
Event Based Sequential Program Development: Application to
Constructing a Pointer Program

Jean-Raymond Abrial

ETH, Zurich
jabrial@inf.ethz.ch

Abstract. In this article, I present an “event approach” used to formally develop sequential
programs. It is based on the formalism of Action Systems [6] (and Guarded Commands[7]),
which is encoded within B [2]. This approach has already been used to develop distributed
programs [4]. In the first part, I present the basic concepts. In the second part, I develop a
complete example, which is a reshaping of the Shorr and Waite marking technique [1]. This
algorithm is interesting because it involves a large number of pointer manipulations.

1 Introduction

Sequential programs (e.g. loops), when formally constructed, are usually developed gradually by
means of a series of progressively more refined “sketches” starting with the formal specification and
ending in the final program. Each such sketch is already (although often in a highly non-deterministic
form) a monolithic description which resumes the final intended program in terms of a single for-
mula. This is precisely that initial “formula”, which is gradually transformed into the final program.

It is argued here that this mightnot be the right approach. After all, in order to prove a large
formula, a logician usually breaks it down into various pieces, on which he performs some sim-
ple manipulations before putting them again together in a final proof. We would like to experiment
with such a paradigm and thus possibly decide whether it is applicable to construct programs as well.

A sequential program is essentially made up of a number of individual assignments that are glued
together by means of various constructs: sequential composition (;), loop (WHILE) and condition
(IF), whose rôle is to explicitlyschedulethese assignments in a proper order so that the execution
of the program can achieve its intended goal. Here is an example of a sequential program where the
various assignments have been emphasized:

WHILE j 6= m DO

IF g(j + 1) > x THEN

j := j + 1
ELSIF k = j THEN

k, j := k + 1, j + 1
ELSE

k, j, g := k + 1, j + 1, swap (g, k + 1, j + 1)
END

END ;
p := k

The idea we want to explore here is to completely separate, during the design, these individual
assignments from their scheduling. This approach is thus essentially one by which we favor an
initial implicit distribution of computationover a centralized explicit one. At a certain stage, the
“program” is just made of a number of “naked” guarded commands (which we call here “events”),
performing some actions under the control of certain guarding conditions. And at this point the
synchronization of these events is not our concern. Thinking operationally, it is doneimplicitly by a
hidden scheduler, whichmay firean event once its guard holds. We can express as follows the various
“naked” events corresponding to the previous example (the guard of each event is introduced by the
keywordSELECT):

SELECT

j 6= m ∧
g(j + 1) > x

THEN

j := j + 1
END

SELECT

j 6= m ∧
g(j + 1) ≤ x ∧
k = j

THEN

k, j := k + 1, j + 1
END

SELECT

j 6= m ∧
g(j + 1) ≤ x ∧
k 6= j

THEN

k, j, g := k + 1, j + 1,
swap (g, k + 1, j + 1)

END

SELECT

j = m
THEN

p := k
END

At the beginning of the development process, the event system is made of a single non-guarded
event, which represents the specification of our future program. During the development process,
other events might be added, which will be further refined together with the initial event. This is
done in a certain disciplined manner as shown below. When all the individual pieces are “on the
table” (this is the situation shown in the example), and only then, we start to be interested in their
explicit scheduling. For this, we apply certain systematic rules whose rôle is to graduallymerge the
eventsand thus organize them into a single entity forming our final program. The application of
these rules has the effect of gradually eliminating the various predicates making the guards. At the
end of the development, it results in a single guardless final event (as the initial one).

What is interesting about this approach is that it gives us full freedom to refine small pieces of
the future program, and also to create new ones,without being disturbed by others: the program is
developed by means of smallindependentparts that so remain until they are eventually put together
systematically at the end of the process.

The paper is organized in two parts. In the first one (section 2), the general framework of event
systems is presented. In the second part (section 3) a complete example (inspired by the marking
algorithm of Shorr and Waite) is presented.

2 Event System Concepts

2.1 Definition of an Event System: State and Events

An event system is first made of astate, which is defined by means ofconstantsandvariables. In
practical terms, these constants and variables mainly show simple mathematical objects: sets, binary
relations, functions, numbers etc. Moreover, they are constrained by some conditions expressing the
invariant propertiesof the system.

Besides its state, an event system contains a number ofeventswhich show the way it may evolve.
Each event is composed of aguardand anaction. The guard is the necessary condition under which

2

the event may occur. The action, as its name indicates, determines the way in which the state vari-
ables are going to evolve when the event occurs.

Once its guard holds, the occurrence of an event may be observed at any time (but may also never
be observed). As soon as the guard does not hold however, the event cannot be observed. Events are
atomicand when the guards of several events hold simultaneously thenat most one of themmay be
observed. The choice of the elected event is non-deterministic. Practically speaking, an event, named
xxx, is presented in one of the two following simple forms:

xxx =̂ SELECT P (a, b, . . .) THEN S(a, b, . . .) END xxx =̂ BEGIN S(a, b, . . .) END

whereP (a, b, . . .) is a predicate denoting the guard, andS(a, b, . . .) is the action. The lista, b, . . .
denotes some constants and variables of the state. Sometimes, the guard is simply missing and the
event may thus take place at any time (this corresponds to the second form shown).

The action presents itself in the form of a simultaneous assignment of certain state variables
a, b, . . . by certain expressionsE,F, Such expressions depend upon the state. It is to be noted
that those variables which are not mentioned in the lista, b, . . . do not change. Such an action can be
first written in one of the following two simple equivalent forms:

a, b, . . . := E,F, . . . a := E || b := F || . . .

There exists however a more general form of action, which is the following:

ANY x, y, . . . WHERE Q(x, y, . . . , a, b, . . .) THEN S(x, y, . . . , a, b, . . .) END

where the identifiersx, y, . . . denotes someconstants that are local to the event. These constants
are constrained by the predicateQ(x, y, . . . , a, b, . . .). The formulaS(x, y, . . . , a, b, . . .) denotes a
simple deterministic action as above (multiple assignment). Notice that thisnon-deterministicaction
must befeasible. In other words, under the guard of the event, the following must hold:

∃ (x, y, . . .) ·Q(x, y, . . . , a, b, . . .)

2.2 Consistency of an Event System

Once a system is built, one must prove that it isconsistent. This is done by proving that each event
of the system preserves the invariant. More precisely, it must be proved that the action associated
to each event modifies the state variables in such a way that the corresponding new invariant holds
under the hypothesis of the former invariant and of the guard of the event. For a system with state
variablev, invariantI(v), and an event of the form indicated on the left, the statement to be proved
is the one indicated on the right:

SELECT P (v) THEN v := E(v) END I(v) ∧ P (v) ⇒ I(E(v))

3

2.3 Refining an Event System

Refining an event system consists of refining its state and its events. A concrete system (with re-
gards to a more abstract one) has a state that should be related to that of the abstraction through a,
so-called,abstraction relation, which is expressed in terms of an invariantJ(v, w) connecting the
abstract state represented by the variablesv and the concrete state represented by the variablesw.

Each event of the abstract model is refined to one or more corresponding events of the concrete
one. Informally speaking, a concrete event is said to refine its abstraction (1) when the guard of the
former is stronger than that of the latter (guard strengthening), (2) and when the connecting invariant
is preserved by the conjoined action of both events. In the case of an abstract event (left) and a
corresponding concrete event (right) having the forms

SELECT P (v) THEN v := E(v) END SELECT Q(w) THEN w := F (w) END

then the statement to prove is the following (whereI(v) is the abstract invariant andJ(v, w) is the
connecting invariant):

I(v) ∧ J(v, w) ∧ Q(w) ⇒ P (v) ∧ J(E(v), F (w))

Moreover, the concrete system mustnot deadlock more oftenthan the abstract one. This is proved
by stating that the disjunction of the abstract guards implies that of the concrete ones, formally:

I(v) ∧ J(v, w) ∧ (P1(v) ∨ . . . ∨ Pn(v)) ⇒ Q1(w) ∨ . . . ∨ Qn(w)

where thePi andQi denote the abstract and concrete guards respectively. Note that this statement
could be split inton distinct statements.

2.4 Adding New Events in a Refinement

When refining an event system by another one, it is possible toadd new events. Such events must be
proved to refine the dummy event which does nothing (skip) in the abstraction. Moreover, a special
proof must be performed, ensuring that the new events cannot collectively take control for ever. For
this, a uniquevariant expressionmust be “decreased” by each new event. In the case of a new event
of the following form:

SELECT R(w) THEN w := G(w) END

the following statement has thus to be proved:

I(v) ∧ J(v, w) ⇒ V (w) ∈ N

I(v) ∧ P (v) ∧ J(v, w) ⇒ J(v,G(w)) ∧ V (G(w)) < V (w)

whereV (w) denotes the variant expression considered (here it is a natural number expression, but it
can be more elaborate).

4

2.5 Special Properties of the Event System Used to Develop Sequential Programs

In this section, we shall express the specific properties that an event system used for sequential pro-
gram development should satisfy. We shall also fix thestylewe shall adopt in our future program
development.

(1) At the beginning of a development, our event system is first characterized by someparameters,
sayp, which denote some constant “input” of the future program. In other words they will not evolve
when the future program is “run”. The constantp are declared as follows:

p ∈ Sp ∧ Pre_condition(p)

whereSp denotes the type of the parameters andPre_condition(p) denotes a predicate defining
a certain condition, which theparameters should satisfy (besides typing, of course). The initial
system also has some variables, called hereresults. These variables are typed withSr as follows:

results ∈ Sr

The initial event system contains only one event that can be fired any time: its guard is simply
missing (hence it always holds). It involves theresults and describes the characteristic properties of
the outcome of the future program. Here is the most general form of this event:

aprog =̂
BEGIN

ANY r WHERE r ∈ Sr ∧ Post_condition(p, r) THEN result := r END

END

whereSr denotes the type of theresults andPost_condition(p, r) denotes the final condition,
which the program should satisfy. This condition involves the parametersp as well as theresults r.
The pre- and post- conditions together represent thespecificationof our program.

Notice that the initial system must contain another special event calledinit, which allows the
initial value ofresults to freely “float” within its type as follows1;

init =̂ BEGIN results :∈ Sr END

(2) During the development, we perform various refinements of the initial event system. As a conse-
quence, at each stage of the development, the current event system may contain more variables and
more events.
(3) At the end of the development, and after applying some merging rules defined in the next section,
one should obtain again a single event of the following form:

cprog =̂
BEGIN

Initialisation ;
Program

END

1 The constructx :∈ s is a shorthand forANY y WHERE y ∈ s THEN x := y END.

5

whereInitialisation corresponds to the last version ofinit andProgram is the last version of
aprog.

2.6 Merging Rules

We essentially have two merging rules, one for defining a conditional statement and the other one
for defining a loop statement. Here are these rules:

SELECT P ∧ Q THEN S END

SELECT P ∧ ¬Q THEN T END

;

SELECT P THEN

IF Q THEN S ELSE T END

END

SELECT P ∧ Q THEN S END

SELECT P ∧ ¬Q THEN T END

;

SELECT P THEN

WHILE Q DO S END ; T
END

These rules can be read as follows: if we have an event system where two events have forms
corresponding to the ones shown in the antecedent of the rule, they can be merged into a single
event corresponding to the consequent of the rule. Notice that both rules have the same “antecedent-
events”, so that the application of one or the other might be problematic. There is no confusion
however as the rules have someincompatible side conditions:

– The second rule (that introducingWHILE) requires that the first antecedent event (that giving
rise to the “body”S of the loop) appears atone refinement level below that of the second one. In
this way, we are certain that there exists a variant ensuring that the loop terminates (see section
2.4). Moreover,the first event must keep the common conditionP invariant. The merging event
is considered to “appear” at the same level as the second antecedent event.

– The first rule (that introducingIF) is applicable when the second one is not. The merging event
is considered to bear the same “level” as the smallest one. When the two merged events are not
at the same level, the “merged variant” becomes the pair of both variants, which thusdecreases
lexicographically.

Note that in both rules, the common guardP is optional. If missing, the application of the rule results
in a non-guarded event. The first rule may take a special form when one of the antecedent events has
an IF form. It goes as follows:

SELECT P ∧ Q THEN S END

SELECT P ∧ ¬Q THEN

IF R THEN T ELSE U END

END

;

SELECT P THEN

IF Q THEN S ELSIF R THEN T ELSE U END

END

3 Example

The example we present in this section is inspired by the marking algorithm of Shorr and Waite.
This algorithm has received a considerable attention in the literature, so that it is impossible to cite

6

all references on the subject (a recent and interesting one is that of R. Bornat [5]). Given a graph and
a certain point in it (called the “top”), the marking algorithm computes the image of this point under
the transitive closure of the relation defining the graph. Informally, this algorithm is characterized
by three properties:

1. It is is a graph traversal algorithm from the top.
2. The traversal is “depth-first”.
3. The backtracking structure is stored within the graph itself.

3.1 A One Shot Specification

Let the graph be defined by a constant binary relationg built on a setN of nodes. Letc be the
transitive closure ofg (the required properties ofc will appear in the next section). Lett be any
node. The resultr is a subset ofN . The eventmark computes in one shot the image of{t} underc.
Fig.1 shows this marking performed in one shot2.

Constants

g ∈ N ↔ N

c ∈ N ↔ N

t ∈ N

Invariant

r ⊆ N

Events

init =̂ BEGIN r :∈ P(N) END

mark =̂ BEGIN r := c[{t}] END

t

Fig.1.Marking in one shot

3.2 Refinement 1: A Non-deterministic Loop

In this refinement, we introduce a new variablesb (for “black”), which is a set of nodes, and a new
event calledprg1 (for “progress1”). The image of the set{t} under the transitive closurec is now
computed gradually. The nodet is supposed to be inb, and the setb is supposed to be included in
c[{t}]. It is set to the singleton{t} in the init event3. The guard of eventprg1 states thatg[b] − b is
not empty. An elementy of this set is thus chosen arbitrarily and put into the setb. The eventmark
is now guarded by the conditiong[b] ⊆ b: in this case the closurec[{t}] is exactly equal to the setb.
Fig.2 shows an animation of this non-deterministic algorithm.

2 The main set-theoretic notations are summarized in the Appendix.
3 In the eventinit, we have removed the initialisation ofr in order to ease the reading.

7

Invariant

b ⊆ N

t ∈ b

b ⊆ c [{t}]

Events

init =̂ BEGIN b := {t} END

prg1 =̂ SELECT g[b] ⊆/ b THEN

ANY y WHERE

y ∈ g[b]− b
THEN

b := b ∪ {y}
END

END

mark =̂ SELECT g[b] ⊆ b THEN r := b END

In order to validate this refinement, we mainly need to prove that (1) the initialisation establishes
the invariantb ⊆ c[{t}], (2) the eventprg1 maintains it, and (3) the concrete version of eventmark
refines its abstraction. After some elementary transformations, these amount to proving respectively:

To be proved

{t} ⊆ c[{t}]

x, y ∈ g ∧ x ∈ c[{t}] ⇒ y ∈ c[{t}]

t ∈ b ∧ b ⊆ c[{t}] ∧ g[b] ⊆ b ⇒ c[{t}] ⊆ b

For proving this, we only need the following well known properties of the closurec of g:

Properties of closure c

∀s · (s ⊆ N ⇒ s ⊆ c[s])

∀ (s, x, y) · (s ⊆ N ∧ x, y ∈ g ∧ x ∈ c[s] ⇒ y ∈ c[s])

∀s · (s ⊆ N ∧ g[s] ⊆ s ⇒ c[s] ⊆ s)

We also need to prove that (1) eventprg1 refinesskip (obvious since it only involves the new
variableb), (2) the event system does not deadlock as the abstraction does not (obvious since the
disjunction of the guards ofprg1 andmark is clearly true), and (3) that the eventprg1 decreases
some natural number quantity (take the cardinality of the setN − b).

8

���
�

Fig.2.A non-deterministic marking algorithm

3.3 Refinement 2: Making the Loop More Deterministic (Depth-first Marking)

This refinement contains thefirst key decisionof the development. The idea is to constrain the pre-
vious non-deterministic algorithm to always move more deeply in the graph until one encounters
either a terminal node or some previously encountered nodes. At this point, the algorithm backtracks
to the previously visited node, and from there continues to explore the graph if possible, and so on.
Note that there remains some non-determinacy in this algorithm as the choice of the branch to follow
in a node is arbitrary. We introduce three variables in this refinement:

– First a, so-called,current pointerp. It always corresponds to a black node, from which we move
to a deeper node in the graph. Initiallyp is set to the “top” nodet.

– The second variable is a, so-called,backtracking structuref . It allows one to makep revisit
the previous node when it cannot pursue further its depth-first graph traversal. The backtracking
structuref has some interesting properties as shown inFig.3: it is an injective function, it is
made of black nodes only, its domain extended with{t} is exactly its range extended with{p},
it has no cycle, and, when reversed, it is included in the graphg. Moreover, if we consider the
image underg of the black nodes that are not in the backtracking structure, this image is made
of black nodes only.

– The third variable is abooleann which is used to detect the end of the loop. When equal toOK
theng[b] is included inb.

tp

Fig.3.The backtracking Structure

Invariant

p ∈ b

f ∈ (b ∪ {p})− {t} 7� (b ∪ {t})− {p}

9

dom(f) ∪ {t} = ran(f) ∪ {p}

∀s · (s ⊆ dom(f) ∪ {t} ∧ t ∈ s ∧ f−1[s] ⊆ s ⇒ dom(f) ∪ {t} ⊆ s)

f−1 ⊆ g

g[b− (dom(f) ∪ {t})] ⊆ b

n ∈ {OK,KO}

n = OK ⇒ g[b] ⊆ b

Two new events are introduced:prg2 andprg3. Eventprg2 is doing the backtracking and event
prg3 is detecting the end of the loop (whenp is equal tot and when there are no further nodes to
explore fromt). These events must decrease some natural number quantity (take the cardinality off
augmented with the encoding ofn: 1 whenKO, 0 whenOK). Here are the events of this refinement:

Events

init =̂ BEGIN b, p, f, n := {t}, t, ∅,KO END

prg1 =̂ SELECT n = KO ∧ g[{p}] ⊆/ b THEN

ANY y WHERE y ∈ g[{p}]− b THEN b, p, f := b ∪ {y}, y, f ∪ {y 7→ p} END

END

prg2 =̂ SELECT n = KO ∧ g[{p}] ⊆ b ∧ p 6= t THEN p, f := f(p), {p}C−f END

prg3 =̂ SELECT n = KO ∧ g[{p}] ⊆ b ∧ p = t THEN n := OK END

mark =̂ SELECT n = OK THEN r := b END

At this point, it might be interesting to apply the merging rules, just to have an idea of the abstract
program we could obtain. Merging eventsprg2 andprg3 leads to the following:

prg2_3 =̂
SELECT n = KO ∧ g[{p}] ⊆ b THEN

IF p 6= t THEN

p, f := f(p), {p}C−f

ELSE

n := OK
END

END

Now merging eventsprg1 andprg2_3 leads to the following (note that theWHILE merging rule
is not applicable here since eventprg2_3, which could be a potential candidate for the loop body
since it appears one level below that ofprg1, prg2_3 does not keep invariant the common guard
n = KO):

10

prg1_2_3 =̂
SELECT n = KO THEN

IF g[{p}] ⊆/ b THEN

ANY y WHERE y ∈ g[{p}]− b THEN b, p, f := b ∪ {y}, y, f ∪ {y 7→ p} END

ELSIF q 6= t THEN

p, f := f(p), {p}C−f

ELSE

n := OK
END

END

Merging finally eventsmark andprg1_2_3 leads to the following (we have no problem here apply-
ing theWHILE loop since there is no common remaining guard):

mark_prg1_2_3 =̂
WHILE n = KO DO

IF g[{p}] ⊆/ b THEN

ANY y WHERE y ∈ g[{p}]− b THEN b, p, f := b ∪ {y}, y, f ∪ {y 7→ p} END

ELSIF q 6= t THEN

p, f := f(p), {p}C−f

ELSE

n := OK
END

END ;
r := b

By adding theinit event, we obtain the following abstract program:

b, p, f, n := {t}, t, ∅,KO ;
WHILE n = KO DO

IF g[{p}] ⊆/ b THEN

ANY y WHERE y ∈ g[{p}]− b THEN b, p, f := b ∪ {y}, y, f ∪ {y 7→ p} END

ELSIF q 6= t THEN

p, f := f(p), {p}C−f

ELSE

n := OK
END

END ;
r := b

In Fig.4, you can see an animation of this abstract algorithm. Notice the current pointer (emphasized
in grey, but it is also black!) and the backtracking structure situated next to the pointers forming the
graph.

11

���
�

Fig.4.A depth-first marking with backtracking structure and current point

3.4 Refinement 3: Specializing the Graph by Means of Two Partial Functions

In this refinement, we refine the constant relationg by two constant partial functions calledlt (for
‘left”) and rt (for “right”). There are no changes in the variables. The eventprg1 is refined by two
eventsprg11 andprg12. They correspond to a left or right descent respectively. The algorithm is
now completely deterministic: one first tries to move down along the left path then along the right
one.Fig.5. shows an animation of this algorithm (we have represented the left arrows in white and
the right ones in black).

Events

init =̂ BEGIN b, p, f, n := {t}, t, ∅,KO END

prg11 =̂ SELECT n = KO ∧ lt[{p}] ⊆/ b THEN

b, p, f := b ∪ {lt(p)}, lt(p), f ∪ {lt(p) 7→ p}
END

prg12 =̂ SELECT n = KO ∧ lt[{p}] ⊆ b ∧ rt[{p}] ⊆/ b THEN . . . END

prg2 =̂ SELECT n = KO ∧ g[{p}] ⊆ b ∧ p 6= t THEN p, f := f(p), {p}C−f END

prg3 =̂ SELECT n = KO ∧ g[{p}] ⊆ b ∧ p = t THEN n := OK END

mark =̂ SELECT n = OK THEN r := b END

12

���
�

Fig.5.Adding left and right pointers

3.5 Refinement 4: Decorating the Nodes of the Backtracking Structure

In this refinement we decorate each node of the range of the backtracking structure (thusp is not
decorated). The intent of decorating a node is to record the fact that the path followed by the algo-
rithm from that node was the left or the right one. OnFig.6 you can see that some nodes of the range
of f are decorated with “l” (for left) and another one with “r” (for right). When the decoration is
“l”, it means that the algorithm has chosen the left pointer in doing further visits from this node, and
similarly for the other direction. We have painted in white or black the pointer of the backtracking
structure whose initial node is decorated “l” or “r” respectively.

lll r
p t

Fig.6.Decorating the nodes (except first) and pointers (except first) of the backtracking structuref

We introduce two variables, calledlft andrht, corresponding to the sets of decorated nodes.
These sets form a partition of the range off . Moreover by reversing a pointer off which is ending
in a node oflft we obtain a pointer oflt and similarly for the other direction. These properties are
formalized in the following table:

13

Invariant

lft ⊆ N

rht ⊆ N

lft ∪ rht = ran (f)

Invariant

lft ∩ rht = ∅

lft C f−1 ⊆ lt

rht C f−1 ⊆ rt

���
�

Fig.7.Decorating the backtracking structure

The eventprg2 is refined by two eventsprg21 andprg22. They correspond to a left or right
backtracking respectively. Here are the events of this refinement:

Events

init =̂ BEGIN b, p, f, n, lft, rht := {t}, t, ∅,KO, ∅, ∅ END

prg11 =̂ SELECT n = KO ∧ lt[{p}] ⊆/ b THEN

b, p, f, lft := b ∪ {lt(p)}, lt(p), f ∪ {lt(p) 7→ p}, lft ∪ {p}
END

prg12 =̂ . . .

14

prg21 =̂ SELECT

n = KO ∧ g[{p}] ⊆ b ∧ p 6= t ∧ f(p) ∈ lft
THEN

p, f, lft := f(p), {p}C−f, lft− {f(p)}
END

prg22 =̂ . . .

prg3 =̂ SELECT n = KO ∧ g[{p}] ⊆ b ∧ p = t THEN n := OK END

mark =̂ SELECT n = OK THEN r := b END

3.6 Refinement 5: Storing Part of Backtracking Structure Within the Graph

This refinement contains thesecond key decisionof the development. This is the main idea of the
Schorr and Waite paper: it consists in storing the backtracking structure in the graph itself, which is
thus modified during the execution but recovers its initial setting at the end of it.

For this, we introduce two new variables calledult andurt. They represent the “dynamic” left
and right pointers of the graph. The backtracking structure is nowalmoststored inult andurt,
“almost” because there remains the pairp 7→ f(p), which, when it exists, cannot be stored in the
graph. For this, we define a new variable calledh: it is a mini-function which is either empty or
contains a single pair. Here are the definitions and properties of these variables:

Invariant

ult ∈ N 7→ N

urt ∈ N 7→ N

h ∈ N 7→ N

Invariant

ult = lftC−lt ∪ lft C f

urt = rhtC−rt ∪ rht C f

h = {p} C f

Events

init =̂ BEGIN b, p, f, n, lft, rht, ult, urt := {t}, t, ∅,KO, ∅, ∅, lt, rt END

prg11 =̂ SELECT n = KO ∧ ult[{p}] ⊆/ b THEN

b, p, h, lft, ult := b ∪ {ult(p)}, ult(p), ({p} C ult)−1, lft ∪ {p}, {p}C−ult ∪ h
END

prg12 =̂ . . .

15

prg21 =̂ SELECT

n = KO ∧ (ult ∪ urt)[{p}] ⊆ b ∧ p 6= t ∧ h(p) ∈ lft
THEN

p, h, lft := h(p), {h(p)} C ult, lft− {h(p)} ‖
ult(h(p)) := p

END

prg22 =̂ . . .

prg3 =̂ SELECT n = KO ∧ (ult ∪ urt)[{p}] ⊆ b ∧ p = t THEN n := OK END

mark =̂ SELECT n = OK THEN r := b END

���
�

Fig.8.Storing part of the backtracking structure within the graph (the remaining part is emphasized)

3.7 Refinement 6: Introducing the Dummy Node “nil” and a Second “Current” Pointer

In this refinement, we implement the mini-functionh which, when non-empty, is made of a unique
pair starting inp. The implementation is done by means of a second “sub-current” pointerq. In fact,
when it is empty, thenp is situated at the top,t. In order to implement the pairp 7→ h(p) even at the
point t, we have no choice but introducing a “dummy” node, callednil. This is the purpose of this
refinement.

16

This leads to a simple modification of the dynamic pointersult andurt, which becomesvlt
andvrt. The new pointer is calledq. Here are the formal definitions and properties of these new
variables:

Constants

nil ∈ N

nil /∈ dom(lt) ∪ dom(rt)

nil /∈ ran(lt) ∪ ran(rt)

t 6= nil

Invariant

vlt ∈ N 7→ N

vrt ∈ N 7→ N

q ∈ N

Invariant

vlt = ult <+ (lft C {t 7→ nil})

vrt = urt <+ (rht C {t 7→ nil})

p = t ⇒ q = nil

p 6= t ⇒ q = h(t)

Events

init =̂ BEGIN b, p, q, n, lft, rht, vlt, vrt := {t}, t, nil,KO, ∅, ∅, lt, rt END

prg11 =̂ SELECT n = KO ∧ vlt[{p}] ⊆/ b THEN

b, p, q, lft := b ∪ {vlt(p)}, vlt(p), p, lft ∪ {p} ‖ vlt(p) := q
END

prg12 =̂ . . .

prg21 =̂ SELECT

n = KO ∧ (vlt ∪ vrt)[{p}] ⊆ b ∧ p 6= t ∧ q ∈ lft
THEN

p, q, lft := q, vlt(q), lft− {q} ‖ vlt(q) := p
END

prg22 =̂ . . .

prg3 =̂ SELECT n = KO ∧ (vlt ∪ vrt)[{p}] ⊆ b ∧ p = t THEN n := OK END

mark =̂ SELECT n = OK THEN r := b END

3.8 Refinement 7: Making the Graph Functions Total

In this refinement we are making the two functionsvlt andvrt total by introducingnil as a dummy
value when they are not defined. For this we define two new constantsltp andrtp and two new
variableswlt andwrt. They are as follows:

17

Constants

ltp ∈ N → N

rtp ∈ N → N

ltp = (N × {nil}) <+ lt

rtp = (N × {nil} <+ rt

Invariant

wlt ∈ N → N

wrt ∈ N → N

wlt = (N × {nil}) <+ vlt

wrt = (N × {nil} <+ vrt

init =̂ BEGIN b, p, q, n, lft, rht, wlt, wrt := {t}, t, nil,KO, ∅, ∅, ltp, rtp END

prg11 =̂ SELECT n = KO ∧ wlt(p) 6= nil ∧ wlt(p) /∈ b THEN

b, p, q, lft := b ∪ {wlt(p)}, wlt(p), p, lft ∪ {p} ‖ wlt(p) := q
END

prg12 =̂ . . .

prg21 =̂ SELECT

n = KO ∧ ¬ (wlt(p) 6= nil ∧ wlt(p) /∈ b) ∧
¬ (wrt(p) 6= nil ∧ wrt(p) /∈ b) ∧ p 6= t ∧ q ∈ lft

THEN

p, q, lft := q, wlt(q), lft− {q} ‖ wlt(q) := p
END

prg22 =̂ . . .

prg3 =̂ SELECT

n = KO ∧ ¬ (wlt(p) 6= nil ∧ wlt(p) /∈ b) ∧
¬ (wrt(p) 6= nil ∧ wrt(p) /∈ b) ∧ p = t

THEN

n := OK
END

mark =̂ SELECT n = OK THEN r := b END

3.9 Refinement 8: Introducing Color and Direction

In this last refinement we encode the setsb, lft andrht. The first one,b, is encoded by means of
a total functionclr capable of taking two values, namelyBLACK andWHITE. The second and
third sets are together encoded by means of a total functiondir capable of taking two values, namely
LEFT andRIGHT . The verification of this refinement requires to prove that the pointerq is either
in the setlft or in the setrht. Here are the definitions of these new variables:

18

Invariant

clr ∈ NODE → {BLACK,WHITE}

dir ∈ NODE → {LEFT,RIGHT}

Invariant

b = clr−1[{BLACK}]

lft ⊆ dir−1[{LEFT}]

rht ⊆ dir−1[{RIGHT}]

init =̂ BEGIN p, q, n := t, nil, KO ‖ clr(t) := BLACK END

prg11 =̂ SELECT n = KO ∧ wlt(p) 6= nil ∧ clr(wlt(p)) = WHITE THEN

clr(wlt(p)) := BLACK ‖ p, q := wlt(p), p ‖
dir(p) := LEFT ‖ wlt(p) := q

END

prg12 =̂ SELECT

n = KO ∧ ¬ (wlt(p) 6= nil ∧ clr(wlt(p)) = WHITE) ∧
wrt(p) 6= nil ∧ clr(wrt(p)) = WHITE

THEN

clr(wrt(p)) := BLACK ‖ p, q := wrt(p), p ‖
dir(p) := RIGHT ‖ wrt(p) := q

END

prg21 =̂ SELECT

n = KO ∧ ¬ (wlt(p) 6= nil ∧ clr(wlt(p)) = WHITE) ∧
¬ (wrt(p) 6= nil ∧ clr(wrt(p)) = WHITE) ∧ p 6= t ∧ q ∈ lft

THEN

p, q := q, wlt(q) ‖ wlt(q) := p
END

prg22 =̂ SELECT

n = KO ∧ ¬ (wlt(p) 6= nil ∧ clr(wlt(p)) = WHITE) ∧
¬ (wrt(p) 6= nil ∧ clr(wrt(p)) = WHITE) ∧ p 6= t ∧ q /∈ lft

THEN

p, q := q, wrt(q) ‖ wrt(q) := p
END

prg3 =̂ SELECT

n = KO ∧ ¬ (wlt(p) 6= nil ∧ clr(wlt(p)) = WHITE) ∧
¬ (wrt(p) 6= nil ∧ clr(wrt(p)) = WHITE) ∧ p = t

THEN

n := OK
END

mark =̂ SELECT n = OK THEN r := clr−1[{BLACK}] END

19

3.10 Obtaining the Final Program

Applying the merging rules in very much the same way as we have done it in section 3.3, leads to
the following program. Note that we have not mentioned themark event at the end of the program
since our final purpose is just to change the colors of the relevant nodes. Also note that this program
needs a few more obvious transformations in order to remove the various occurrences of the “‖”
operators and replace them by “;”. This would require the introduction of some local variables, and
can be done on a purely syntactic basis.

p, q, n := t, nil, KO ‖
clr(t) := BLACK

;

WHILE n = KO DO

IF wlt(p) 6= nil ∧ clr(wlt(p)) = WHITE THEN

clr(wlt(p)) := BLACK ‖
p, q := wlt(p), p ‖
dir(p) := LEFT ‖
wlt(p) := q

ELSIF wrt(p) 6= nil ∧ clr(wrt(p)) = WHITE THEN

clr(wrt(p)) := BLACK ‖
p, q := wrt(p), p ‖
dir(p) := RIGHT ‖
wrt(p) := q

ELSIF p 6= t THEN

IF dir(q) = LEFT THEN

p, q := q, wlt(q) ‖ wlt(q) := p

ELSE

p, q := q, wrt(q) ‖ wrt(q) := p

END

ELSE

n := OK
END

END

As can be seen, this algorithm isvery symmetricwith respect to the “left” and “right” directions.
This was not the case with the original Schorr and Waite algorithm. An interesting outcome of the
algorithm presented here is that it seems more efficient than the original one, where each marked
node is visited three times. Here each marked node is visited once plus the number of out-going
pointers leading to genuine nodes that are not already marked. In the example shown, where we
have five marked nodes, the original algorithm takes 15 iterations, whereas the one presented here
takes only 9 iterations: two nodes are visited three times and three nodes are visited only once.

3.11 About Proofs

The development has been entirely proven with Atelier B [8], the tool associated with the B Method.
In the following table, the statistical details of these proofs can be seen. It shows that approxima-
tively 70% of the proofs are done automatically.

The interactive proofs have all been done with the new interface, “Click’n Prove” [3], which
has recently been developed for Atelier B. Most of them are simple. A few of them, however, are

20

technically (not mathematically) slightly more difficult. You can observe that, by the end of the
development a larger proportion of proofs have to be done interactively: this is essentially due to
the growing presence of useless hypotheses, which induce some noise and thus make the automatic
prover less efficient. The interaction then essentially consists ofreducing the number of relevant
hypothesesand then launching the automatic prover.

Refinement Steps Automatic Interactive Total

1. Non-deterministic Traversal 1 3 4

2. Depth-First Traversal 25 4 29

3. Introducing Left and Right Partial Functions 4 0 4

4. Decorating the Backtracking Structure 13 1 14

5. Storing the Backtracking Structure 24 8 32

6. Introducing “nil” and the Second Pointer 10 11 21

7. Making Left and Right Functions Total 26 13 26

8. Introducing Colors and Directions 12 11 23

TOTAL 108 45 153

4 Conclusion

We have presented an event-based approach to the development of sequential programs, and we have
demonstrated it on a well-known non-trivial pointer program: the Schorr-Waite marking algorithm.
Contrary to what is done usually, rather than proving it directly, we formally develop this program
by means of a number of successive refinement steps. Note that the first two objectives of the Schorr-
Waite algorithm (namely graph traversal from “top” and depth-first traversal) are reached after the
first and second refinements, whereas the third one (storing the backtracking function in the graph)
is obtained after the 5th and 6th refinements.

Acknowledgements

I would like to warmly thank D. Cansell and W. Stoddart for their very careful reading of this text.

References

1. H. Schorr and W.M. Waite.An Efficient Machine-Independent Procedure for Garbage Collection in Various
List Structures. CACM Aug 1967

2. J.R. Abrial.The B-Book - Assigning Programs to Meanings. Cambridge University Press, 1996.
3. J.R. Abrial and D. CansellClick’n Prove: Interactive Proofs Within Set TheoryTPHOLs 2003.

21

4. J.R. Abrial, D. Cansell and D. MéryA Mechanically Proved and Incremental Development of IEEE Tree
Identify ProtocolFormal Aspect of Computing 14. 2003

5. R. Bornat.Proving Pointer Programs in Hoare Logic. In R. Backhouse and J. Oliveira, editors,Mathemat-
ics of Program Construction (MPC 2000), LNCS 1837. Springer-Varlag, 2000.

6. R.J.R Back and R. Kurki-Suonio.Decentralization of Process Nets with Centralized Control2nd ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing. 1983.

7. E.W. DijkstraA Discipline of ProgrammingPrentice-Hall. 1976.
8. ClearsyATELIER B. User Manual. Aix-en-Provence. 2001.

Appendix: Summary of Notations

Notation Meaning

P(s) Set of subsets of s

s× t Cartesian product ofs andt

s ↔ t Set of binary relations froms to t. Same asP(s× t)

r[s] Image of sets under binary relationr

s 7→ t Set of partial functions froms to t

s 7� t Set of partial injections froms to t.

s C r Binary relationr reduced to pairs starting in sets

s C− r Binary relationr reduced to pairs not starting in sets

a 7→ b The pair made ofa andb

f <+ g Relationf overridden by relationg. Same as(dom(g) C− f) ∪ g

f(x) := y Same asf := f <+ {x 7→ y}

22

