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Abstract. In this paper we present different approaches of 3D stereo
matching for bio-inspired image sensors. In contrast to conventional dig-
ital cameras, this image sensor, called Silicon Retina, delivers asyn-
chronous events instead of synchronous intensity or color images. The
events represent either an increase (on-event) or a decrease (off-event) of
a pixel’s intensity. The sensor can provide events with a time resolution
of up to 1ms and it operates in a dynamic range of up to 120dB. In this
work we use two silicon retina cameras as a stereo sensor setup for 3D re-
construction of the observed scene, as already known from conventional
cameras. The polarity, the timestamp, and a history of the events are
used for stereo matching. Due to the different information content and
data type of the events, in comparison to conventional pixels, standard
stereo matching approaches cannot directly be used. Thus, we devel-
oped an area-based, an event-image-based, and a time-based approach
and evaluated the results achieving promising results for stereo matching
based on events.

1 Introduction

Different industry, home, or automotive applications use 3D information of the
observed scene for reliable operation. Such applications include, e.g., driver as-
sistance, home care, or industrial production. Laser range finders (LIDAR, light
detection and ranging), time-of-flight (TOF) cameras, and ultrasonic sound sen-
sors are commonly used for this purpose. All of these sensors are embedded,
which means that a processing unit is integrated on-board which processes the
raw sensor data and produces the output information directly on the device.
Thus, no additional processing power is needed for depth measurement. This is
advantageous in different applications where the processing power is limited but
the processing effort is high. Additional benefits of embedded systems are the low
power consumption and the small form factor. An alternative approach for real
3D sensing, which means not only depth measurement, is stereo vision. Classic
stereo vision uses two conventional digital cameras [1], which are mounted side-
by-side, separated by the baseline to capture the same scene from two different
view points. The exact geometry between the cameras and the correspondences
between the images are used to reconstruct the 3D data of the observed scene. A



different approach of stereo vision with digital cameras is using two silicon retina
sensors and will be discussed in this work. The silicon retina is an optical sensor
which has a time resolution of 1ms and a dynamic range of 120dB. Both are ad-
vantageous for applications in uncontrolled environments with varying lighting
conditions and where fast movements occur. In contrast to conventional image
sensors, such as CCD or CMOS, the silicon retina generates so called address
events instead of intensity values. Due to the fact that events represent inten-
sity changes in the observed scene, only moving objects or objects with changing
color are recognized by the sensor. The data transmission is asynchronous, which
means that events are transmitted only once after they occur without a fixed
frame rate. With the maximum possible data rate, the system can be arbitrarily
dimensioned, e.g., in terms of processing power.

The remainder of the paper is organized as follows. First, section 2 gives
an overview about the related work of stereo vision algorithms for conventional
cameras and silicon retina sensors. Section 3 describes the silicon retina sensor
and its basic characteristics. Then, section 4 presents the three introduced stereo
matching approaches for the silicon retina. Finally, section 5 shows the results
and gives an outlook about our future research.

2 Related Work

Classic stereo matching algorithms can be subdivided into area- and feature-
based approaches. Area-based algorithms use each pixel for correspondence anal-
ysis, independent of the scene content. An overview and comparison of differ-
ent, mostly area-based, techniques is presented in the work of Scharstein and
Szeliski [2], Brown et al. [3], and Banks et al. [4]. Feature-based approaches cal-
culate the correspondences of certain features in the images. Such features are in-
troduced in the work of Shi and Tomasi [5]. In the work of Tang [6] an example of
feature-based matching is shown where extracted feature points are connected to
chains and further used for the matching step. An interesting point is to analyze
if such algorithms are suitable for silicon retina stereo vision. Schraml et al. [7]
have evaluated several area-based costs functions for grayscale images produced
with a silicon retina stereo system (aggregation of events over time), including
Normalized Cross-Correlation (NCC), Normalized Sum of Absolute Differences
(NSAD), Sum of Squared Differences (SSD) and Census-Transform. More de-
tailed information about the grayscale image generation with silicon retina data
will be given in section 4.3. The results show that the best method and, thus,
chosen for further investigations, is the NSAD approach where the depth mea-
surement has an average error of ∼10% in 3m distance. In our previous work [8]
we compared an area-based, feature-based, and a new time-based approach, us-
ing the characteristics of the silicon retina, with each other. The outcome of the
evaluation was that the area-based algorithm achieved nearly the same results
as Schraml. The best result of the feature-based algorithm had an average depth
error of ∼18%. For the newly introduced time-based algorithm we achieved first
promising results but the comparison with the other approaches was not possible



because we had to use different test data sets. Both papers proof that existing
area-based matching approaches can be used for silicon retina stereo vision as
long as images are created. Furthermore, the new time-based approach delivers
the most promising results because it directly uses the elementary characteris-
tics of the sensor, event polarity and time, without preprocessing. Therefore, the
next step is to compare these algorithms directly in a way to find approaches
which strongly exploit all the sensor characteristics.

3 Silicon Retina Stereo Sensor

In 1988, Mead and Mahowald [9] developed an electronic silicon model which re-
produced the basic steps of human visual processing. One year later, Mahowald
and Mead [10] implemented the first retina sensor based on silicon and estab-
lished the name Silicon Retina.

As a reminder, the silicon retina generates events instead of intensity values.
The polarity of the produced events can either be on, for an increase of the
intensity, or off, for a decrease. An event encodes the pixel location on chip, the
time (with a time resolution of 1ms) when the event occurred, and the polarity
(on or off). The polarity and the time information will further be used to deploy
new techniques for correspondence analysis. The data format is called Address-
Event-Representation (AER) protocol which was introduced by Sivilotti [11] and
Mahowald [12] in order to model the transmission of neural information within
biological systems. It has to be mentioned that the description of the silicon
retina is restricted to the functional behavior due to the algorithmic content of
this work. Technical details can be found in the work of Lichtsteiner et al. [13,
14]. The new generation of this sensor with a higher resolution in time and space
as well as a higher dynamic range is described in the work of Posch et al. [15].

4 Silicon Retina Stereo Matching

In this paper we introduce three different stereo matching algorithms for sili-
con retina data. The first matching algorithm, described in section 4.3, is an
area-based SAD (sum of absolute differences) approach which is derived from
conventional stereo matching with grayscale or color images. To do this, grayscale
images have to be generated out of the fired events. In section 4.4 an event-image-
based algorithm is presented which uses images, generated out of aggregated
events in a different way, for stereo matching. The third approach presented in
section 4.5 is time-based and the correspondence search is directly applied onto
the events. In the first and the second approach a pre-processing step is needed
to collect the events over time to generate the grayscale or event image. The
third method exploits the additional time information and does not need any
frame creation. For stereo camera geometry setup, calibration, and rectification
we modified and used existing methods, as well as have been modified for the
silicon retina sensors.



4.1 Framework

Figure 1 shows the basic work flow which have all three approaches in common.
Step 1 is the data acquisition where timed address events are generated by
the sensor, then rectified and undistorted with our software. The three stereo
matching approaches need three different types of data representation which is
explained in detail in the next section. Basically, the mathematical background of
silicon retina calibration and rectification is the same as of conventional camera
calibration and can be found in [16]. The key difference is the data acquisition
because static calibration pattern cannot be used here. To overcome this, we
use a flashing checkerboard pattern to generate events. Step 2 is the stereo
matching itself and, thus, the main part of the work flow. It consists of the
matching costs calculation and optimization. Due to the previous rectification,
the search is carried out along an horizontal line within the disparity range. The
generated costs represent the probability of correct matching for each possible
candidate. Step 3 is the disparity optimization which is a minimum or maximum
search through the matching costs of all matching candidates for each pixel up
to now. The result is a disparity map, ready for further processing such as 3D
reconstruction.
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Fig. 1. The work flow of the proposed algorithms

4.2 Data Representation

Before the stereo matching approaches are explained in detail, we want to in-
troduce the used data representation steps, illustrated in figure 2. First, timed-
address events fire over a certain time period. They can be described with

AE(u, v, t) =





+1 I(u, v, t)− I(u, v, t−∆t) > ∆Ion

−1 I(u, v, t)− I(u, v, t−∆t) < ∆Ioff

0 background - no activity

∀u ∈ [0, . . . ,Hres − 1] ∧ ∀v ∈ [0, . . . , Vres − 1],

(1)

where I(u, v, t) is the intensity of the pixel at position u, v (Hres and Vres repre-
sent the horizontal and vertical resolution of the sensor) and time t. The time is
the absolute time from the sensor and the timestamp resolution is ∆t =1ms. If



the difference between the current intensity value at the time t and the previous
intensity value at the time ∆t =1ms exceeds a positive threshold ∆Ion then an
on-event occurred. The difference can also exceed a negative threshold ∆Ioff ,
which fires an off-event. Second, if needed, the events are collected and further
transformed to proper image formats. In this work, we used event images and
grayscale images. The following sections introduce the three different matching
approaches where each is based on one of the data representation types. Each
approach benefits from space and time data in a different way.
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Fig. 2. Data representation types: From left to right: Single events, event collection,
transformed grayscale image and event-image

4.3 Area-based Approach

The first approach is dedicated to conventional stereo matching. This means
that the events are collected over a certain period of time and a grayscale image,
we call it address event frame (AEFt,L/R at time t for the left and right sensor),
is generated out of them with

AEFt,L/R(u, v) = 128 +
hmax∑

i=0

AEL/R(u, v, t− i∆t), (2)

where hmax is the time history within the events which are considered for the
generation of the AEF . The optimum duration of the time history strongly
depends on the movement and the speed of the movement in the observed scene.
The longer the history, the more details of movements get lost. This address
event frame has to be calculated for the left and the right silicon retina camera
for each time step. As can be seen in (2), the intensity values of the resulting
grayscale image depend on the number of on- and- off events at a position (u,
v) during the time period n∆t (history). This grayscale image can then further
be used for stereo matching algorithms known from conventional stereo vision.
Figure 2 shows an example of such a frame generation. The top right image is the
resulting grayscale image. Due to the less information such an image contains,



we decided to use a sum of absolute difference (SAD) metric for costs calculation
with

DSI-ABt(u, v, d) =
n∑

i

m∑

j

|AEFt,R(u + i, v + j)−AEFt,L(u− d + i, v + j)|,

(3)

where n and m define the block for an additional costs aggregation. The calcu-
lated costs are stored in the so-called disparity space image (DSI), which is a
three-dimensional data structure of the size disparities×width× height at time
t and is further used to search for the best matching candidate.

4.4 Event-image-based Approach

The second approach generates frames out of the events as well, with the dif-
ference that no grayscale image is built. Here, the events firing during the time
history are collected only, therefore each occurred event is stored in the address
event image (AEIt,l/r at time t for the left and right sensor) which is built with

AEIt,L/R(u, v) = AEL/R(u, v, t− n∆t)
∀n ∈ [0, . . . , hmax] ∧AEL/R(u, v, t− n∆t) 6= 0.

(4)

If a new event fired at the same position, the old event will be overwritten.
As well as the area-based grayscale image generation, the event-image-based
approach collects events during the time period n∆t. The main difference is
that the events are then directly used without grayscale conversion and the last
occurred event within the time at a coordinate is valid. That is the reason why
we call the collection-frame, address event image.

For the correspondence search vectors are generated, which have a tri-state
logic. The generation of the tri-state vector image AEI-Tri is done with

AEI-Trit,L/R(u, v) = ⊗(AEIt,L/R(u + i, v + j))
∀AEIt,L/R(u, v) 6= 0 ∧ i ∈ [−m, . . . ,m] ∧ j ∈ [−n, . . . , n]

(5)

where the tri-state function ⊗ concatenates the neighborhood m × n of a pixel
AEIt,L/R(u, v) to a vector.

After all vectors for an event image are generated the costs generation takes
place. For the tri-state logic a function ξ is used to compare the values of the
vectors between left and right. The DSI is calculated with

DSI-EBt(u, v, d) = ξ(AEI-Trit,L(u, v), AEI-Trit,R(u− d, v))) (6)

where

ξ(p1, p2) =
m×n∑

i

{
1, p1(i) <> p2(i)
0, otherwise

. (7)

Figure 3 illustrates with an example how the matching with the tri-state logic
works.
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Fig. 3. Event-image-based matching: The neighborhood of the matching candidate is
encoded in a bitvector (tri-state logic) which is used for calculating the matching costs

4.5 Time-based Approach

The usage of the former mentioned area-based and event-image-based stereo
algorithms has shown a reduction of the advantages of the asynchronous data
interface and the high temporal resolution of the silicon retina cameras. Due
to this fact, a frame-less and therefore purely event-based stereo matching ap-
proach is presented here. It fully exploits the characteristics of the silicon retina
technology. The proposed algorithm uses the time difference between events as
the primary matching costs. Both silicon retina cameras are perfectly synchro-
nized which means that correct matching events have exactly the same times-
tamp and polarity. Obviously, there are a few problems known from conventional
stereo matching. For example if a series of events fire at the same time (with
exactly the same timestamp) when movement is detected in the observed area in
front of the camera. Even if the contrast between fore- and background is high
enough so that, e.g. for a moving object, at one vertical border only on-events
and at the other only off-events fire, there suppose to be more than one match-
ing candidate. This is similar to conventional stereo matching when more than
one matching candidate with the same matching costs exists. To overcome this
problem, as well as in the approaches mentioned above, a neighborhood of the
actual pixel will be taken into consideration. For silicon retina stereo vision, this
neighborhood has two dimensions, space, as mentioned above, and time, as will
be explained here. The time information for each event gets completely lost in
the previous approaches. Here, the costs calculation is first done with

DSI-TBt(u, v, d) =





wf(τ(AEL(u, v, t))− τ(AER(u− d, v, tlast))),
AEL(u, v, t) = AER(u− d, v, tlast)

0, no matching candidate
(8)

with

τ(AE(u, v, t)) = t, (9)



where the time difference of each possible matching candidate within the dis-
parity range is analyzed. The event time tlast of the right side describes the last
valid time of the event with respect to the maximum time history.

The weighting function is defined as

wf(∆tLR) =

{
hmax∆t−∆tLR, invers linear == true

hmax∆t · e−∆tLR
a , gaussian == true

, (10)

where it has to be distinguished between inverse linear and Gaussian.
Figure 4 shows an example which clarifies (8) and (9). In the first step, the

matching of the events is carried out where for each generated event a cor-
responding event on the opposite side is searched within the disparity search
range. For this search, all events of the current timestamp, as well as events
from the past are used. This means also previous events of a certain time history
n∆t and the same polarity are considered during the correspondence search. In
this example, the off-event on the left side is searched in the right side. As can be
seen, assuming the time to be a sufficient metric for costs calculation, the best
matching candidate is the off-event with disparity 3 and timestamp 10. If this
event would not be generated, the best match would be the event with disparity
6 and timestamp 5.
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Fig. 4. Time-based matching: The time difference between event are weighted and used
as matching costs

In this case this event cannot be correct because it fired at a previous time
than the event we are searching for. Thus, a weighting function is used to adapt
the costs value (10) in a way that events near the actual event (in time) are more
likely to be correct than events more in the past. After that, an aggregation step
uses a defined neighborhood to include local information in the matching. If the
aggregation step is not done because of any reason, the weighting function is
unnecessary.



5 Experimental Results

For the evaluation of the different event-based stereo matching approaches a sil-
icon retina stereo camera setup is used. The system consists of two silicon retina
sensors with a baseline of 250mm, a resolution of 128×128 pixels, a pixel pitch of
40µm, and 12mm lenses. The stereo matching algorithm generates a disparity
map which is further used for distance calculation of the events. Therefore, a
moving object which causes intensity changes and, thus, creates events is placed
in front of the stereo sensor system at known distances. In detail, it is a rotating
disk with a black and white pattern mounted at distances between 1.5m and
5.0m. All distances are measured with a point laser to have an exact ground
truth value. Figure 5 shows the monochrome image (a) of the rotating disk, (b)-
(d) show the rotating disk with collected events for time history of 1ms, 10ms
and 100ms.

a b

c d

Fig. 5. Rotating disk, (a) monochrome image, silicon retina event-image with a time
history of (b) 1ms, (c) 10ms and (d) 100ms.

The rotating disk is placed in 0.5m intervals between 1.5m and 5.0m in
front of the cameras. Before the stereo matching a calibration step is applied. In
the first test the calculated disparities from the stereo matching algorithms are
compared with the measured ground truth distances of the rotating disk.

Table 1 lists the results of the stereo matching using the three introduced
stereo matching approaches. For evaluation the average disparity of all pixels
within a time history of 5ms is used. The table shows the average disparity,
the calculated distance, and the average distance error between ground truth
distance and processed distance. Additionally, an average error over all distances
summarizes the results for each algorithm approach.

The results show an average distance error of 4.91% if the area-based ap-
proach is used followed by the event-image-based approach which achieves an
average error of 4.93%. The time-based stereo matching algorithm achieves the
best result with an average error of 3.48%.

In the second test we have determined the detection rate of all three stereo
matching approaches. For this test the disparity maps in the distances 1.5m,
2.5m and 5.0m with all stereo matching algorithms are calculated. Figure 6
shows the average detection rate calculated for a period of 2.5s.



Table 1. Calculated distances and average distance errors of all three different stereo
matching approaches

Area-based Event-image-based Time-based
distances disp (px) z (m) err. (%) disp (px) z (m) err. (%) disp (px) z (m) err. (%)

1.5m 45.7 1.63 8.67 44.4 1.68 12.0 48.0 1.55 3.33
2.0m 35.7 2.09 4.50 35.3 2.11 5.50 36.6 2.04 2.00
2.5m 28.4 2.63 5.20 28.4 2.63 5.20 29.0 2.57 2.80
3.0m 23.6 3.16 5.33 23.8 3.13 4.33 24.0 3.11 3.67
3.5m 20.1 3.71 6.00 20.4 3.66 4.57 20.5 3.64 4.00
4.0m 17.7 4.21 5.25 18.0 4.14 3.50 17.9 4.17 4.25
4.5m 16.1 4.63 2.89 16.0 4.66 3.56 15.9 4.69 4.22
5.0m 14.7 5.07 1.40 14.8 5.04 0.81 14.4 5.18 3.60

average 4.91 4.93 3.48
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Fig. 6. Average detection rate of all matching algorithms within a time period of 2.5s

A disparity value within a range of -1 and +1 of the ground truth value is set
as correct. Additionally, the detection rate is determined with three different time
histories (1ms, 5ms and 10ms). Figure 6 shows that the area-based algorithm
has the best average detection rate up to ∼55% for each time history and at the
distance of 2.5m.

Figure 7 shows the best detection rate measured for one timestamp within
an analysis time of 2.5s. These results represent the best possible outcome of
the stereo matching algorithms.

Figure 7 depicts that the detection rate achieved in a distance of 5.0m is up
to 100%. This can be led back to the fact that in a distance of 5.0m the rotating
disk produces only a few events and it can easily happen that these few events
are perfectly matched.

In figure 6 and 7 the area-based approach generally achieves the better re-
sults. The area-based approach has the best average detection rates at the middle
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Fig. 7. Best detection rate measured for one timestamp within a time period of 2.5s

distance and lower time histories for the image generation. Taken the best detec-
tion rate under consideration, the area-based method delivers improved results
with a marginal influence of the time history. The time-based algorithm depicts
a bad detection rate with low time histories but it significantly increases for a
rising time history. The result of the event-image-based approach lies between
the detection rate of the other matching algorithms.

Summarizing all results the time-based approach has the best accuracy in
consideration of the absolute distance estimation. In contrast, the area-based
approach has a better detection rate. This leads to the conclusion that an algo-
rithm combination of both approaches could result in a better stereo matching
algorithm for silicon retina stereo camera systems.

6 Conclusion and Future Work

In this paper we presented the development and evaluation of different stereo
matching algorithms for a silicon retina stereo vision system. The silicon retina
technology differs in comparison to conventional image sensors and therefore
existing algorithms can only be used with proper adaptations. Furthermore we
showed that silicon retina data can be directly used for stereo matching as well.
All introduced algorithm approaches are tested with real world data which deliv-
ered promising results. In a next step we will refine the algorithms and combine
them in different ways to benefit from the strength of each single approach.
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