreover, periodic sampling
suffers from a trade-off between low latency and high inter-
frame redundancy, whereas event-driven sampling schemes
avoid transmitting temporally redundant information while
maintaining the capability of low-latency response to changes.
Low latency and avoidance of redundant information acquisition
also largely eliminates motion blur.

These properties make event-based vision highly suitable
for applications like robotic platforms (Mueggler et al., 2014),
where standard cameras with their relatively high latency and
computationally expensive sensing and processing pipeline are
sub-optimal. It should however be noted though that low-power
and low-bandwidth sensing can only be achieved in scenes with
sparse activity. Richly textured visual scenes or auditory scenes
with high levels of white noise might cause very high event rates,
and in consequence power consumption.

3.1. Applications
Since proposed, these devices have found their way in many
applications. Here we provide a review on applications of event-
based vision systems.

3.1.1. Tracking
Arguably, due to the nature of these sensors, tracking is the
most straight forward application of DVS cameras. Tracking with
conventional machine vision algorithms is a computationally
expensive task. However, as DVS cameras only transmit changes
in the images, they are inherently suitable for tracking moving
objects. For this reason, among all the applications, the largest
number of research is performed in tracking.

3.1.1.1. Object Tracking
A hierarchical neuromorphic system for tracking objects is
presented in Gómez-Rodríguez et al. (2011), where two
processing layers work in cascade for first detecting moving
objects and then tracking themwith crossing trajectories. In Zong
et al. (2018), MLS surface fitting and local plane fitting methods
are employed to identify the images collected by a DVS camera
for tracking objects. The system is tested on uniform and high

speed motion and it is shown that it can filter noise and reach
high accuracy and robustness.

Frame-based tracking systems become less accurate as the
speed of objects increases. They are also susceptible to changes
in illumination. The authors in Saner et al. (2014) approach
this problem by combining a DVS and a frame-based camera,
such that tracking is performed based on the frame-based
system, but the DVS device is used to capture the information
about the changes in the scene in the time interval between
consecutive frames.

In Delbruck et al. (2015), a human vs. computer slot car
racing is devised, where a DVS camera is used to track both
cars and control the break and throttle of the racing car. The
low latency provided by the DVS camera results in consistent
outperformance of human drivers by the computer.

3.1.1.2. Satellite Tracking and Space-Situational Awareness
The high dynamic range of an event-based camera is exploited
to track satellites using a ground-based telescope in full daylight
(Cohen et al., 2019). A dataset is also provided (Afshar et al.,
2020).

3.1.1.3. Multiple Object Tracking
Some works targeted specifically multiple object tracking, for
example, Gómez-Rodríguez et al. (2010) that presents a cascade
architecture for that purpose. In Linares-Barranco et al. (2015),
a lattice structured FPGA framework has been presented that
allows uncorrelated-event noise removal for tracking multiple
objects. The system is capable of adapting itself to fast or slow
and large or small objects.

3.1.1.4. Stereo Tracking
Most tracking algorithms use one DVS camera which provides
a 2D representation of the environment. Some works have
tried to employ two cameras so they can build a 3D map
of the environment resulting in a better tracking system, for
example, Schraml et al. (2010b), that aimed at tracking people
in 3D. The system is capable of detecting and tracking people
within a 4 m range with a refresh rate of the depth map of
up to 200 Hz. In another work (Müller and Conradt, 2012),
two cameras independently track an object. Then a self-adjusted
neural network maps the 2D angular coordinates into a Cartesian
3D position of the object.

3.1.1.5. Camera Movement
Tracking can be used to calculate the camera movement. In Kim
et al. (2008) a DVS is used to track accurate camera rotation to
build a persistent mosaic of a scene. Another work (Reinbacher
et al., 2017) proposed panoramic camera tracking. The authors
show that the spatial position of the events is enough for
simultaneous tracking and mapping, and there is no need for the
appearance of the imaged scene point.

3.1.1.6. Camera Pose Estimation
Using a probabilistic generative event model in a Bayesian
filtering framework, a camera pose estimation algorithm is
designed in Gallego et al. (2015, 2016). This research design the
likelihood function used in the filter to process the observed
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events. Based on the physical characteristics of the DVS, the
authors propose the use of the contrast residual as a measure
of how well the estimated pose explains the observed events.
The authors extend their work (Gallego et al., 2018a) by tackling
the problem of accurate, low-latency tracking of a camera from
an existing photometric depth map built upon classic dense
reconstruction pipelines. Using cubic splines, in Mueggler et al.
(2015c) the pose of a DVS camera is estimated by a smooth curve
in the space of rigid-body motion, with the trajectory curve being
optimized according to the incoming events.

3.1.1.7. Feature Tracking
In some tasks, the camera tries to track some features in the
scene. In Lagorce et al. (2015b), a DVS camera is used for tracking
of multiple visual features. In the research, various kernels,
such as Gaussian, Gabor, combinations of Gabor functions and
arbitrary user-defined kernels are used to track features from
incoming events. The trackers are capable of handling variations
in position, scale and orientation by using multiple pools of
trackers. In Ni et al. (2015) a pattern tracking algorithm is
proposed, in which the pattern tracking iteratively updates the
model location and orientation to match the 2D image plane
based on the arrival of events. Since the algorithm tracks patterns,
it is capable of tracking objects even if they are subject to
transformations. Another example of using DVS cameras for
tracking corner-event features is Alzugaray and Chli (2018a).

3.1.1.8. Micro Particle Tracking
In Ni et al. (2012), an asynchronous event-based Hough circle
transform is developed to track micro particles. The system
allows for a robust multiobject position detection at a frequency
of several kHz at a low computational cost. Measurements
in turbulent fluid flows often require high-speed imaging
techniques. These systems are usually limited by the amount of
memory available on-board. InDrazen et al. (2011) a DVS camera
is used for particle tracking which enables a 100-fold reduction in
bandwidth and data storage. A fast-flow visualization method is
presented in for tracking buoyant soap bubbles. The data analysis
in this work relies on Kalman filters to associate the events with
traces and to reconstruct the path and velocity of particles.

3.1.1.9. Sub-atomic Particle Tracking
An extensive parallel tracking system is designed in Neri et al.
(2015), that allows real-time tracking withe a latency of <1 µs.
The retina architecture is organized in three main blocks. The
first block is a buffer that stores the hit information according
to a hold logic. This module gets activated when downstream
modules are busy. The second block is a pool of engines
that process the hits. And the third block calculates the track
parameters. The authors present the testbeam results in Neri et al.
(2017).

3.1.1.10. Car Tracking
An embedded vision system for tracking cars has been designed
in Litzenberger et al. (2006c) which offers a one millisecond
timestamp resolution.

3.1.1.11. Person Tracking
In Pikatkowska et al. (2012), the problem of multiple person
tracking in the occurrence of high occlusions is addressed.
The authors apply Gaussian Mixture Models for detection,
description and tracking individuals.

3.1.1.12. Robotics
In many robotic applications, the agility of robots is limited
by their sensing pipeline. A DVS camera is used in Censi
et al. (2013) for robot pose tracking to increase robot agility,
demonstrating that tracking performance is unaffected by fast
motion. An autonomous target tracking approach is proposed
in Jiang et al. (2017) for a snake-like robot. Using the Hough
transform based on spiking neural networks the target pole is
detected as two parallel lines from the visual input. The pose and
periodic motion features of the robot are combined to develop an
adaptive tracking based on the estimated depth information. In
order to design a tracker which is robust to temporal variations
due to the relative movement at different velocity of camera and
target, a new algorithm is developed in Glover and Bartolozzi
(2017). The authors develop a particle filter that follows the
target position within the spatio-temporal data, while rejecting
the clutter events that occur as a robot moves in an environment.
The tracker is used in a robot vision system.

3.1.2. Classification
One main application of event-based cameras is in classification.
Among the first studies that used an event-based camera for
classification is Schraml et al. (2010a), in which an algorithm
for pedestrian classification is proposed that makes use of
density and distance metrics for clustering asynchronous events
generated by scene dynamics. In Chen et al. (2012) an
algorithm is developed for categorization of human postures
that employs a combination of event-based hardware and bio-
inspired software architecture.

In O’Connor et al. (2013), a method based on the Siegert
approximation is proposed for integrate-and-fire neurons to
map an offline-trained deep belief network onto an event-
driven spiking neural network. They use this system in
character recognition in presence of distraction. The event-
based classification algorithms’ performance lags far behind their
frame-based counterparts. The authors in Sironi et al. (2018)
cite two reasons, first the lack of low level representations and
architectures, and second the lack of real-world event-based data-
sets. To tackle these, the authors introduce an event-based feature
representation and release a dataset for object classification.

3.1.3. Stereo Matching
A variety of computer vision applications require a 3D structure
of the real-world scene. This task is usually performed by a
stereo vision, which consists of two cameras observing the same
scene from two different angles. Since these two cameras capture
slightly different pictures, an algorithm is needed to match
corresponding pixels that are projections of the same scene in
the images. In frame-based approaches, the frames from two
digital cameras are processed pixel by pixel and the patterns that
match in both stereo frames are found. When using event-based

Frontiers in Neural Circuits | www.frontiersin.org 5 May 2021 | Volume 15 | Article 610446

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Tayarani-Najaran and Schmuker Address-Event Signal Processing: A Review

cameras, it is the events that should be processed to yield such
information. This means that whole new set of algorithms are
needed to perform this task. In this part of the paper, we review
the works that are performed in this area.

In Dominguez-Morales et al. (2011), the existing frame-based
stereo matching algorithms are discussed and then an AER
stereo matching algorithm is proposed that exploits some of the
principles in frame-based stereo matching. In Kogler et al. (2010,
2011a,b), Kogler (2016), the time difference between the received
pixels is used as matching criterion. The authors use a global
optimization scheme that is designed to deal with sparse data to
minimize the matching cost. The work also designs a filter that
analyzes the disparities around pixels. In Carneiro et al. (2013),
a novel N-ocular 3D reconstruction algorithm is proposed that
allows preserving the original dynamics of the scene. This results
in a more robust 3D reconstruction.

In a research (Rogister et al., 2012), it is shown that matching
on the timing of the events provides information about the 3D
objects, when combined with geometric constraints using the
distance to the epipolar lines. The approach is capable of filtering
out the incorrect matches and can accurately reconstruct the
depth model. Because of the geometry of the sensors, estimating
the epipolar geometry constraints is difficult. In Benosman et al.
(2011), it is shown that these constraints are a consequence of
the static frames, and using event-based cameras can, to some
extent, overcome this limitation. The authors present a model
for asynchronous event-based vision that is used to derive a new
concept of epipolar geometry based on the temporal information
of the pixels.

3.1.3.1. Cooperative Neural Networks
A modification of the cooperative network is used in Piatkowska
et al. (2013, 2014) to store the history of the recent
activity in the scene. This is used to serve as spatiotemporal
context used in disparity calculation for the events. In this
system, the network constantly evolves as events arrive,
the network constantly evolves. The work then is further
improved (Piatkowska et al., 2017) to reduce the error by
over 50%. A dynamic cooperative neural network is used
in Firouzi and Conradt (2016) in which the interaction between
cooperative cells applies cross-disparity uniqueness-constraints
and within-disparity continuity-constraints, to asynchronously
extract disparity for each new event. This work is then extended
in Dikov et al. (2017), where a spiking neural network is
implemented on SpiNNaker.

A different approach is presented in Osswald et al. (2017)
that unifies the domains of perceptual neuroscience and machine
vision. In this research, a spiking neural network is proposed that
is inspired by cooperative network of Marr and Poggio (1976)
and is capable of computing stereo correspondence from the
visual stream of neuromorphic vision sensors. Because of the
dynamic properties of the neuromorphic neural networks, their
co-localization of memory and computation and their size, these
networks offer possible solution to the Von Neumann bottleneck
problem, which is a promising platform for stereo vision systems.

3.1.3.2. Gabor Filter
The use of Gabor filter in extracting information about the
orientation of the object edges that produce the events is studied
in Camuñas-Mesa et al. (2014a) and Camunas-Mesa et al. (2014).
The authors apply thematching algorithm to the events produced
by the Gabor filter instead of the events produced by the
DVS, therefore increasing the number of constraints applied to
the matching algorithm. Their results show that this technique
improves the final 3D reconstruction.

3.1.3.3. Using Single Camera
In conventional stereo matching algorithms, a set of camera from
different angles are used to find a dense 3D structure of the scene.
In Rebecq et al. (2016, 2018), however, it is investigated how
one single DVS camera can be used to build a semi-dense 3D
structure. DVS cameras have two characteristics that make this
possible: they respond to edges, which naturally provide semi-
dense geometric information about the scene and they provide
continuous measurements of the scene. In another work (Kim
et al., 2016), a single DVS 3D reconstruction algorithm is
proposed which is based on three decoupled probabilistic filters,
each estimating 6-DoF camera motion, scene log intensity
gradient and scene inverse depth relative to a keyframe.

3.1.3.4. Similarity Measure
Performing stereo matching requires a type of similarity measure
that defines a criteria based on which the corresponding pixels
are found. In Schraml et al. (2015) a cost function is proposed
which uses a similarity measure based on event distributions. A
novel feature descriptor is proposed in Zou et al. (2016) which
can describe the local context or distribution of the event data
and constructs an effective similarity measure for data matching.
Considering the correlation of incoming events, in Eibensteiner
et al. (2017), in addition to the spatial information, the time
of the occurrence of the events is also used as part of the
similarity measure. In Zihao Zhu et al. (2018), the velocity of
the camera and a range of disparities are used to synchronize
the positions of the events as if they were captured at a single
point in time. The authors propose a novel cost over these time
synchronized event disparity volumes that rewards similarity
between volumes and penalizes blurriness. In Zhou et al. (2018),
of the optimization of an energy function is designed to exploit
small-baseline spatiotemporal consistency of events triggered
across the image planes. To reduce the uncertainty of the
estimation, a probabilistic depth-fusion strategy is developed.
The method does not require the motion of the camera or prior
knowledge about the scene.

3.1.3.5. Verification Approaches
Stereo matching with DVS cameras is a new field and there is
an emerging community of scientists that develop algorithms
and methods for the problem. The existing ground truth data
and evaluation platforms that are proposed for frame-based
systems cannot be used for event-based systems. Therefore, there
is a need for new metric and verification methods to measure
the performance of the proposed algorithms. In Sulzbachner
et al. (2010), a tool for synthetic scene generation, ground truth
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generation and algorithm verification is proposed. In another
work (Kogler et al., 2013), a new approach for the evaluation of
stereo matching algorithms is presented.

3.1.4. Recognition
Object recognition is one of the main fields in machine vision
and as a new technology, event-based cameras have found
their way in the field. Camera sensor networks are a network
of camera in an environment than collectively capture and
process visual information. Due to the number of cameras,
these systems require high computational power. In Teixeira
et al. (2006), a pattern recognition algorithm is designed for a
network of event-based cameras to identify some hand gesture
signs. In Ahn et al. (2011), a bare hand gesture recognition
algorithm is proposed that recognizes three gestures in rock-
paper-scissors game. In Amir et al. (2017), an event-based
camera and an event-based processor with one million spiking
neurons are used for human gesture recognition. They report
that their algorithm recognizes gestures with a latency of 105
ms. A hardware implementation of event-based data processing
is presented in Hofstätter et al. (2011), where an event-based
camera is used for object recognition.

Solving texture recognition task with an event-based sensor is
targeted in Pérez-Carrasco et al. (2010), where the authors show
that the recognition rate has not degraded when new sensors
are used. In Negri et al. (2018), an event-based camera is used
to recognize the shape of poker signs. Combining an event-
based sensor with a convolutional neural network, an object
recognition and orientation estimation algorithm is proposed
in Ghosh et al. (2014), which shows very high accuracy at real-
time speed. In Orchard et al. (2015), a spiking hierarchical model
is presented for object recognition which show that the temporal
information of the events can be used in object recognition in a
simpler way than traditional methods.

An event-based camera is used in Reverter Valeiras et al.
(2016) to solve the 3D pose estimation problem. While in
frame-bases systems the sampling frequency is 30–60 Hz, the
authors take advantage of event-based cameras and design a
pose estimation algorithm that achieve a temporal resolution of
resolution of several hundreds of kHz on a conventional laptop.

3.1.5. Detection
Published reports of event-based cameras being used for
detection are still comparably scarce. A face detection algorithm
is proposed in Barua et al. (2016), in which a patch-based model
for the events is developed. The designed system is capable
of reconstructing 2,000 frames per second. In Cannici et al.
(2018), two neural network architectures are proposed for object
detection, where one network integrates events into surfaces and
one that uses convolutional and max pooling layers to exploit
the sparsity of camera events. An FPGA implementation of
retinal ganglion cell model is designed in Moeys et al. (2016b)
which detects moving objects. The authors use this processing
in conjunctions with a DVS to extrapolate information about
object position. Using a DVS, a car detection algorithm is
proposed in Chen (2018) which by employing convolutional

neural network handles motion blur and poor illumination
conditions problems.

Hand gesture recognition is also studied in Lee et al. (2014),
where a neuromorphic post-processing hardware is used. In this
work, the motion trajectories of hands are detected, segmented
and translated into discrete feature vectors. These feature vectors
are then classified via hidden Markov models. In Alzugaray and
Chli (2018b), an event-based camera is used for corner detection
and tracking. They report promising results at with a speed four
times higher than conventional algorithms. Corner detection
is also studied in Clady et al. (2015), where a luminance-free
method is developed.

Using event-based cameras, a line detection algorithm is
proposed in Seifozzakerini et al. (2016, 2017), where Hough
Transform is employed in spiking neural networks. In another
work (Brändli et al., 2016), a line segment detector is proposed
which tries to infer which events are caused by the motion of the
same spatial feature by parameterizing the event streams as a set
of line segments.

In event-based processing in textured scenes, millions of
events are generated per second that require great computational
power. To tackle this problem, a research (Mueggler et al., 2017a)
proposes amethod to reduce the stream of event to a corner event
stream. They design a corner detection algorithm that reduces the
event rate by a factor of 20. The commonly used Harris corner
detector is used in Vasco et al. (2016), where the frames are
replaced by a stream events. The research test their method on
a DVS camera mounted on a robot.

Sun sensors are navigational tools used in spacecrafts to detect
the position of the Sun. In Farian et al. (2015), an event-based
sensor is designed that is composed of two lines of pixels that
perform in parallel and two optical slits aligned above the chip.
The sensor is capable of directly detecting the position of the Sun
and so no further processing is required.

3.1.6. Localization and Odometry
Fast localization is crucial in many applications like driving and
maneuvering, which traditional cameras can seldom provide.
Due to their sampling speed, event-based cameras are very
suitable for localization and odometry. Among the first efforts
to use event-based cameras for localization is Weikersdorfer
and Conradt (2012), which adopts a condensation particle
filter tracker and demonstrates robust performance at low
computational cost. Another work (Weikersdorfer et al., 2013)
proposes a localization and mapping method that offers real-
time performance on standard computing hardware. A fast
localization algorithm is proposed in Yuan and Ramalingam
(2016), in which a fast spatio-temporal binning scheme is
developed to detect lines from events. A 3-D model of the
world is then constructed which is used to estimate sensor pose.
In Milford et al. (2015), an event-based camera is used for
simultaneous localization and mapping.

In one of the main first attempts in event-based odometry, a
novel event-based tracking approach based on image-to-model
alignment is combined with a 3-D reconstruction algorithm in a
parallel fashion (Rebecq et al., 2017b). The proposed system runs
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in real time and supports high dynamic range input with strong
illumination changes.

Odometry is to measure the ego-motion of a camera, used,
e.g., in robotics. Event-based cameras have great potential for
Odometry as they can track fast movement accurately without
blurring and quantization. However, new algorithms are required
to exploit the sensor’s characteristic. The first research that uses
event-based cameras in odometry is Kueng et al. (2016) and
Mueggler et al. (2017b), in which the features are detected in
the grayscale frames and then tracked using stream of events.
These features are then fed to an odometry algorithm. In Zhu
et al. (2017b), an event-based odometry algorithm is proposed
that is asynchronous and provides measurement updates at a rate
proportional to the camera velocity.

In Horstschäfer (2016), using an accelerometer and a
gyroscope, an a technique is presented for image and event
stabilization of an event camera. The camera is then used for
visual odometry of a robot. An odometry algorithm is proposed
in Rebecq et al. (2017a) which tracks a set of features via
overlapping spatio-temporal windows to construct motion event
frames. The results presented in the work suggest that their
algorithm outperforms state-of-the art conventional approaches
with much lower computational expense. In Mueggler et al.
(2018) an algorithm is proposed in which the camera trajectory
is approximated by a smooth curve in the space of rigid-body
motions using cubic splines, which reduces the number of
variables in trajectory estimation problems.

3.1.7. Motion Detection
Motion detection has many applications and is an important
area in machine vision research. The first research that uses an
event-based camera for motion detection is presented in Ruedi
(1996), where a simple retina of 23 by 23 pixels is used.
A new motion detection algorithm is proposed in Barranco
et al. (2009), where by integrating temporal feature results,
a new matching algorithm with high stability is obtained.
A clustering method is proposed in Schraml and Belbachir
(2010) which exploits the sparse spatio-temporal representation
of events for detecting moving objects. In Abdul-Kreem and
Neumann (2015), the spatio-temporal filtering scheme suggested
by Adelson and Bergen (1985) is adopted to make it consistent
with the event representation. Finding representative features
for motion information is another field of research which is
targeted in Sullivan and Lawson (2017), where conventional
neural networks are used to extract features.

A unifying framework is presented in Gallego et al. (2018b),
in which several computer vision problems are solved: motion,
depth and optical flow estimation. By maximizing an objective
function, the point trajectories on the image plane are found that
are best aligned with the event data.

Bio-inspired systems for motion detection have incorporated
mechanisms from the visual system into spiking networks to
achieve motion detection (Ridwan and Cheng, 2017; Dalgaty
et al., 2018).

Optical flow is the pattern of apparent motion of objects
in a scene created by its motion. In Rueckauer and Delbruck
(2016), nine optical flow event-based algorithms are compared.

To perform the comparison, a dataset of two synthesized and
three real samples is created. The authors have made the data
sets and the source codes for the algorithms publicly available.
Some studies use neuromorphic networks for processing the
output of event-based sensors. In Giulioni et al. (2016), an
architecture for robust optical flow extraction with an analog
neuromorphicmulti-chip system is proposed. The algorithmuses
a feed-forward network of analog neurons, and the computation
is supported by the time of spike emissions. The optical flow
is extracted based on time lag in the activation of nearby
retinal neurons.

Finding the optical flow using a DVS camera is performed
in Benosman et al. (2014), where it is shown that the precise
optical flow orientation and amplitude can be estimated with
a local differential approach on the surface defined by coactive
events. In Bardow et al. (2016) an algorithm is designed
that simultaneously finds the optical flow and the brightness
of the images. In this work, a cost function is defined and
minimized that contains the asynchronous event data and the
spatial and temporal regularization within a sliding window with
time interval.

An optical flow algorithm called adaptive block-
matching is proposed in Liu and Delbrück (2018)
which uses time slices of accumulated events, that
are adaptively rotated on the input events and optic
flow results. The rotation is performed in such a way
to ensure the generated slices have sufficient features
for matching.

Another example of event-based motion detection
include Barranco et al. (2015a), the algorithm in Liu and
Delbruck (2017) which mimics motion estimation methods used
in MPEG, and the method developed in Gallego and Scaramuzza
(2017) for angular velocity estimation.

In Barranco et al. (2014), a comparison between conventional
vision algorithms and event-based cameras is performed. The
authors show that due to the nature of event-based cameras,
motion detection is much easier with these sensors, and they
can easily outperform computer vision methods in accuracy
and speed.

Event-based cameras have been reported to be evaluated for
motion detection applications. For example Litzenberger and
Sabo (2012) asks if event-based cameras can be used for optical
motion analysis in sports, with a positive result. InMueggler et al.
(2015a), two DVS cameras are used to estimate the trajectory of
objects that are thrown at a quadrotor. The object’s trajectory
is estimated using an Extended Kalman Filter with a mixed
state space.

3.1.8. Transportation Systems
Machine vision algorithms are widely used in transportation
systems. The requirement for low latency processing plays to
the strengths of event-based algorithms. A vision system is
described in Litzenberger et al. (2006a) for counting vehicles
simultaneously on up to four lanes of a motorway. The authors
report fast, low power and robust vehicle counting. In another
study (Litzenberger et al., 2006b), a silicon retina is used for
vehicle speed estimation that measures the velocity of vehicles
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on four lanes simultaneously, under variable lighting and
atmospheric conditions. A system for real-time classification of
vehicles into cars and trucks is described in Gritsch et al. (2008),
which achieves an accuracy of over 90%. An application in a pre-
crash warning system is proposed in Kogler et al. (2009), where a
silicon retina-based stereo vision algorithm achieves a temporal
resolution of 1ms, across various lighting conditions.

3.1.9. Healthcare
In recent years, computer vision has found many applications
in healthcare, and applications of event-based processing are
emerging in this field. Among the first attempts is the work
published in Fu et al. (2008a,b), where a vision system is designed
to detect accidental falls in elderly home care applications.
Compared to frame-based methods, the system reports a fall
at ten times higher temporal resolution and shows 84% higher
bandwidth efficiency as it transmits fall events. In Belbachir et al.
(2012) a stereo matching algorithm is used on two DVS cameras
to provide a 3D vision system for fall detection that achieves over
90% positive detections. The authors argue that one advantage of
usingDVS cameras is privacy as it does not record the true images
of the scenes.

In Ghaderi et al. (2015), a wearable mobility device is designed
to assist the blind with navigation and object avoidance. In this
system, two DVS cameras are used to provide a 3D vision, which
is converted via an individualized head-related translate function
into a 3D output sound. This device is then improved in Everding
et al. (2016).

In order to decrease the transmission delay of visual and non-
visual medical records, DVS cameras and edge computing are
employed in Chen et al. (2017) reducing the transmission delay
by 89.15–86.88%. Optical recording of neural activity requires
cameras capable of detecting small temporal contrast with sample
rate of 1 kHz. Using CMOS sensors is very challenging as they
require high data rates of up to 1 Gb/s. To overcome this, a
DVS camera is used for the task in Taverni et al. (2017), that
suggests long-term use of the sensor in neural recordings can be
very beneficial.

Using a DVS camera, a system is designed in Gaspar et al.
(2016) which can be used as a retinal prosthesis or vision
augmentation. An algorithm based on integrate and fire neuron
model is used in this work to emulate temporal contrast sensitive
retinal ganglion cells.

3.1.10. Industry
Many industrial applications require very high sampling rate. For
example, monitoring a turbine with thousands of rpm poses a
serious challenge to frame-based vision systems. In Perez-Peña
et al. (2011), a DVS-based surveillance video system is designed
for ultra fast industrial environments, that monitors a machine
with a rotating part at 6,000 rpm, with good results.

Flow visualization in wind tunnel testing is of crucial
importance for practical applications. In Borer (2014), DVS
cameras are used for tracking neutrally buoyant soap bubbles.
The authors use three cameras to build a 3D reconstruction,
where two cameras provide 3D vision and the third camera

increases the reliability of detection in areas with poor lighting,
poor background contrast or with reflections.

3.1.11. Segmentation
Segmentation is the process of partitioning an image into
multiple sets of pixels and is a common task in computational
vision. In the first attempt to design a segmentation algorithm for
event-based cameras, a contour detection algorithm is proposed
in Barranco et al. (2015b), where structured random forests are
used to find the location of contours and their border ownership.
These contours are used for the segmentation of the scene.
In Surovich et al. (2017) a dynamic segmentation of moving
objects is proposed that uses a DVS with a linear polarizing filter.
The authors use wavelet transform to analyze the local spatio-
temporal content of the images. Segmentation requires high
computational power, and in most applications, performing real-
time segmentation is very difficult. In Thakur et al. (2017), the
random walker algorithm is adapted to a spiking neuromorphic
processor to perform real-time segmentation of the scene. The
system can perform segmentation at the speed of 1,000 images
per second.

Segmentation can benefit from color cues. Yet, the original
DVS camera does not transmit color information. In Marcireau
et al. (2018), a dichroic beam splitter is thus used to decompose
the input light into red, green and blue lights, and then send
them to three DVS cameras. The output of these cameras are then
processed to perform color segmentation and tracking.

A new event-based protocol is proposed in Darwish et al.
(2017), that suppresses spatial redundancies of event-based
cameras. The activity of the event-based camera is limited to the
effective and relevant information in the scene; therefore, the data
flow is drastically reduced. The authors propose a cost-free image
segmentation using their method.

3.1.12. Robotics
Many tasks in robotics require reliable and low-latency sensing,
hence posing a promising field for applying event-based
cameras (Camuñas-Mesa et al., 2014b).

3.1.12.1. Obstacle Avoidance
Among the first studies that used event-based cameras in a real
robot is Clady et al. (2014), where these sensors are used to design
a fast obstacle avoidancemethod. The use of event-based cameras
in obstacle avoidance problem in robots was then continued
in Blum et al. (2017) and Milde et al. (2017), where the authors
show how it is possible to achieve functional robot obstacle
avoidance control strategies using a mixed signal analog/digital
neuromorphic processor with an event-based sensor.

InMilde et al. (2015), an obstacle avoidance system is designed
which is based on optic flow. To extract optic flow, the authors
use a plane fitting algorithm that estimates the relative velocity
in a small spatio-temporal cuboid. The depth structure is then
derived from the translational optic flow.

3.1.12.2. Balancing and Control
Conradt’s pencil balancing robot was using two event-based
vision sensors to sense deviations from the vertical with low
latency, and was demode at numerous conferences in the era
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(Conradt et al., 2009a,b). Event-based sensors are also used
in Mueller et al. (2015a,b) for feedback control of mobile
robotic systems. The work is continued in Singh et al. (2016) to
investigate the problem of quadratically stabilizing a continuous
time linear time invariant system using event-based cameras.

3.1.12.3. Flying Robots
Low-latency processing of visual information is crucial for flying
robots as thy require fast reactions. A new event-based method
to compute optic flow for miniaturized indoor flying robots has
been demonstrated in Conradt (2015), that can be embedded
on the robot due to its low power requirements and small
form-factor. In another work (Orchard et al., 2009), event-based
cameras are used for planetary landing tasks. In Hordijk et al.
(2017), the “local plane fitting” algorithm is extended to obtain
an improved and more computationally efficient optical flow
estimation method. The developed algorithms are implemented
in a constant divergence landing controller on a quadrotor.

3.1.12.4. Actuators and Manipulation
Many robots require vision for manipulating the environment.
In Linares-Barranco et al. (2007), an event-based camera is used
for visual sensing, processing and actuating a robot that mimics
human behavior. To reproduce human movements, a spike
processing strategy is proposed in Perez-Peña et al. (2013) that
uses a silicon retina to find the trajectory of human movement.
In another work (Jimenez-Fernandez et al., 2009), the actuators
of a robot are controlled, based on the input from a camera, to
move the robot on a line on the floor.

Precise information about the position of objects and
manipulators is crucial in object manipulation tasks where the
grippers lack force sensing. To provide a haptic feedback, an
artificial retina is used in Bolopion et al. (2012) that provides high
update rate of the moving objects and a frame-based camera is
devised to provide the position of the object. In Ni et al. (2012), an
event-based iterative closet point algorithm is proposed to track
a micro-gripper’s position. The authors use both a DVS camera
and a frame-based camera, where the temporal precision of the
asynchronous silicon retina is used to provide a haptic feedback
to assist users during manipulation tasks, and the frame-based
camera is used to retrieve the position of the object.

When grasping objects, human fingers have very sensitive
touch receptors that enable us to apply the precise pressure
needed to grasp items. Too low pressure can lead to grasping
failure and too much pressure may damage the object. In Rigi
et al. (2018), event-based cameras are used to develop algorithms
for detecting incipient slip, stress distribution and object
vibration. They compare their results with a high speed 1,000 fps
camera and show good performance with a very small (44.1 ms)
latency.

3.1.12.5. Maneuvering and Navigation
The agility of robots is limited by the latency of their perception.
Therefore, event-based cameras can by useful to support high
speed robot maneuvers. To achieve a faster vision, the first
onboard perception system for 6-DOF localization during high-
speed maneuvering of a quadrotor is presented in Mueggler et al.

(2014). A DVS is used in Delbruck et al. (2014) to extract motion
parallax cues relating to 3D scene structure in the a navigation
task, with better performance than frame-based approaches.
A guidance system inspired by honeybee vision was proposed
in Serres et al. (2016). The simulated bee is equipped with a
compound eye comprising 10 sensors, two optic flow regulators
that update the control signals, and three event-based controllers.

3.1.12.6. Vision and Attention
In Klein et al. (2015), two DVS cameras are mounted in a robot
head to provide vision. The authors designed an image stitching
algorithm to represent a scene larger than the field of view of
each of the retinas. In another work (Moeys et al., 2016a), a
DVS camera is used on a head of a predator robot that follows
a prey robot. Robot goalies require very fast reaction time which
is hard to achieve with frame based systems. In Delbruck and
Lang (2013) and Delbruck and Lichtsteiner (2007) a fast self-
calibrating robotic goalie is designed which offers low latency
and CPU load. In another work (Becanovic et al., 2002), a
neuromorphic analog VLSI sensor is combined with a digital
omni-directional vision system. The system is used on a robot for
locating a ball and directing the actuators for a goal keeper robot.
In order to achieve a fast interaction with the environment, an
attention system is developed for a humanoid robot in Rea et al.
(2013). The authors report low-latency systems for the attention
task.

3.2. Algorithms
There are some studies that propose newways of processing event
based vision signals. In this section we review papers that have
come with new algorithms for DVS camera data.

3.2.1. Mapping
Convolutional neural networks (LeCun et al., 1989) inherently
operate on frame-based principles. For many large-scale systems,
event-based processing modules are impractical. In Pérez-
Carrasco et al. (2013), an intermediate solution is presented.
First, a database of training frames is generated by binning,
i.e., collecting events during fixed time intervals. Second,
a frame-driven convolutional neural network is trained to
perform object recognition. Third, the learned parameters of the
frame-driven convolutional network are mapped to an event-
driven convolutional network. Finally, the timing parameters
of the event-driven network are fine-tuned to optimize the
recognition task.

3.2.2. Filtering
In signal processing, filtering refers to the prepossessing that is
applied on the signals for feature detection and extractions. In
image processing for example, it is performed to find features
like corners, edges, and so on. In Ieng et al. (2014), a filtering
methodology is proposed for event-based cameras. The authors
propose asynchronous linear and non-linear filtering techniques.
In Bidegaray-Fesquet (2015) the effect of noise and uncertainty
on levels on the filtering of event data is investigated. The authors
analyze the errors in terms of standard deviation of the normal
distribution.
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3.2.3. Lifetime Estimation
An algorithm is proposed in Mueggler et al. (2015b) that
estimates the life-time of events from DVS cameras. The
estimation is performed based on its velocity on the image plane.
The application of such an algorithm is the construction of sharp
gradient images at any time instant.

3.2.4. Classification
Conventional neural networks cannot be directly applied to the
classification tasks for event-based data. In Li et al. (2018), it is
shown how the deep representation learned with an originally
optimized CNN is efficiently transferred to the event-based
classification task. In this method, a spike-event coding is used
and implemented based on the subthreshold dynamic of the leaky
integrate-and-file model.

3.2.5. Compression
By only sending changes in the intensity of pixels, DVS cameras
inherently perform high speed video compression. In Brandli
et al. (2014), a decompression algorithm is proposed that
performs an online optimization of the event decoding in real
time. The system exhibits an adaptive compression ratio that
depending on the activity in the scene can reach up to 1,800 for
stationary scenes.

In order to design a compression algorithm for event-
based data, an analysis on the spike firing mechanism and the
redundancies of spike data generated from DVS is performed
in Bi et al. (2018). The authors then propose a cube-based coding
framework comprising three strategies, namely macro-cube
partitioning structure, address-prior mode and time-prior mode.

A new compression algorithm for still images is proposed
in Doutsi et al. (2015) which uses event-based sampling. In this
algorithm, a bio-inspired filter is applied to the image and then
the retinal-filtered image is fed to a sampler. To reconstruct
the original image, the spike train produced by the sampler
is decoded.

3.2.6. Prediction
A spiking neural network with learnable delays is used in Gibson
et al. (2014b) to predict temporal sequences of the incoming
events from a DVS camera. The system is capable of learning the
temporal structure of space-time events, adapt to multiple scales
and is able to predict future events in a video sequence. Using
a DVS camera, a method is presented in Kaiser et al. (2018) to
learn movements from visual predictions. The proposed method
consists of two phases. First is learning a visual prediction model
for a given movement and second is minimizing the visual
prediction error.

3.2.7. High-Speed Frame Capturing
Event cameras only transmit light intensity changes in the scene,
so they lack information about all the pixels. A method is
proposed in Liu et al. (2017b), to recover a scene, in which the
foreground exhibits fast motion and background is static. Frames
taken from a conventional camera are first matched to events
taken from a DVS camera, then the high-speed events are used
to generate the image sequences between consecutive frames.

Motion blur in frame-based cameras refers to the apparent
streaking of moving objects in a photograph that occurs when
part of the image being recorded changes during the exposure.
In Pan et al. (2018), the blur generation process is modeled by
associating the event data to a latent image. The method is called
event-based double integral model that reconstructs a high frame
rate, sharp video from a single blurry frame and its event data.

3.2.8. Spiking Neural Networks
Due to specific characteristics of event-driven signals,
conventional machine learning techniques cannot be directly
used for these signals. Therefore learning systems should be
designed that are specifically suitable for these data. A new
evolving neural network is developed in Dhoble et al. (2012)
that utilizes both rank-order spike coding, also known as time to
first spike, and temporal spike coding. The authors implement
the system for a classification problem on event-based data from
a DVS camera. A novel method for training an event-driven
classifier within a spiking neural network system is proposed
in Stromatias et al. (2017), which uses the activity provided by an
arbitrary topology of prior network layers to build histograms
and train the classifier in the frame domain. This way of building
histograms captures the dynamics of spikes immediately before
the classifier. The system is applied to data from a DVS camera.

3.2.9. Data Transmission
Normally, brain-machine interfaces emphasize faithful
transmission of the recorded signals. An alternative approach
is taken in Corradi and Indiveri (2015) that proposes a neural
recording system is proposed for compressing data. This event-
based system applies signal processing and neural computation
to extract relevant information from the large amount of
collected raw data. It transmits only the low-bandwidth outcome
of the processing to remote computation modules.

3.2.10. Fusion
In order to process the output of event-based cameras more
accurately, different networks including convolutional and
recurrent neural networks are ensembled in Neil and Liu (2016)
to jointly solve a recognition task. The authors show that the
performance of the algorithm is higher than individual networks.

3.2.11. Hybrid Methods
Event-based vision systems offer fast visual processing with
low computational requirements. However, high level visual
processing, like, e.g., object recognition, is still a challenge for
these devices. Some studies try to accomplish both objectives
by combining the advantages of both systems. However,
active vision systems need real time and high-level processing
at the same time. In Sonnleithner and Indiveri (2011a,b,
2012), dedicated VSLI hardware is designed that implements
an event-based network of spiking neurons for real-time
processing in combination with a conventional vision system.
A low-resolution event-based system responds in real-time to
moving objects and produces fast reactive motor outputs. A
conventional high-resolution machine vision system performs
object recognition task.
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In Weikersdorfer et al. (2014), a DVS and a frame-based
camera are combined to produce a sparse stream of depth-
augmented 3D points. The authors state a smaller amount of
generated data and a continuous representation of motions as
advantages of this system.

In order to combine the strength of both type of sensors,
a frame-based video sensor is used along with an event-
based camera in Leow and Nikolic (2015). The system is
applied to a variety of applications including video-compression,
foveated imaging on the moving objects, object tracking and
velocity estimation.

3.2.12. Matching
In Moser (2015), a new approach for matching event sequences
is proposed that is based on HermannWeyl’s discrepancy norm.

3.2.13. Feature Extraction
Feature extraction plays an important role in many machine
learning applications. The problem is to determine which
features from the signal should be extracted for processing, and
how. In frame-based computer vision, the features are often
defined as a function of the luminance of the pixels within an
image. Temporal information of the scene is often not present,
e.g., because the source material contains only still frames, or it
is of comparably low precision, due to an underlying assumption
that 24 frames/s are enough for applications with onlymoderately
fast-changing scenes. Event-based cameras enable extracting
different features as they capture temporal information of the
scene at high precision. Feature extraction from event-based
signals and their application in higher-level computer vision was
the subject of many studies, that we review in the following.

3.2.13.1. Vehicle Detection
A spiking neural network is introduced in Bichler et al. (2011,
2012) to extract temporally correlated features from spike-based
dynamic vision sensors. A spiking neural network is used in this
work, in which the neurons become sensitive to patterns of pixels
with correlated activation times. The authors employ a spike-
timing-dependent plasticity scheme, where the synapses that do
not contribute to spike activation are depressed. The system is
developed for detecting cars passing a freeway.

3.2.13.2. Gesture Recognition
In Ahn (2012), local and global feature extraction methods are
employed. First the local extraction method uses segmentation
to extract smaller number of features from a long sequence of
raw gesture events. This is called local because it only considers
neighboring events. The global extraction transforms the local
features to construct higher level features. The authors use an
evolutionary algorithm for feature selection step.

3.2.13.3. Robot Vision
A new time oriented visual feature extraction method is
presented in Lagorce et al. (2013), which is base on echo-state
networks. The method is unsupervised and is suitable for high
dynamic environments.

3.2.13.4. Hardware Implementation
An FPGA design of an analog-to-feature converter is presented
in del Campo et al. (2013), which learns a dictionary of features
from an event-based signal using matching pursuit and Hebbian
learning. The code is sparse and suitable for neuromorphic
processors. In Hoseini and Linares-Barranco (2018), using
FPGA, a digital circuit is proposed for extracting frequency of
rotating objects in real time. This feature can be used, along
with other features for recognizing objects with rotating parts.
In Yousefzadeh et al. (2015), a 2D convolution event-based
processing unit it proposed to extract features from an input
event flow. The system is highly parallel and can benefit from
FPGA arrays.

3.2.13.5. Optical Flow
In Koeth et al. (2013), it is shown how motion features with
spatio-temporal profile can be self-organized using correlations
of precise spike intervals. The authors show that their framework
forms topologic organization of features in a way similar to
human brain.

A luminance-free feature extraction method is proposed
in Clady et al. (2017) which performs bymapping the distribution
of optical flow along the contours of the moving objects into
a matrix. Using speed-tuned temporal kernels, the optical flow
is integrated locally or globally in a speed direction coordinate
frame-based grid. This ensures that the features equitably
represent the distribution of the normal motion with respect to
the moving edges.

Most feature tracking methods rely on building a model of
events and then computing optical flow by assigning events to
corresponding models. This, however, results in a lower quality
optical flow and shorter flow tracks. In Zhu et al. (2017a), a soft
data association modeled with probabilities is presented which
is computed in an expectation maximization scheme. To enable
longer tracks, the method also computes the affine deformation
with respect to the initial point and use the resulting residual as
a measure of persistence. Thus, in this method, varying temporal
integration, different for each feature is achieved.

3.2.13.6. Feature Extraction Algorithms
Convolution of Gabor filters over the image is a standard
technique in conventional feature extraction. In Tsitiridis et al.
(2015), a spiking neural network is used to exploit the temporal
nature of the signals. In this method, a biologically inspired
Gabor feature approach is presented. The neural network
has a hierarchical structure and provides a flexible approach
that reduces computation. In Lagorce et al. (2015a), a new
computational architecture for learning and encoding spatio-
temporal features is presented, based on a set of predictive
recurrent reservoir networks, competing via winner-take-all
selection. The features in this method are learned in an
unsupervised scheme.

In Chandrapala and Shi (2016), a novel architecture called
the event-based Generative Adaptive Subspace Self-Organizing
Map, for feature extraction is proposed. The system is inspired by
cortical models of visual processing and is based on the concepts
of sparsity and temporal slowness. In this model, layers of units
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can be cascaded to learn feature extractors with different levels of
complexity.

In Peng et al. (2017), a feature extraction method is proposed
which is based on bag of events probability theory. In this
approach, each object is represented as a joint probability
distribution of events. The authors claim five main advantages:
First, the algorithm uses statistical learning methods with good
mathematical foundations. Second, it has only one hyper-
parameter, therefore reducing the effort spent in parameter
tuning. Third, it is an online learning algorithm and does not
require data collection. Fourth, it offers competitive results in real
time. And finally, the approach requires very simple operations of
addition and multiplication.

A new feature is proposed in Negri (2017) that is computed
based on an extended local binary pattern (LBP) operator. The
feature characterizes the connectivity of the asynchronous events
in a two dimensional space. This feature can also be organized
on histograms and combined with other features as histograms
of oriented events.

A new set of features called time-surfaces is presented
in Lagorce et al. (2017), which can be used to create a hierarchical
pattern recognition architecture. In this model, the subsequent
layers in the hierarchy extract increasingly abstract features using
increasingly large spatio-temporal windows. The idea in this
work is to use temporal information to create contexts in the
form of time-surfaces which represent the temporal activity in a
local neighborhood. The first layer in this hierarchy operates on a
group of pixels and each subsequent layer feature unit performs
operation on the output of previous feature unit.

3.2.13.7. Hybrid Cameras
In order to combine the advantages of event-based cameras
with frame-based technology, DAVIS cameras are proposed that
consist of a frame-based camera and a DVS camera that fills the
information gap between consecutive frames. In Tedaldi et al.
(2016), a new feature extraction method is proposed for these
type of cameras, in which the frames are first processed and
features are detected. These features are then tracked in the blind
time between the frames using the events. The system uses an
iterative geometric a registration approach for feature tracking.

3.3. Analysis and Modeling
Analyzing and modeling the behavior artificial retinas can
help understand, and hence devise ways to improve, their
performance In this section we perform an overview on this line
of research.

3.3.1. Analysis
In Yousefzadeh et al. (2018) a study is performed on saccades, and
it is shown that performing more saccades in different directions
can result in more accurate object recognition. Since adding
more saccades adds latency and power consumption, the authors
propose an intelligent saccadic movement paradigm that reduces
the number necessary saccades without sacrificing recognition
accuracy. The authors then use a neural-network algorithm that
learns to control the saccades, thus further reducing the latency.

The impact of fixational eye movements for a DVS camera
is investigated in Löhr and Neumann (2018). The authors use a
mirror system to generate the virtual eyemovements, and analyze
the shape of the Fourier spectrum of random motions of the
recordings for stationary and moving features.

A DVS and jAER are integrated in Franco et al. (2013) and
an analysis is performed on the system to describe a method
to develop new applications in jAER. The paper also describes
two applications of the system: tracking objects and constructing
images from spikes.

In event-based systems, sampling is induced by the signal,
rather than by an external clock. Therefore, mathematical theory
of frame-bases systems cannot accurately be applied to these
systems. In Grybos (2015), event-based signal processing and the
application of irregular sampling theory and frames are studied
for event-based signal reconstruction. The method consists of
the application of the frame algorithm enhanced with adaptive
weight method for signal reconstruction.

3.3.2. Modeling

3.3.2.1. Modeling Retinal Ganglion Cells
An event-based system is developed in Katz et al. (2012a) which
models the behavior of retinal ganglion cells. A DVS camera
sends the events to a micro-controller processing unit which
implements an interrupt driven model of an Approach Sensitive
Retinal Ganglion Cells (AS-RGC). Accurate modeling of retinal
information processing is studied in Lorach et al. (2012), where
the spatial and temporal properties of the ganglion cells in
mammalian retina are modeled. A DVS camera is combined in
this work with a model pulling non-linear sub-units to reproduce
the parallel filtering and temporal coding that occurs in retina.

It is often assumed that neuromorphic technology, i.e.,
technology that mimicks biological neuronal computing
architectures, can potentially help to understand the functionality
of nervous system. However, existing neuromorphic systems
usually fail to represent true behavior biological sensors and
neurons. To overcome this, a neuroid-based ganglion retina cell
model is presented in Argüello et al. (2013) that is capable of
reproducing the essential features of the photo-receptor response
to illumination. A real-time visual system emulator is developed
in Kawasetsu et al. (2014) as a combination of hardware retina
emulator and SpiNNaker chips, to model neural activity in the
retina and visual cortex.

Modeling the early detection of approaching dark objects,
which is the functionality of one type of retinal ganglion cells
is studied in Liu et al. (2017a). The Java software and FPGA
hardware implementation of this type of cells is conducted and
it is shown that this model can have applications in developing
attention systems.

3.3.2.2. Modeling Event-Based Sensors
In Katz et al. (2012b), a high frame-rate USB camera is used
to model the behavior of a DVS camera. The PS3-Eye camera
performs at 125 fps, and is integrated into a jAER (2021)
software which does real-time event-based sensor processing.
A variational model is presented in Munda et al. (2018)
that accurately models the behavior of DVS cameras, that is
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formulated on per-event-basis, where information about the
asynchronous nature of events are incorporated via an event
manifold induced by the relative time-stamps of events. This
model enables the reconstruction of intensity images with
arbitrary frame rate in real-time.

3.3.2.3. Modeling of Cortical Mechanisms
In Tschechne et al. (2014), a new approach is proposed for
modeling of cortical mechanism of motion detection. The model
combines filters with spatio-temporal and direction specificity.
The model is then used to record test stimuli, articulated motion
and ego-motion.

3.4. Hardware Design
Several efforts to develop hardware systems dedicated to
processing event-based vision signals exist. A hardware model
of a selective attention mechanism implemented on a VLSI
chip is presented in Indiveri (2000), that is used with
analog neuromorphic circuits. The device can be used as a
transceiver module for multichip neuromorphic vision systems.
In Serrano-Gotarredona et al. (2006), a neuromorphic cortical-
layer microchip is presented that computes processes 2-D
convolutions of event-based vision data. The microchip is able
to process 128 × 128 pixels and can be tiled up for higher
resolutions. In another work (Vogelstein et al., 2007), a mixed-
signal VLSI system is devised for spike-based vision processing.
The model exploits arbitrary and re-configurable connectivity
between cells in the multichip architecture.

A new vision hardware system called CAVIAR is developed
in Serrano-Gotarredona et al. (2009), in order to propose
computational neuroscience and machine vision that allows
construction of modular, multilayered, hierarchical and salable
sensory processing learning and actuating systems. The system
is a massively parallel hardware that consists of a retina,
programmable kernel, WTA chip, spatio-temporal processing
chip, AER mapping and splitting FPGA and a computer-AER
interfacing FPGA.

In Bartolozzi et al. (2011) a robotic vision system is proposed
that comprises two DVS cameras with a dedicated processor, a
General Address Event Processor and a FPGA that connects the
sensors to the processors. A software module collects the events
for further processing. The system is capable of interaction with
real world in real time.

The HMAX model was proposed (Serre et al., 2007) to truly
model the visual cortex (Riesenhuber and Poggio, 1999, 2000a,b).
An event-based implementation of the model is proposed
in Folowosele et al. (2011) to show its ability in classifying
basic shapes.

4. EVENT-BASED AUDITORY SYSTEMS

Digital audio recording devices decompose signals using classical
digital signal processing techniques. In biological auditory
systems, sound signals are decomposed into frequency bands
by the mechanical properties of the basilar membrane in the
cochlea. Hair cells transduce the band-passed components into
neural pulses that are then propagated to higher auditory

areas in the brain. Auditory information like speech, music,
and environmental noise is temporally structured. The brain is
thought to achieve a computational advantage by exploiting the
timing of action potentials to code information, compared to
mere rate codes. Several studies have thus explored the potential
of event-based processing in auditory processing, which we
review in this section.

The development of silicon cochleas for signal processing
purposes has seen significant effort. Interested readers are
referred to Chan et al. (2007), Wen and Boahen (2009), Liu et al.
(2010), Koickal et al. (2011), Wang et al. (2015), Yang (2015), and
Jiménez-Fernández et al. (2017).

4.1. Applications
4.1.1. Localization
Using two microphones and a pair of silicon cochlea, a
neuromorphic sound localization system is proposed in van
Schaik et al. (2009) and Yue-Sek Chan et al. (2010). The
algorithm proposed in this work is adaptive and supports
online learning. A binaural event-based sound localization is
presented in Finger and Liu (2011), which implements a spike-
based correlation of the spikes and measures the Inter-aural
Time Differences (ITD) between the arrival of a sound to the
two cochleas. When a spike arrives, the algorithm updates a
possible distribution of ITD, which offers a faster solution to the
problem compared to conventional cross-correlation methods. A
probabilistic model for sound localization using silicon cochlea is
presented in Anumula et al. (2018). Instead of using the timing
of the spikes to find ITDs, this work uses spikes to support a
distribution model of the ITDs.

In order to enhance the perceptual sensation on a hearing aid
system, a neuromorphic sound localization circuit is designed
in Park et al. (2013). The system is comprised of leaky integrate-
and-fire neurons that are optimized to reduce the synaptic circuit
noises.

4.1.2. Echolocation
A bat-inspired, event-based localization method is proposed
in Abdalla and Horiuchi (2008), which produces qualitatively
similar, direction-dependent, spectral features in the same
ultrasonic frequency range used by the big brown bat. The input
sound signal generated by the an ultrasonic cochlea are sent to
spiking neurons which then convert these spikes to spike trains.
The authors use pattern recognition algorithms to estimate the
azimuth and elevation of the ultrasonic chirps.

4.1.3. Micro-Doppler Sonar
The relative velocity of objects to an observer can be estimated
via the frequency shift of the sound produced by the objects. This
phenomenon is used by some animals like bats and dolphins to
navigate and locate objects. A system for micro-Doppler sonar is
presented in Figliolia et al. (2015), which uses a silicon cochlea
with acoustic fovea and AER.

4.1.4. Speech Recognition
A speech perception algorithm is proposed in Näger et al. (2002)
which uses a model of human cochlea with spiking neural
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network. The network employees synaptic plasticity to learn
patterns by establishing characteristic delay structures.

The authors of Jansen and Niyogi (2009) design point process
models to operate on sparse detector-based representation of
speech signals and apply them to speech recognition tasks. They
show that this system can operate at a comparable level to a basic
hidden Markov model.

A speaker-independent isolated digit recognition system is
designed in Abdollahi and Liu (2011), that works based on
cochlear image maps based on the spikes from a silicon cochlea.
The cochlear maps were found by means of time-binned spike
counts, low-pass filtered spike trains and the Radon spike count
method. These maps are then fed to a support vector machine for
classification.

A spiking neural network composed of three types of
integrate-and-fire neurons is proposed in Miró-Amarante et al.
(2017) that is capable of recognizing vowel phonemes. The neural
network is described in VHDL for detecting Spanish words.

4.1.5. Speaker Identification
A method for speaker identification employing a silicon cochlea
and limit-cycle statistics is proposed in Chakrabartty and Liu
(2010). The authors employ a Gini-support vector machine
classifier and use spike rates, inter-speak-interval distributions
and inter-spike-velocity features. In Li et al. (2012), auditory
features representing fading histograms of inter-spike intervals
and channel activity distributions are extracted from the output
of a silicon cochlea. Then a linear support vector machine is used
to classify the feature vectors.

4.1.6. Sound Recognition
In Jäckel et al. (2010), a sound recognition system is designed that
uses a silicon cochlea and classical hidden Markov model. The
system is trained to recognize two different sound of a clap or a
bass drum in presence of noise. A neuromorphic auditory system
for feature extraction and an artificial neural network are used
in Cerezuela-Escudero et al. (2016) to recognize 12 musical notes
in presence of white noise.

4.1.7. Sensor Fusion
In Chan et al. (2012), a pair of silicon cochlea and a silicon
retina are combined on a robotic platform to allow the robot
to learn sound localization through visual feedback and a sound
localization algorithm. This work is an extension on the work
presented in van Schaik et al. (2009) and Yue-Sek Chan et al.
(2010), where only silicon cochlea was used for localization.
The authors report that the combination with a silicon retina
improves sound localization.

The combination of visual and auditory information can
help resolve ambiguities in sensing. In Akolkar et al. (2015b),
event-based vision and auditory systems are combined to design
a collision detection algorithm for application in robotics.
Collisions are distinguishable from mere occlusions by on
the sound the collision produces. Salient sensory events must
therefore be detected by vision and auditory systems at the
same time. This requires very high temporal resolution and is
challenging for frame-based systems.

In Rios-Navarro et al. (2015), an event-based camera and
auditory systems are used together to measure the rotation
frequency of a motor. The system uses a FPGA and performs in
real-time.

4.1.8. Feature Extraction
In Anumula et al. (2018), the effectiveness of frame-based
features generated using spike counts and constant event binning
is investigated. The authors propose a pre-processing method
which applies an exponential kernel on the events to better
preserve timing information. In Acharya et al. (2018) the authors
extend their feature extraction approach to fixed number of bins
and fixed bin size methods.

5. EVENT-BASED OLFACTORY SYSTEMS

Olfaction plays an essential role in many activities, e.g., food
foraging, trail following, mating, bonding, navigation, and
detection of threats. Artificial olfaction has great potential in
many areas, including hazard detection, food safety, industrial
and environmental monitoring, disaster management, crop
monitoring, medical diagnosis, among others. However, gas
sensor technology still lags far behind what is available the
visual and auditory domains. Designing artificial olfactory
systems faces a number of challenges, including coping with
slow sensor recovery, sensor drift compensation, concentration-
invariant recognition, orthogonalization of odor patterns,
mixture separation, and odor identification against complex
backgrounds and interferents, among others (see Pearce et al.,
2003 for a review). Event-based approaches could help mitigate
some of these issues.

The front end of the olfactory system in vertebrates consists
of a large number of olfactory receptor neurons that fire action
potentials upon encountering volatile chemicals in inhaled air.
Humans have around 5 million olfactory receptor cells, each
of which expresses a only one of about 350 possible olfactory
receptors. Different olfactory receptors differ in their molecular
receptive ranges. One type of receptor may respond to a range
of odorants, and one odorant typically elicits responses in a
range of receptor. A combinatorial code emerges that encodes the
identity of an odorant by the pattern of olfactory receptors that is
activated (Bieri et al., 2004).

Artificial olfactory systems follow a similar principle, where
arrays of sensors with partly overlapping response characteristics
are combined in a frame-based manner and subsequently
processed to extract activation patterns that can be assigned
to particular odorants. In practice, gas sensor signals are often
collected over long periods of time, like tens of seconds to several
minutes, and subsequently averaged to remove turbulence-
induced signal variations and other noise. This approach
invariably introduces latency and removes any information-
containing turbulence-induced information from the signal. In
contrast, event-based olfactory systems try to mimic the key
principles of biological olfaction, by transmitting events only
when the gas concentration changes.

Here, we review gas sensing approaches that use direct
inspiration from biology, dedicated hardware systems for
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neuromorphic gas sensing, and algorithms that have been
suggested to improve gas sensing using neuromorphic principles.

5.1. Bio-Inspired Olfaction Systems
5.1.1. Vertebrate Olfactory System
An artificial chemosensing system is presented in White et al.
(1998) and White and Kauer (1999) which is based on
neural circuits of the vertebrate olfactory system. An array of
chemosensors which are designed to produce similar response
to olfactory sensory neurons is used as input that produces
spatiotemporal patterns. These patterns are recognized by a delay
line neural network. The system is devised to encode the vapor
identity by the spatial patterning of activity in the neural network
and vapor intensity is encoded by response latency. The identity
and intensity information are then separated into two distinct
codes. This serves as a discriminator among organic vapors.

Inspired by olfactory structure of mammals, an artificial
olfactory bulb is presented in Jing et al. (2016), which consists
of olfactory receptor neurons and mitral, granule, periglomerular
and short axon cells. The model transforms the input of gas
sensors into neuron spikes that simplifies the feature generation
step. The system is used in liquor classification.

5.1.2. Insect Olfactory System
Since the output of odor sensors is usually real-time, continuous,
noisy, lacks a precise onset signal and accurate classification
often requires temporal information, many neuronal network
models fail to operate properly in practice. To investigate the
potentials and suitability of biomimetic classifiers for real-world
sensor data, a research is performed in Diamond et al. (2016). In
this work, inspired by insect antennal lobe, a generic classifier is
designed to identify 20 individual chemical odors.

In Pearce et al. (2013, 2014), a biologically-constrained
neuromorphic spiking model of the insect antennal lobe is
presented that detects the concentration of chemical components
of a material. The system is dynamic and uses winner-takes-
all or winnerless competition depending on the inhibition and
symmetry of its connections. The authors employ spike timing-
dependent plasticity in their model and show that this is able to
organize weights into a stable configuration.

5.1.3. Honeybee Olfactory System
The honeybee’s olfactory pathway is decomposed into its local
circuits and processing stages in Hausler et al. (2011) and
Schmuker et al. (2011). The authors demonstrate functional role
of these organs and build a model a spiking neuronal network
models of them by designing a probabilistic classifier. In another
work (Kasap and Schmuker, 2013), also inspired by honeybee
antennal lobe, unsupervised learning of the lateral inhibition
structure is presented. The authors use inhibitory spike-timing
dependent plasticity in a computational model for multivariate
data processing. In this system, the inhibitory connectivity self-
organizes to reflect the correlation between input channels. It is
shown in this paper that local learning produces an inhibitory
connectivity that reduces channel correlation and is suitable for
a neuromorphic architecture. This line of work further gave
rise to the first published implementation of a spiking network

for multivariate pattern recognition on neuromorphic hardware
(Schmuker et al., 2014).

5.1.4. Stereo Olfaction
In Rochel et al. (2002), inspired by animal olfactory systems
in tracking odors, a stereo sniffing system is designed that
tracks specific odors. In this system, first the gas-concentration
gradient is estimated, and then the gas is recognized. The authors
use spiking neural networks to implement this biologically
inspired system.

5.2. Hardware Systems
In this section we review the research that have developed
hardware systems specifically designed for odor recognition.

5.2.1. Hardware Design
A hardware architecture for chemical classifiers is presented
in Abdel-Aty-Zohdy et al. (2010) which takes advantage of
Sampling Spiking Neural Networks (SSNN). The chip records
learning statistics and can be used in parallel with other SSNN
co-processors to build very large systems.

5.2.2. VLSI
Among the first attempts to develop a VLSI spiking
neuromorphic is Koickalb et al. (2004) and Pearce et al. (2005).
In this work, an olfactory bulb model, a reduced 70-element
chemosensor array and the silicon implementation are presented.
An adaptive neuromorphic VLSI olfaction device with on-chip
chemosensor array is designed in Koickal et al. (2006, 2007).
The system processes temporal spiking signals and classifies
the odors. In Hsieh and Tang (2012) a VLSI neuromorphic
spiking neural network olfactory system is designed that uses
sub-threshold oscillation and onset-latency representation,
in order to reduce power consumption. The authors use the
synaptic weights between the mitral and cortical cells according
to an spike-timing-dependent plasticity learning rule.

5.2.3. Gas Recognition
In another work (Ng et al., 2011), a CMOS gas recognition
chip is presented which encodes sensor outputs into spikes
with the firing delay mapping the strength of the simulation.
The circuit processes the spikes and looks for match within
a library of spatio-temporal signatures. Exploiting fundamental
characteristics of the olfactory pathway, a simple spike based gas
recognition technique is presented in Al Yamani et al. (2012a,b).
The system is designed for detecting ethanol, methane and
carbon monoxide. Gas recognition is performed in this system
by looking for a match within a library of spatio-temporal spike
patterns. In Hassan et al. (2015), instead of the logarithmic time
encoding model, spike codes are formed from transient features
(similar to Muezzinoglu et al., 2009), thus eliminating the need
for regression.

5.3. Modeling and Algorithms
Algorithms for modeling olfactory systems and for improving
recognition performance have been proposed by a range
of studies.
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FIGURE 1 | The number of reviewed papers on event-based visual, auditory

and olfactory systems in each year since 1996.

5.3.1. Accelerated Event-Based Gas Sensing
In Drix and Schmuker (2021) a Kalman-filter based algorithms
is described that can decode fast transients (in the order of one
second) from metal-oxide sensors. It uses an event-based signal
representation to detect gas onset with high temporal precision.
An application in gas source direction detection is demonstrated.

5.3.2. Event-Based Source-Distance Estimation
In Schmuker et al. (2016) and event-based (albeit non-spiking)
algorithm is proposed that exploits turbulence-induced signal
fluctuations to estimate the distance of a gas source in a
wind tunnel.

5.3.3. Neural Networks
A spiking olfactory bulb model is implemented in programmable
logging and combined with a Hebbian learning rule in Guerrero-
Rivera and Pearce (2007). The system is able to store attractors
which correspond to odor patterns, and can classify learnt odors.

In Beyeler et al. (2010), the topology of biological networks
is studied, and it is analysed how network activity depends on
various parameters of the theoretical models. The authors’ aim
is to shed light on how network structure relates to filtering and
enhancement of recognition performance.

5.3.4. Neuromorphic Design
A network model of the glomerular layer of the mammalian
olfactory bulb is implemented in neuromorphic hardware
in Imam et al. (2012). In Martinelli et al. (2009), an artificial
olfactory system is proposed and implemented on FPGA. The
model is based on a direct spike conversion of the input signal
and digital glomerular signal processing for spikes.

5.3.5. Computational Modeling
Inspired by the biological principle of distributed coding, and
olfactory receptor neurons converging in a chemotopic fashion

onto glomerular units in the olfactory pathway, in Raman
et al. (2006a), a computational model of chemical sensor arrays
is presented. The work presents a monotonic concentration-
response model that maps the sensor inputs into a distributed
activation pattern across receptor models. Then a self-organizing
model of chemotopic convergence is used to simulate the
projection onto glomerular units in the olfactory bulb.

5.3.6. Contrast Enhancement
In order to enhance the discrimination of multivariate patterns
from gas sensor arrays, a signal processing model is presented
in Raman et al. (2006b), which improves the separability
between input odor patterns. The model captures chemotopic
convergence of sensory neurons onto the olfactory bulb and
center on-off surround lateral interactions. The features are
projected onto a two dimensional lattice which results in odor-
specific spatial patterning. These patterns are then fed to a
network of mitral cells to enhance the contrast among odors and
decouples odor identity from intensity.

5.3.7. Spike Latency
To study the hypothesis that neurons transmit the most
meaningful information via the first spikes, and that spike latency
acts as a descriptor of the information content, an artificial
sensory system is designed with a single layer of spiking neurons
in Di Natale (2011). The authors assessed the system’s capability
to discriminate between distinct chemicals and mixtures, and
studying the effect of lateral inhibition. The authors considered
both the spikes latency and the average firing rate as the output of
the network. Experiments with the system show that the average
firing rate offers the best separation among stimuli, while latency
offers discrimination in shorter time. These results aligned with
observations in biological olfaction.

A latency-based e-nose system is designed in Chen et al.
(2011) to achieve power-efficient, compact and robust gas
identification, using rank order and spike distance classification
algorithms.

6. SUMMARY OF REVIEWED RESEARCH

In this paper we reviewed research on event-based signal
processing, focusing on visual, auditory and olfactory systems.
We did not attempt to cover event-based control systems, since
the field is an independent area with large amount of research
that would require a separate review. There is also a wide range of
research on neuromorphic engineering which we did not cover in
this paper due to constraints in scope and size; readers so inclined
are referred to other excellent survey papers (Cauwenberghs,
1998; Liu and Wang, 2009; Liu et al., 2009; Nawrocki et al., 2016;
Vanarse et al., 2016; James et al., 2017; Schuman et al., 2017).

There is an interesting trend in the volume of published
research in event-based visual, auditory and olfactory systems
during the last two decades (Figure 1). Few papers have been
published prior to 2006, when a significant increase in interest
saw a surge in publications. After 2006, there is steady increase
in the research on the subject, indicating that the potential of the
technology has been discovered.
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TABLE 1 | The paper structure.

Sensor type Category Subcategory Papers reviewed

Retina Reviews,

benchmarks

Previous reviews Neuromorphic vision and cameras (Etienne-Cummings and Van der Spiegel, 1996; Delbruck and Liu,

2012; Posch et al., 2014; Gallego et al., 2020), Period of 2002–2016 (Delbruck, 2016), neuromorphic

chips (Liu and Wang, 2009),

VLSI neuromorphic circuits (Indiveri, 2008), spiking neural networks (Brette et al., 2007)

Benchmarks Guidelines for benchmark creation (Tan et al., 2015), dataset (Gibson et al., 2014a; Li et al., 2017), object

recognition (Serrano-Gotarredona and Linares-Barranco, 2015),

action recognition and tracking (Hu et al., 2016), 3D perception (Zhu et al., 2018), driving

applications (Binas et al., 2017)

Applications Tracking Object tracking (Gómez-Rodríguez et al., 2011; Saner et al., 2014; Delbruck et al., 2015; Zong et al.,

2018), multiple object (Gómez-Rodríguez et al., 2010; Linares-Barranco et al., 2015), camera

movement (Kim et al., 2008; Reinbacher et al., 2017),

feature tracking (Lagorce et al., 2015b; Ni et al., 2015; Alzugaray and Chli, 2018a), stereo

tracking (Schraml et al., 2010b; Müller and Conradt, 2012), camera pose (Gallego et al., 2015, 2016,

2018a; Mueggler et al., 2015c),

micro-particle tracking (Drazen et al., 2011; Ni et al., 2012; Borer et al., 2017), subatomic particle

tracking (Neri et al., 2015, 2017),

car tracking (Litzenberger et al., 2006c), persons tracking (Pikatkowska et al., 2012), robotics (Censi

et al., 2013; Glover and Bartolozzi, 2017; Jiang et al., 2017)

Stereo matching Stereo matching (Kogler et al., 2010, 2011a,b; Benosman et al., 2011; Dominguez-Morales et al., 2011;

Rogister et al., 2012; Carneiro et al., 2013; Kogler, 2016), single camera (Kim et al., 2016; Rebecq et al.,

2016, 2018),

cooperative neural network (Piatkowska et al., 2013, 2014, 2017; Firouzi and Conradt, 2016; Dikov et al.,

2017; Osswald et al., 2017), gabor filter (Camunas-Mesa et al., 2014; Camuñas-Mesa et al., 2014a),

similarity measure (Schraml et al., 2015; Zou et al., 2016; Eibensteiner et al., 2017; Zhou et al., 2018;

Zihao Zhu et al., 2018), verification approaches (Sulzbachner et al., 2010; Kogler et al., 2013)

Classification Pedestrian classification (Schraml et al., 2010a), human postures (Chen et al., 2012), character

recognition (O’Connor et al., 2013),

feature representation (Sironi et al., 2018)

Detection Object detection (Moeys et al., 2016b; Cannici et al., 2018), car detection (Chen, 2018), corner

detection (Clady et al., 2015; Vasco et al., 2016; Mueggler et al., 2017a; Alzugaray and Chli, 2018b),

line detection (Seifozzakerini et al., 2016, 2017), face detection (Barua et al., 2016), Sun

detection (Farian et al., 2015)

Localization Localization (Weikersdorfer and Conradt, 2012; Yuan and Ramalingam, 2016), localization and

mapping (Weikersdorfer et al., 2013; Milford et al., 2015)

Odometry Odometry (Horstschäfer, 2016; Kueng et al., 2016; Mueggler et al., 2017b, 2018; Rebecq et al.,

2017a,b; Zhu et al., 2017b)

Motion detection Motion detection (Adelson and Bergen, 1985; Ruedi, 1996; Barranco et al., 2009, 2015a; Schraml and

Belbachir, 2010; Abdul-Kreem and Neumann, 2015; Liu and Delbruck, 2017; Ridwan and Cheng, 2017;

Sullivan and Lawson, 2017; Dalgaty et al., 2018; Gallego et al., 2018b),

quadrotor (Mueggler et al., 2015a), comparison with machine vision (Barranco et al., 2014), motion

detection in sport (Litzenberger and Sabo, 2012),

velocity estimation (Gallego and Scaramuzza, 2017), optical flow (Benosman et al., 2014; Bardow et al.,

2016; Giulioni et al., 2016; Rueckauer and Delbruck, 2016; Liu and Delbrück, 2018)

Recognition Texture recognition (Pérez-Carrasco et al., 2010), hand gesture recognition (Teixeira et al., 2006; Ahn

et al., 2011), human gesture recognition (Amir et al., 2017),

object recognition (Hofstätter et al., 2011; Ghosh et al., 2014; Orchard et al., 2015), shape

recognition (Negri et al., 2018), pose estimation (Reverter Valeiras et al., 2016)

Transportation Counting vehicles (Litzenberger et al., 2006a), vehicle speed estimation (Litzenberger et al., 2006b),

vehicle classification (Gritsch et al., 2008),

pre-crash warning (Kogler et al., 2009)

(Continued)
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TABLE 1 | Continued

Sensor type Category Subcategory Papers reviewed

Healthcare Fall detection (Fu et al., 2008a,b; Belbachir et al., 2012), medical data transmission (Chen et al., 2017),

blind assistant (Ghaderi et al., 2015; Everding et al., 2016), neural activity recording (Taverni et al., 2017),

prosthesis (Gaspar et al., 2016)

Industry Surveillance systems (Perez-Peña et al., 2011), wind tunnel (Borer, 2014), measuring

rotation (Rios-Navarro et al., 2015)

Robotics Obstacle

avoidance

Obstacle avoidance (Clady et al., 2014; Milde et al., 2015, 2017; Blum et al., 2017)

Balancing and

control

Balancing (Conradt et al., 2009a,b), feedback control (Mueller et al., 2015a,b; Singh et al., 2016)

Flying robots Computing optic flow (Conradt, 2015), landing (Orchard et al., 2009), planetary tasks (Hordijk et al., 2017)

Actuators,

manipulation

Mimicking human behavior (Linares-Barranco et al., 2007; Perez-Peña et al., 2013), line

following (Jimenez-Fernandez et al., 2009), haptic feedback (Bolopion et al., 2012; Ni et al., 2012),

grasping (Rigi et al., 2018)

Maneuvering,

navigation

Maneuvering (Mueggler et al., 2014), navigation (Delbruck et al., 2014; Serres et al., 2016)

Vision and

attention

Vision (Klein et al., 2015), predator robot (Moeys et al., 2016a), robot goalies (Becanovic et al., 2002;

Delbruck and Lichtsteiner, 2007; Delbruck and Lang, 2013), humanoid robot (Rea et al., 2013)

Algorithms Algorithms Mapping (Pérez-Carrasco et al., 2013), filtering (Ieng et al., 2014; Bidegaray-Fesquet, 2015), lifetime

estimation (Mueggler et al., 2015b), classification (Li et al., 2018),

compression (Brandli et al., 2014; Doutsi et al., 2015; Bi et al., 2018), prediction (Gibson et al., 2014b;

Kaiser et al., 2018), high-speed frame capturing (Liu et al., 2017b; Pan et al., 2018),

spiking neural networks (Dhoble et al., 2012; Stromatias et al., 2017), data transmission (Corradi and

Indiveri, 2015), matching (Moser, 2015)

hybrid methods (Sonnleithner and Indiveri, 2011a,b, 2012; Weikersdorfer et al., 2014; Leow and Nikolic,

2015), fusion (Akolkar et al., 2015b; Rios-Navarro et al., 2015; Neil and Liu, 2016)

Feature extraction Vehicle detection (Bichler et al., 2011, 2012), gesture recognition (Ahn, 2012), robot vision (Lagorce

et al., 2013),

hardware implementation (del Campo et al., 2013; Yousefzadeh et al., 2015; Hoseini and

Linares-Barranco, 2018), optical flow (Koeth et al., 2013; Clady et al., 2017; Zhu et al., 2017a),

feature extraction algorithms (Lagorce et al., 2015a; Lagorce et al., 2017; Tsitiridis et al., 2015;

Chandrapala and Shi, 2016; Negri, 2017; Peng et al., 2017), hybrid cameras (Tedaldi et al., 2016)

Analysis and

modeling

Modeling Retinal ganglion cells (Katz et al., 2012a; Lorach et al., 2012; Argüello et al., 2013; Kawasetsu et al.,

2014; Liu et al., 2017a), event-based sensors (Katz et al., 2012b; Munda et al., 2018),

cortical mechanism (Tschechne et al., 2014)

Analysis Saccades (Yousefzadeh et al., 2018), eye movements (Löhr and Neumann, 2018), jAER (Franco et al.,

2013; jAER, 2021), reconstruction (Grybos, 2015)

Hardware

design

Hardware design VLSI (Indiveri, 2000; Vogelstein et al., 2007), multichip neuromorphic (Serrano-Gotarredona et al., 2006),

modular design (Serrano-Gotarredona et al., 2009), robotic vision (Bartolozzi et al., 2011),

modeling visual cortex (Serre et al., 2007)

The reviewed papers on event-based vision systems categorized based on applications and methodologies.

Tables 1, 2 summarize the structure of this paper and the
papers reviewed.

7. CONCLUSION AND DISCUSSION

Event-based sensing and signal processing has been applied to
many applications, with promising results and several conceptual
advantages. First, event-based systems only collect meaningful

information; therefore, the redundant data are not transferred
and processed, enabling a more efficient encoding scheme.
These systems can operate in an asynchronous fashion, not
limited by the constraints induced by a global clock. Second,
information is reported instantaneously, in contrast to periodic-
sampling systems that quantize based on their sampling rate.
Also, temporal information on very short timescales can be
captured, without the constraints imposed by the Nyquist
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TABLE 2 | The paper structure.

Sensor type Category Subcategory Papers reviewed

Cochlea Reviews,

benchmarks

Previous reviews Neuromorphic cochlea (Vanarse et al., 2016)

Benchmarks No benchmark reported for silicon cochlea

Applications Localization Online learning (van Schaik et al., 2009; Yue-Sek Chan et al., 2010),

ITD (Finger and Liu, 2011), hearing aid system (Park et al., 2013),

probabilistic model (Anumula et al., 2018)

Eco location Bat head (Abdalla and Horiuchi, 2008), Micro-Doppler Sonar (Figliolia et al.,

2015)

Speech

recognition

Speech recognition (Näger et al., 2002; Jansen and Niyogi, 2009), digit

recognition (Abdollahi and Liu, 2011), Spanish vowel (Miró-Amarante et al.,

2017),

speaker identification (Chakrabartty and Liu, 2010; Li et al., 2012)

Sound recognition Clap or a bass (Jäckel et al., 2010), musical notes (Cerezuela-Escudero

et al., 2016)

Sensor fusion Localization (Chan et al., 2012), collision detection (Akolkar et al., 2015b),

rotation frequency (Rios-Navarro et al., 2015)

Feature extraction Feature extraction (Acharya et al., 2018; Anumula et al., 2018)

Olfactory Reviews,

benchmarks

Previous reviews Artificial olfactory systems (Kowadlo and Russell, 2008), neuromorphic odor

tracking (Moraud and Chicca, 2011), neuromorphic olfactory

sensors (Chicca et al., 2013)

neuromorphic olfactory systems (Vanarse et al., 2017), biological

receptors (Narusuye et al., 2003)

Benchmarks No benchmark reported for silicon olfactory

Animal

olfactory

Vertebrate

olfactory

Vertebrate olfactory system (White et al., 1998; White and Kauer, 1999),

mammals (Jing et al., 2016)

Insect olfactory Insect antennal lobe (Pearce et al., 2013, 2014; Diamond et al., 2016)

Honeybee

olfactory

Honeybee’s olfactory pathway (Hausler et al., 2011; Schmuker et al., 2011),

honeybee antennal lobe (Kasap and Schmuker, 2013)

Stereo olfaction Stereo olfaction (Rochel et al., 2002)

Hardware

systems

VLSI VLSI spiking neuromorphic system (Koickalb et al., 2004; Pearce et al.,

2005; Hsieh and Tang, 2012), adaptive neuromorphic VLSI

olfaction (Koickal et al., 2006, 2007)

Hardware classifier Sampling spiking neural networks (Abdel-Aty-Zohdy et al., 2010), CMOS

gas recognition chip (Ng et al., 2011), gas recognition (Al Yamani et al.,

2012a,b),

logarithmic time encoding model (Hassan et al., 2015)

Modeling and

algorithms

Event-based

signal processing

Extracting information from turbulent processes (Schmuker et al., 2016; Drix

and Schmuker, 2021)

Neural networks Spiking neural olfactory bulb (Guerrero-Rivera and Pearce, 2007), networks

topology (Beyeler et al., 2010)

Neuromorphic

design

Glomerular layer (Imam et al., 2012), direct spike conversion (Martinelli et al.,

2009)

Computational

modeling

Chemical sensor arrays (Raman et al., 2006a)

Contrast

enhancement

Contrast enhancement (Raman et al., 2006b)

Spike latency Spike latency analysis (Di Natale, 2011), spike latency (Chen et al., 2011)

The reviewed papers on event-based auditory and olfactory systems categorized based on the type of sensors, applications and methodologies.
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Theorem. Third, event-based sensors provide the potential for
lower power operation when sampling sparse signals, which
can be an advantage in power-constrained scenarios like mobile
devices or medical implants. Fourth, many event-based systems
are implemented in a modular fashion, allowing to increase
computational power by composition and parallelism.

Nevertheless, event-based systems are still in their infancy,
especially in the auditory and olfactory domain. This technology
provides promising potential, but also comes with a set of unique
challenges, outlined below.

The greatest bottleneck for growth in neuromorphic sensing is
probably that a comprehensive theoretical framework to formally
describe and analyse event-based sensing and signal processing
algorithms has yet to emerge. This hampers the development
of event-based algorithms and applications. Cross-pollination
from engineering-focused event-based research communities
may provide a way forward.

The lack of a theoretical framework also complicates the
translation of traditional machine learning algorithms from
the frame-based into the event-based domain. While attempts
of such translations have been successful, they invariably
resulted in a performance penalty compared to the frame-based
implementation (although this penalty can sometimes be very
small). The opposite direction is also a challenge: interfacing
asynchronous, event-based systems with frame-based, clocked
digital systems. A naive approach is to simply create frames
from the event-based signal representation, but clearly this is
not optimal since it risks to render the advantages of event-
based sensing and signal processing void. Future research is
therefore expected to focus on developing machine learning
techniques that are specifically designed for event-based systems.
A promising line of research could exploit the inherent
compatibility of event-based sensing with spiking networks,
potentially in combination with operation on accelerated
neuromorphic hardware systems.

In addition to translation from frame-based algorithms into
the event-based domain, Traditional machine vision and signal
processing approaches already offer a great number of tools
and techniques that help solve many common tasks, e.g.,
image enhancement, image restoration, depth identification, etc.,
which are readily available in widely-used and well-documented
software packages. However, researchers building event-based
approaches often must start from scratch. The barrier for
adopting event-based technology for tasks outside basic research
is therefore rather high, and sometimes the cost may be perceived
too high to outweigh the gains. A standard toolbox for event-
based signal processing could be a game-changing asset to boost
the accessibility of this promising technology.

Most applications described for visual event-based signal
processing are simple tasks of detection and tracking.
Conventional machine vision algorithms are now developed
for much more sophisticated tasks. Interesting and relevant
tasks like face recognition, human behavior analysis, medical
diagnosis, product inspection, etc. are currently far beyond
what could reasonably be achieved with event-based vision.
This is likely not due to an inherent limitation of the event-
based approach; after all, the human brain can perform all

these tasks and it operates in an event-driven fashion. Rather,
improvements in neuromorphic hardware and, perhaps more
importantly, event-driven algorithms will be needed to compete
with state-of-the-art machine vision, speech recognition and gas
sensing solutions.

The vast majority of event-based systems until now have
been designed for vision, with applications in the auditory
domain emerging, and prototypes having been demonstrated in
olfaction. Other areas of data processing that do not explicitly
deal with sensing a physical quantity are less well-explored in the
event-based signal processing community, in spite their inherent
suitability for the processing scheme; For example, areas like
internet security, traffic data analysis, human behavior analysis,
finance, physical experiments, healthcare data, social media,
video surveillance, etc., generate data that can be interpreted as
events. For example, the data in traffic systems comprise some
events, like accidents, breaks, turns, etc., that could be processed
in event-based scheme. In finance, events like an large cargo ship
getting stuck and blocking a major trade route can affect the price
of oil. In healthcare, changes in blood pressure, blood sugar, heart
beat rate can indicate specific problems. Research in these areas
has yet to be permeated by event-based data processing strategies.

Event-based sensing and signal processing also provides a few
interesting avenues for research that may be crucial for the future
development of the field; for example, exploration of event-
based noise and noise-tolerance, “anti-patterns” for event-based
sensing, signal compression, and cryptography.

While noise reduction in event-based vision has been
addressed previously (Padala et al., 2018; Xie et al., 2018), there
remains a need for a theoretical treatment for the problem.
Also, the effect of the noise on existing algorithms should be
studied. Future algorithms should be developed that are robust
to such noise.

“Anti-patterns” for event-based signal processing refer to
specific types of data or environment where event-based
approaches struggle or fail, while traditional approaches cope
well or have been engineered to overcome issues. For example,
textured visual scenes can cause extremely high event-counts
that could overload the event transmission fabric. This problem
effectively limits the pixel count of event-based vision sensors as
a function of bus capacity. Similar anti-patterns could exist in
event-based olfaction and audio processing, but have yet to be
identified, studied, and have solutions provided for. Often, a look
at neuroscience could suggest promising solutions. For example,
the mammalian retina already provides a fascinating wealth of
signal processing before any spikes are generated (Baden et al.,
2016).

Signal compression in the event-based domain is an
interesting topic. Event-driven sampling of sparse signals
inherently implements a compression of the input information
compared to periodic and thus temporally redundant sampling.
Still there is a need for more research on data compression
for these sensors, especially in the visual domain where event
counts even for sparse signals can grow very quickly when using
high-resolution sensors. We reviewed some approaches in this
direction, but more theoretical analysis and practical algorithms
could help develop more efficient compression mechanisms.
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Cryptography plays an important role when dealing with
sensitive data. Many algorithms exist for efficient encryption
of sensitive audio and video signals. This area of research
is mostly absent from current trends in the event-based
research community. Yet, event-based signals might be
sensitive and thus require encryption before transmission.
Specifically designed encryption algorithms for event-
based data is an important domain which has not been
targeted yet.

Finally, specific to olfaction, a large challenge is the availability
of powerful sensors. Current gas sensing technology lags behind
olfactory capabilities of animals, and even insects. A particular
problem is temporal resolution, at least if portability and low
power consumption are desired. Event-based approaches exist
to narrow the gap between technology and biology (e.g., Drix
and Schmuker, 2021). Improvements in gas sensing technology

will without doubt catalyze progress in event-based olfaction
as well.
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