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Abstract

We present an implemented method for encoding reasoning problems of a discrete version of the classical logic event calculus
in propositional conjunctive normal form, enabling the problems to be solved efficiently by off-the-shelf complete satisfia-
bility (SAT) solvers. We build on the previous encoding method of Shanahan and Witkowski, extending it to support causal
constraints, concurrent events, determining fluents, effect axioms with conditions, events triggered by conditions, gradual
change, incompletely specified initial situations, state constraints, and release from the commonsense law of inertia We
present an alternative classical logic axiomatization of the event calculus and prove its equivalence to a standard axiomatiza-
tion for integer time. We describe our encoding method based on the alternative axiomatization and prove its correctness. We
evaluate the method on 14 benchmark reasoning problems for the event calculus and compare performance with the causal
calculator on eight problemsin the zoo world domain.
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1 Introduction

The classical logic event calculus [37, 39, 26], which is based on the origina event calculus of
Kowalski and Sergot [18], is a well-devel oped formalism for reasoning about action and change. It
has been used to represent such things as beliefs and car crashes [20], egg cracking [27, 43], robot
mail delivery [42], and robot sensors [38]. It is able to cope with representational problems such
as the representation of conditional effects of events, triggered events, events with nondeterministic
effects, events with indirect effects, gradual change, and the commonsense law of inertia.

To date, most reasoning with the classical logic event calculus has been carried out using one of
two methods: (1) manual theorem proving by humans [27, 43] or (2) automated theorem proving
through logic programming [42]. Citing research demonstrating the efficiency of planning using
satisfiability (SAT) [16, 17], Shanahan and Witkowski [44] proposed that event cal culus planning be
carried out using satisfiability and presented amethod for encoding event cal culus planning problems
as satisfiability problems. They demonstrated the efficiency of satisfiability over abductive logic
programming for solving event calculus planning problems. However, the method of Shanahan and
Witkowski applies only to a highly restricted subset of the event calculus.

The goals of this paper are:

1. to describe and provethe correctness of amethod for encoding event cal culus reasoning problems
as satisfiahility problemsfor alarger subset of the event calculus,
2. to describe a method that enables event calculus reasoning problems to be solved efficiently,

3. to present an alternative classical logic axiomatization of the event calculus useful for satisfiabil-
ity encoding and prove its equivalence to a standard axiomatization for integer time, and

4. to evaluate the method on benchmark reasoning problems.
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We build on Shanahan and Witkowski’s method, extending it to support causal constraints, con-
current events, determining fluents, effect axioms with conditions, events triggered by conditions,
gradual change, incompletely specified initial situations, state constraints, and rel ease from the com-
monsense law of inertia.

The efficiency of our method hinges on the use of two techniques: (1) reformulation of the clas-
sical logic axiomatization of the event calculus in order to eliminate triply quantified time from
most axioms, and (2) elimination from the reasoning problem of a large number of ground atoms
stemming from effect axioms and gradual change axioms.

This paper is organized as follows. In Section 2 we present a standard classical logic axiomatiza-
tion of the event calculus that serves as a point of reference. In Section 3 we present an alternative
axiomatization and prove its equival ence to the axiomatization of Section 2 for integer time. In Sec-
tion 4 we present and prove the correctness of our satisfiability encoding method for model finding,
deduction, and abduction. In Section 5 we evaluate the method. Finally we present conclusions.

2 Theevent calculus

The classical logic event calculus [39] is based on many-sorted predicate calculus with equality.
There are sorts for events, fluents, timepoints, and domain objects. A classical logic axiomatization
of the event calculus has been described in a paper by Miller and Shanahan [26]. In that paper,
several aternative axiomatizations are provided that subtract or add various features of the event
caculus. In this section, we fix one set of axioms to serve as a point of reference. We combine
axioms from the following sections of the paper:

e Section 2, which providesthe basic classical logic axiomatization of the event calculus,

e Section 3.2, which revises the axioms of Section 2 for a version of the event calculus in which
initiating and terminating a fluent at the same time produces inconsi stency,

e Section 3.5, which adds axioms to those of Section 2 to support gradual change, and

e Section 3.7, which revises the axioms of Section 2 for a version of the event calculus in which
fluents may be released from the commonsense law of inertia.

2.1 Event calculus predicates

The basic predicates of the event cal culus axiomatization are as follows:

. Happens(a, t): Event a occurs at timepoint ¢.
. HoldsAt(f, t): Fluent f istrueat timepoint .
. ReleasedAt(f, t): Fluent f isreleased from the commonsense law of inertia at timepoint ¢.

. Initiates(a, f,t): If event a occurs at timepoint ¢, then fluent f becomes true after ¢ and is no
longer released from the commonsense law of inertia after ¢.

5. Terminates(a, f,t): If event a occursat timepoint ¢, then fluent f becomesfalse after ¢t andis no
longer released from the commonsense law of inertia after ¢.

6. Releases(a, f,t): If event a occurs at timepoint ¢, then fluent f becomes released from the
commonsense law of inertia after ¢.

7. Trajectory(f1,t1, fo,t2): If fluent f; is initiated by an event that occurs at timepoint ¢; and
ta > 0, then fluent f5 istrue at timepoint ¢ + to.

A WODN P
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8. AntiTrajectory(f1,t1, fo, t2): If fluent f; isterminated by an event that occurs at timepoint ¢,
and ¢, > 0, thenfluent f, istrue at timepoint ¢t; + t».

2.2 Event calculus (EC) axiomatization

The axiomatization of the event calculusis as follows. The following definitional axioms are from
Miller and Shanahan Section 2 [26]:

AXxiom EC1 .
Clipped(ty, f, t») de Ja, t{Happens(a, t) A t; <t <ty A Terminates(a, f, )].

AXxioMm EC2 .
Declipped(t, f, t2) = 3a, {{Happens(a, ) A t1 < ¢ < t2 A Initiates(a, f, t)].

A definitiona axiom I'; ' T, indicates that T'; is a notational shorthand for I',. That is, all
occurrences of the compact notation I'; are to be replaced by the more complex formulaT ;. Inthis
paper, free occurrences of variablesin formulas are assumed to be universally quantified.

The following definitional axioms are from Miller and Shanahan Section 3.2 [26]:

Axiom EC9B )
Stoppedin(ty, f, t2) = Ja, t[Happens(a,t) A t1 <t < to A Terminates(a, f,t)].

Axiom EC10B ot
Sartedin(t, f,t) = Ja, t[Happens(a,t) At < t < t2 A Initiates(a, f,t)].

The following axioms for gradual change are obtained from EC11F and EC12F of Miller and
Shanahan Section 3.5 [26] by removing —Frame( f-), which is not needed:

Axiom EC11F

[Happens(a, t1) A Initiates(a, f1,t1) A0 < ta A
Trajectory(fi,t1, f2,t2) A =Clipped(ty, f1,t1 +t2)] =
HO|dSAt(f2, t1 + tz).

Axiom EC12F

[Happens(a, t1) A Terminates(a, f1,t1) A0 < t2 A
AntiTrajectory(fi,t1, f,t2) A ~Declipped(ty, fi,t1 + t2)] =
HO|dSAt(f2, t1 + tz).

The following definitional axiom is obtained from EC17H of Miller and Shanahan Section 3.7
[26] by changingt; <t < txtot; <t < to inorder to conform to the version of the event calculus
described in Miller and Shanahan Section 3.2 [26]:

AXxioMm EC17H’ ot
PersistsBetween(t, f, ¢,) = —3t[ReleasedAt(f,t) A t1 < t < t].

The following definitional axiom is from Miller and Shanahan Section 3.7 [26]:
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Axiom EC14H .
ReleasedBetween(t1, f, t2) = Ja, {{Happens(a, t) A t, < t < t» A Releases(a, f, 1)].

The following axioms, which deal with the frame problem [24, 9], are from Miller and Shanahan
Section 3.7 [26]:

Axiom EC5H
[HOldSAt(f, tl) ANty <ta A PerSQSBetween(tl, f, tz) AN —|C||pped(t1,f, tg)] =
HOIdSAL( f, 2).

AXxiom EC6H
[ﬁHO'dSAt(f, tl) ANt <tz A PersistsBetween(tl, f, t2) A ﬂDecIipped(tl, f, t2)] =
—HOIdSAY(f, £»).

Axiom EC18H
[ReleasedAt(f, tl) ANt <ta A —|Clipped(t1, 1 t2) A ﬂDeCIipped(tl, 7 t2)] =
ReleasedAt(f, t2).

AXxiom EC19H
[-ReleasedAt(f,11) At < ta A ~ReleasedBetween(ty, f,t2)] =
—ReleasedAt(f, t2).

Axioms EC5H and EC6H are frame axioms for HoldsAt, and EC18H and EC19H are frame ax-
ioms for ReleasedAt.

The following definitional axiom is obtained from EC14H of Miller and Shanahan Section 3.7
[26] by changing ReleasedBetween to Releasedin, which will be used below, andt1 < ¢t < t5 to
t1 < t < to inorder to conformto the version of the event calculus described in Miller and Shanahan
Section 3.2 [26]:

Axiom EC14H’ )
ReleasedIn(ty, f, t2) = Ja, t[Happens(a,t) A t1 < t < t2 A Releases(a, f, t)].

A fluent can be in one of four states at a given timepoint: true and released, true and not released,
false and released, or false and not released. The remaining axioms describe how the occurrence of
an event affects the states of fluents. They are obtained from EC3H, EC4H, EC15H, and EC16H of
Miller and Shanahan Section 3.7 [ 26] by changing Clipped to Stoppedin, Declipped to Sartedin, and
ReleasedBetween to Releasedin, in order to conform to the version of the event calculus described
in Miller and Shanahan Section 3.2 [26]:

Axiom EC3H’
[Happens(a, t1) A Initiates(a, f,t1) At1 < ta A ~Soppedin(ty, f,t2) A ~ReleasedIn(ty, f,t2)] =
HoldsAt(f, t2).

Axiom EC4H’
[Happens(a, t1) ATerminates(a, f,t1) At1 < t2 A—~Sartedin(ty, f,t2) A-ReleasedIn(ty, f,t2)] =
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—HoldsAt(f, t3).

Axiom EC15H’
[Happens(a, t1) A Releases(a, f,t1) At1 < to A ~SoppedIn(ty, f,t2) A ~Startedin(ty, f,t2)] =
ReleasedAt(f, t2).

Axiom EC16H’
[Happens(a, t1) A [Initiates(a, f,t1) V Terminates(a, f,t1)] A t1 < ta A “ReleasedIn(ty, f,t2)] =
—ReleasedAt(f, t2).

2.3 Domain descriptions

Let EC be the conjunction of EC11F’, EC12F', EC5H, EC6H, EC18H, EC19H, EC3H', EC4H/,
EC15H’, and EC16H’. Define CIRC[®; p1, . . ., pn] @sthe circumscription [23, 21] of the predicate
symbols py, . .., p, intheformula®.

DEFINITION 2.1
An event calculus domain description is given by

CIRC[Z; Initiates, Terminates, Releases| A CIRC[A; Happens| AQ AT ATIAT A EC
where

e Y isaconjunction of Initiates, Terminates, and Releases formulas,
e A isaconjunction of Happens and temporal ordering formulas,

e () is the uniqueness-of-names axioms for al the event symbols conjoined with the uniqueness-
of-names axiomsfor all the fluent symbols,

e U jsaconjunction of state constraints,
e IT isaconjunction of Trajectory and AntiTrajectory formulas, and
e I" isaconjunction of HoldsAt and ReleasedAt formulas.

EXAMPLE 2.2 (Domain description)
First we axiomatize some simple knowledge about falling objects. We use a state constraint that says
that an object has a unique height:

HoldsAt(Height(o, h1),t) A HoldsAt(Height(o, h2),t) = hi = hs. 2.1
We add an effect axiom that states that if an object starts falling, then it will be falling:
Initiates(StartFalling(o), Falling(o), t). (2.2

We add a second effect axiom that states that if an object startsfalling, then its height will bereleased
from the commonsense law of inertia

Releases(SartFalling(o), Height(o, h), t). (2.3

Next we use a gradual change axiom that states that if an object starts falling at time ¢, when its
height is h, thenits height at time ¢, will be Max(0, h; — t52):

HOIdSAt(Haght(o, hl), tl) A hy = MaX(O, hi — tzz) = (24)
Trajectory(Falling(o), t1, Height(o, ha), t2).
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Next we use atrigger axiom that states that if an object is falling and its height is zero, then it will
hit the ground:

HoldsAt(Falling(o),t) A HoldsAt(Height(o, 0),t) = (2.5
Happens(HitsGround(o), t).

We add another effect axiom that states that if the height of an object is ~ and the object hits the
ground, then its height will no longer be released from the commonsense law of inertia and its
height will be h:

HoldsAt(Height(o, k), t) = (2.6)
Initiates(HitsGround(o), Height(o, h), t).

Finally we add an effect axiom that states that if an object hits the ground, then the object will no
longer be falling:

Terminates(HitsGround(o), Falling(o), t). 27

Now we add formulas describing an initial situation and an event occurrence:

—HoldsAt(Falling(Leaf), 0) (2.8)
—ReleasedAt(Falling(Leaf), 0) (29
HoldsAt(Height(Leaf, 9), 0) (2.10)
—ReleasedAt(Height(Leaf, k), 0) (2.11)
Happens(SartFalling(Leaf), 0). (2.12)

We may now reason using this domain description as follows. Let ¥ be the conjunction of (2.2),
(2.3), (2.6), and (2.7). Let A be the conjunction of (2.5) and (2.12). Let 2 be the uniqueness-of-
names axiomsfor event and fluent symbols. Let ¥ be (2.1). Let IT be (2.4). Let " be the conjunction
of (2.8), (2.9), (2.10), and (2.11). We can then show the following:

CIRC[Z; Initiates, Terminates, Releases| A
CIRC[A; Happens AQATATIAT AEC =
HoldsAt(Falling(Leaf), 1) A
HoldsAt(Height(Leaf, 8), 1
HoldsAt(Height(Leaf, 5), 2
HoldsAt(Height(Leaf, 0), 3
Happens(HitsGround(Leaf), 3
—HoldsAt(Falling(Leaf), 4
HoldsAt(Height(Leaf, 0), 4).

)
)
)
)
)
)

A
A
A
A
A
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3 Thediscrete event calculus

We desire an efficient satisfiability encoding for the event calculus. Observe that the standard event
calculus axiomatization of the previous section involves triple quantification over timepoints. This
isnot ideal sinceit leadsto an encoding size proportional to the cube of the number of timepoints.

In this section, we show that if one restricts the timepoint sort to the integers, then it becomes
possible to eliminate triply quantified timepoints from each of the event cal culus axioms and replace
them with only singly quantified timepoints except for the two axiomsthat deal with gradual change.
We present an aternative classical logic axiomatization of the event calculus, which we call the
discrete event calculus, and provethat it islogically equivalent to the standard axiomatization if the
timepoint sort is restricted to the integers.

It is worth pointing out that this equivalence does not require restriction to afinite universe, asin
our propositional encoding of Section 4. It merely requires restriction of timepoints to the (infinite)
set of integers.

3.1 Discrete event calculus (DEC) axiomatization

The axioms of the discrete event calculus are as follows. We start with two definitional axiomsiden-
tical to EC1 and EC2:

Axiom DEC1 .
Clipped(ty, f, t») de Ja, t{Happens(a, t) A t; <t < t, A Terminates(a, f, )].

AXxiom DEC2 .
Declipped(ty, f, t2) o Ja, t[Happens(a,t) Aty <t <ty A Initiates(a, f, t)].

We then have axioms for gradual change identical to EC11F’ and EC12F':

Axiom DEC3

[Happens(a, t1) A Initiates(a, f1,t1) A0 < ta A
Trajectory(fi,t1, f2,t2) A =Clipped(ty, fi,t1 +t2)] =
HO|dSAt(f2,t1 + tz).

Axiom DEC4

[Happens(a, t1) A Terminates(a, f1,t1) A0 < t2 A
AntiTrajectory(fi,t1, f,t2) A ~Declipped(ty, fi,t1 + t2)] =
HO|dSAt(f2, t1 + tz).

We have new frame axioms that resemble explanation closure frame axioms [12, 35, 3, 33, 34],
extended to allow fluents to be released from the commonsense law of inertia:

Axiom DEC5
[HoldsAt(f,t) A —ReleasedAt(f, ¢ + 1) A =Ja[Happens(a, t) A Terminates(a, f,t)]] =
HoldsAt(f, ¢+ 1).
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Axiom DECG6
[~HoldsAt(f, t) A ~ReleasedAt(f, ¢ + 1) A =Ja[Happens(a, t) A Initiates(a, f,t)]] =
—HoldsAt(f, ¢+ 1).

Axiom DEC7
[ReleasedAt( f,t) A ~Ja[Happens(a, t) A [Initiates(a, f,t) V Terminates(a, f,1)]]] =
ReleasedAt(f, ¢ + 1).

Axiom DECS8
[-ReleasedAt(f,t) A =Ja[Happens(a, t) A Releases(a, f,t)]] =
—ReleasedAt(f,t + 1).

We have axioms that describe how the occurrence of an event affects the states of fluents:

Axiom DEC9
[Happens(a, t) A Initiates(a, f,t)] = HoldsAt(f,¢ + 1).

Axiom DEC10
[Happens(a, t) A Terminates(a, f, t)] = —HoldsAt(f,t + 1).

Axiom DEC11
[Happens(a, t) A Releases(a, f,t)] = ReleasedAt(f,t + 1).

Axiom DEC12
[Happens(a, t) A [Initiates(a, f,t) V Terminates(a, £, t)]] = —ReleasedAt(f,t + 1).

Let DEC be the conjunction of DEC3 through DEC12.

3.2 Equivalence of EC and DEC

We now prove the equivalence of EC and DEC if the timepoint sort is restricted to the integers.
Before doing so, a number of lemmas are required.

LEMMA 3.1
If the timepoint sort is restricted to the integers, then

DEC = EC5H.

PROOF. Suppose DEC. Let 7; and 7> be arbitrary integer timepointsand 8 be an arbitrary fluent. We
must show

[HOldSAt(ﬁ, T1) AT < T2 N PerSlStSBetween(Tl, 6, T2) A —|C|ipped(7'1, B, Tg)] = (31)
HoldsAt(3, 2).
Casel: 71 > 1. (3.1) istrivialy satisfied.
Case2: 1y < 1. We proceed by mathematical induction.
Base case: We show that (3.1) istruefor 7o = 7 + 1. Suppose

HoldsAt(3, 71 ) A PersistsBetween(r, 8,71 + 1) A =Clipped(r, 8,71 + 1).
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From PersistsBetween(r;, 3, 71 +1) and the definitional axiom EC17H’, we have —ReleasedAt(5, 71 +
1). From —Clipped(ry, 8, 71 + 1) and the definitional axiom EC1, we have ~Ja[Happens(a, 1) A

Terminates(a, 5,71)]. From this, HoldsAt(8, 1), ~ReleasedAt(3, 71 + 1), and DECS5, we have

HoldsAt(3, 1 + 1) asrequired.

Induction step: Suppose (3.1) istruefor 7o = k, k > 7 (induction hypothesis):

[HoldsAt(3, 1) A 11 < k A PersistsBetween(r, 3, k) A =Clipped(r, 8, k)] = (3.2
HoldsAt(3, k).

We must show that (3.1) istruefor 72 = k + 1. Suppose
HoldsAt(8, 1) A 11 < k + 1 A PersistsBetween(r, 3,k + 1) A =Clipped(r1, 8,k + 1).

From PersistsBetween(ry, 3,k + 1) and EC17H’, we have PersistsBetween(r(,3,k). From
—Clipped(r;, 8,k + 1) and EC1, we have —Clipped(r, 8, k). From this, HoldsAt(3, 1), i1 <
k, PersistsBetween(r;, 8, k), and the induction hypothesis (3.2), we have HoldsAt(3, k). From
PersistsBetween(r, 3, k+1) and EC17H’, we have ~ReleasedAt(5, k+1). From —=Clipped(r, 3, k+
1) and EC1, we have —Ja[Happens(a, k) A Terminates(a, 8, k)]. From this, HoldsAt(g, k),
—-ReleasedAt(3, k + 1), and DECS5, we have HoldsAt(3, k + 1) asrequired. [ |

LEMMA 3.2
If the timepoint sort is restricted to the integers, then
DEC = ECG6H.

ProOF. The proof isidentical to that of Lemma3.1, except that ~HoldsAt is substituted for Hol dsAt,
Initiates is substituted for Terminates, DEC6 is substituted for DECS5, Declipped is substituted for
Clipped, EC2 is substituted for EC1, and EC6H is substituted for EC5H. [ |

LEMMA 3.3
If the timepoint sort is restricted to the integers, then
DEC = EC18H.

PROOF. Suppose DEC. Let 7; and 7> be arbitrary integer timepointsand 8 be an arbitrary fluent. We
must show

[ReleasedAt(S, 1) A 11 < 12 A =Clipped(71, 3, 72) A —Declipped(r1, 5, m2)] = (3.3
ReleasedAt(3, 72).

Casel: 1; > 1. (3.3) istrivialy satisfied.
Case 2: 11 < T». We proceed by mathematical induction.
Base case: We show that (3.3) istruefor 7o = 7 + 1. Suppose

ReleasedAt(B,Tl) AT <7T+1A ﬂCIipped(Tl,B,Tl + 1) A ﬁDEC”pped(Tl,ﬂﬂj + 1)

From —Declipped(r1, 8, 71 + 1) and EC2, we have —3a[Happens(a, 71 ) A Initiates(a, 3, 71)]. From
—Clipped(r,8,71n + 1) and EC1, we have —3Ja[Happens(a,71) A Terminates(a, s, 71)].
From ReleasedAt(S,71), —Ja[Happens(a,ri) A Initiates(a,3,71)], —Ja[Happens(a,r1) A
Terminates(a, 3, 71)], and DEC7, we have ReleasedAt(/3, 1 + 1) asrequired.
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Induction step: Suppose (3.3) istruefor 7o = k, k > 7 (induction hypothesis):

[ReleasedAt(53, 1) A 11 < k A ~Clipped(ry, 8, k) A =Declipped(r, 8, k)] = (3.4)
ReleasedAt(8, k).

We must show that (3.3) istruefor 7o = k + 1. Suppose
ReleasedAt(S8, 1) A 11 < k + 1 A =Clipped(r1, 8, k + 1) A ~Declipped(r1, 8,k + 1).

From —Clipped(7, 8, k + 1) and EC1, we have —Clipped(71, 8, k). From —Declipped(r, 8, k + 1)
and EC2, we have —Declipped(r, 3, k). From this, ReleasedAt(3, 1), 1 < k, —Clipped(r, 8, k),
and the induction hypothesis (3.4), we have ReleasedAt(5, k). From —Declipped(7+, 3,k + 1) and
EC2, we have —Ja[Happens(a, k) A Initiates(a, 8, k)]. From —Clipped(ry, 5,k + 1) and EC1,
we have —=3Ja[Happens(a, k) A Terminates(a, 3, k)]. From ReleasedAt(5, k), —~Ja[Happens(a, k) A
Initiates(a, 3, k)], ~Ja[Happens(a, k) ATerminates(a, 3, k)], and DEC7, we have ReleasedAt( 3, k+
1) asrequired. ||

Thefollowing lemmais used in Theorem 3.9 aswell as Lemmas 3.5 and 3.6:

LEMMA 3.4
If the timepoint sort is restricted to the integers, then

DEC = EC19H.

PROOF. Suppose DEC. Let 7; and 7> be arbitrary integer timepointsand 8 be an arbitrary fluent. We
must show

[ﬂReleasedAt(ﬂ,ﬁ) AT <Ta A ﬂReIeasedBetween(ﬁ,B,Tg)] = (35)
—ReleasedAt(3, 72).

Casel: 1; > 1. (3.5) istrivialy satisfied.
Case 2: 1y < T». We proceed by mathematical induction.
Base case: We show that (3.5) istruefor 7o = 7 + 1. Suppose

—ReleasedAt(3, 1) A 1 < 11 + 1 A ~ReleasedBetween(r,, 3,71 + 1).

From —ReleasedBetween(ry, 3, 71 +1) and EC14H, we have =Ja[Happens(a, 1 ) AReleases(a, 5, 1)].
From this, —~ReleasedAt(, 71 ), and DEC8, we have —ReleasedAt(3, 71 + 1) asrequired.

Induction step: Suppose (3.5) istruefor 7o = k, k > 7 (induction hypothesis):
[-ReleasedAt(3, 1) A 71 < k A —ReleasedBetween(ry, (3, k)] = —ReleasedAt(3,k).  (3.6)
We must show that (3.5) istruefor 7o = k + 1. Suppose
—ReleasedAt(8, 1) A1 < k + 1 A —ReleasedBetween(ry, 5, k + 1).

From —ReleasedBetween(r, 5,k + 1) and EC14H, we have —ReleasedBetween(ry, 8, k). From
this, —-ReleasedAt(5, 1), 1 < k, and the induction hypothesis (3.6), we have —ReleasedAt(S, k).
From —~ReleasedBetween(r1, 3, k+1) and EC14H, we have -3a[Happens(a, k) AReleases(a, 3, k)].
From this, ~ReleasedAt(3, k), and DECS, we have ~ReleasedAt (3, k + 1) as required. |
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LEMMA 3.5
If the timepoint sort is restricted to the integers, then

DEC = EC3H'.

PROOF. Suppose DEC. Let m; and 72 be arbitrary integer timepoints, o be an arbitrary event, and 3
be an arbitrary fluent. We must show

[Happens(a, 1) A Initiates(ar, B, 7)) A 11 < T2 A (3.7
—Soppedin(ry, 3, 72) A “ReleasedIn(ry, 8, 12)] =
HoldsAt(8, 2).

Casel: 7 > 1. (3.7) istrividly satisfied.
Case2: 1y < 1. We proceed by mathematical induction.
Base case: We show that (3.7) istruefor 7o = 7 + 1. Suppose

Happens(«, 1) A Initiates(a, B, 71) A1 <11 + 1A
—Soppedin(ry, 8,71 + 1) A ~ReleasedIn(ry, 8,71 + 1).

From this and DEC9, we have HoldsAt(3, , + 1), asrequired.

Induction step: Suppose (3.7) istruefor 7o = k, k > 7 (induction hypothesis):

[Happens(a, 1) A Initiates(a, 8, 71) A1 < kA (3.8
—Soppedin(r, 3, k) A —ReleasedIn(ry, 5, k)] =
HoldsAt(3, k).

We must show that (3.7) istruefor 72 = k + 1. Suppose

Happens(«, 71) A Initiates(a, B, 71) A1t < k+ 1A
—Soppedin(r, 3, k + 1) A =ReleasedIn(r, 8,k + 1).

From Happens(a,7;), Initiates(«, 3,71), and DEC9, we have HoldsAt(8, 7 + 1). From
—Soppedin(r, 3, k+1) and EC98B, we have =Soppedin(ry, 8, k). From —ReleasedIn(ry, 5, k+1)
and EC14H’, we have —ReleasedIn(r, 3, k). From Happens(a, 1), Initiates(a, 5,71), 11 < k,
—Soppedin(r, 3, k), —Releasedin(ry,(,k), and the induction hypothesis (3.8), we have
HoldsAt(3, k). From Happens(a, 71 ), Initiates(«, 3, 71 ), and DEC12, we have -ReleasedAt(3, 71 +
1). From —ReleasedIin(ry, 3,k + 1), EC14H’, and EC14H, we have —ReleasedBetween(r; +
1,8,k + 1). From Lemma 3.4 and DEC, we have EC19H. From —ReleasedAt(3, 71 + 1), 71 + 1 <
k + 1, -ReleasedBetween(r; + 1, 3,k + 1), and EC19H, we have —ReleasedAt(5, k + 1). From
~Soppedin(ry, 8, k+ 1) and EC98, we have ~Ja[Happens(a, k) A Terminates(a, £, k)]. From this,
HoldsAt(3, k), —ReleasedAt(3, k + 1), and DEC5, we have HoldsAt(3, k + 1) as required.

LEMMA 3.6
If the timepoint sort is restricted to the integers, then

DEC = EC4H'.

ProOF. The proof isidentical to that of Lemma3.5, except that ~HoldsAt is substituted for Hol dsAt,
Terminates is substituted for Initiates, DEC10 is substituted for DEC9, Sartedin is substituted for
Soppedin, EC10B is substituted for EC98, and DECE6 is substituted for DEC5. [ |
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LEMMA 3.7

If the timepoint sort is restricted to the integers, then
DEC = EC15H’.

PRrROOF. Suppose DEC. Let 7, and 5 be arbitrary integer timepoints, « be an arbitrary event, and 3
be an arbitrary fluent. We must show
[Happens(a, 71) A Releases(a, B, 71) A1 < T2 A (3.9
-Soppedin(ry, 3, 72) A =Sartedin(ry, 8, 72)] =
ReleasedAt(3, 72).
Casel: 1y > 1. (3.9) istrividly satisfied.

Case2: 1y < 1. We proceed by mathematical induction.
Base case: We show that (3.9) istruefor 75 = 7 + 1. Suppose

Happens(«, 1) A Releases(a, 8, 71) A1y <71+ 1A
—Soppedin(ry, 3,71 + 1) A =Sartedin(ry, 5,71 + 1).

From Happens(«, 71 ), Releases(a, 3, 71 ), and DEC11, we have ReleasedAt(3, 71 + 1), asrequired.

Induction step: Suppose (3.9) istruefor 7o = k, k > 7 (induction hypothesis):

[Happens(a, 71) A Releases(a, B, 71) A1 < kA (3.10
—Soppedin(ry, 8, k) A —Sartedin(r, 38, k)] =
ReleasedAt(8, k).

We must show that (3.9) istruefor 7o = k& + 1. Suppose

Happens(«, 1) A Releases(a, B, 11 ) A1 < k+ 1A
—~Soppedin(ry, 8, k + 1) A =Sartedin(ry, 5,k + 1).

From Happens(«, 1), Releases(a, 3, 71), and DEC11, we have ReleasedAt(3, 71 + 1). From
—Soppedin(r, 3, k + 1) and EC98B, we have -Stoppedin(ry, 3, k). From -Startedin(ry, 8,k + 1)
and EC108, we have —Sartedin(r, 3, k). From Happens(a, 1), Releases(a, 8, 11), 1 < k,
-Soppedin(r, 8, k), —Sartedin(ry,3,k), and the induction hypothesis (3.10), we have
ReleasedAt(5, k). From —Stoppedin(ry, 5,k + 1) and EC98, we have —~Ja[Happens(a, k) A
Terminates(a, 3, k)]. From ~Sartedin(r, 8,k + 1) and EC108B, we have -Ja[Happens(a, k) A
Initiates(a, 5, k)]. From this, ReleasedAt(s, k), —Ja[Happens(a, k) A Terminates(a, 3, k)], and
DEC7, we have ReleasedAt(j3, k + 1) as required. [ |

LEMMA 3.8
If the timepoint sort is restricted to the integers, then

DEC = EC16H'.

PROOF. Suppose DEC. Let ; and 72 be arbitrary integer timepoints, o be an arbitrary event, and 3
be an arbitrary fluent. We must show
[Happens(a, 1) A [Initiates(«, 3, 1) V Terminates(«, 3, 71)] A (3.11)
71 < 72 A —ReleasedIn(ry, 8, 72)] =
—ReleasedAt(3, 72).
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Casel: 11 > 7». (3.11) istrivialy satisfied.
Case 2: 11 < T». We proceed by mathematical induction.
Base case: We show that (3.11) istruefor 7o = 7 + 1. Suppose
Happens(a, 71 ) A [Initiates(a, 3, 1) V Terminates(a, 3, 11)] A
<7+ 1A ﬁReIeaﬂ:“n(Tl,B,Tl + ].)

From Happens(a,r,), [Initiates(a,5,7) V Terminates(a, 5,71)], and DEC12, we have
—ReleasedAt(S, 7 + 1), asrequired.

Induction step: Suppose (3.11) istruefor 7o = k, k > 7 (induction hypothesis):
[Happens(a, 1) A [Initiates(«, 3, 1) V Terminates(«, 3, 71)] A (312
71 < kA -ReleasedIn(ry, 5, k)] =
—ReleasedAt(3, k).
We must show that (3.11) istruefor 7o = k + 1. Suppose
Happens(a, 71 ) A [Initiates(a, 3, 71) V Terminates(a, 8, 11)] A
71 < k+ 1A —-ReleasedIn(ry, 5,k + 1).

From Happens(a, 1), Initiates(a, 8,71) V Terminates(a,$,71), and DEC12, we have
—ReleasedAt(S, 71 +1). From—Releasedin(ry, 5, k+1) and EC14H’, wehave —ReleasedIn(ry, 3, k).
From this, Happens(«, 71 ), Initiates(a, 3, 1) V Terminates(a, 8, 71 ), 11 < k, and the induction hy-
pothesis (3.12), we have —ReleasedAt(3, k). From —Releasedin(r, 3,k + 1) and EC14H', we
have ~3a[Happens(a, k) A Releases(a, 3, k)]. From this, —~ReleasedAt(S, k), and DEC8, we have
—ReleasedAt(3, k + 1) asrequired. ||

Now we proceed to the equival ence theorem:

THEOREM 3.9
If the timepoint sort is restricted to the integers, then

EC & DEC.

PrROOF. We provethe two directions separately.

(EC = DEC)

Suppose EC. DEC3 isidentical to EC11F’ and DEC4 isidentical to EC12F’. DECS follows from
EC5H by universal instantiation, substituting ¢; +1 for ¢,. Similarly, DEC6, DEC7, DECS8, DECY,
DEC10, DEC11, and DEC12 follow from EC6H, EC18H, EC19H, EC3H', EC4H’, EC15H’, and
EC16H’, respectively, by universal instantiation, substituting £, + 1 for ¢5.

(EC <= DEC)

Suppose DEC. EC11F' is identical to DEC3 and EC12F' is identical to DEC4. EC5H, EC6H,
EC18H, EC19H, EC3H’, EC4H’, EC15H’, and EC16H’ follow from Lemmas 3.1, 3.2, 3.3, 3.4,
3.5,3.6,3.7, and 3.8, respectively. [ |

4 Theencoding method

In order to perform event calculus reasoning through satisfiability, we must construct an efficient
satisfiability encoding of a domain description

CIRC[Z; Initiates, Terminates, Releases) A CIRC[A; Happens| AQ AT ATIAT A EC.
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In this section, we describe our method for constructing such an encoding and prove a form of
equivalence between a domain description and its encoding. Our basic method performs model
finding. After describing the method in the context of model finding, we discuss how the method is
a so used to solve deduction and abduction problems.

4.1 Restrictionto afinite universe

In order to use a satisfiability solver [8], we must transform event cal culus problems into the propo-
sitional calculus. A satisfiability solver takes as input a set of Boolean variables and a proposi-
tional formula over those variables and produces as output zero or more models or satisfying truth
assignments—truth assignments for the variables such that the formulais true. Satisfiability solvers
take apropositional formulain conjunctive normal form: aconjunction of clauses, where each clause
isadigunction of literals, where each literal is avariable or a negated variable. A complete satisfia-
bility solver produces all satisfying truth assignments.

Following Shanahan and Witkowski [44], werestrict the predicate calculusto afinite universe[ 16,
13]. We restrict the event calculus to finite sets of variables, constants, function symbols, predicate
symbols, sorts, events, fluents, timepoints, and domain objects. We restrict the timepoint sort to a
finite set of integers {0, 1,2, ...,n} for somen > 0.

Note that we may now ignore €2 since the propositional calculus already incorporates the unique
names assumption.

4.2 Definitions

We start with some definitions.

DEFINITION 4.1

A comparisonisaformulaof theformt; < to,t; < ts,t; =ta,t1 > to, t1 > to, O t; # ta, Where
t; and t, areterms.

DEFINITION 4.2

If ¢t isavariable, then a condition over ¢ is defined as follows: (1) A comparison is a condition over
t. (2) If fisaterm, then HoldsAt(f,t) and —HoldsAt(f, ¢) are conditions over ¢. (3) If ¢y and ¢y
are conditions over ¢, then ¢; A ¢ and ¢ V ¢o are conditionsover t. (4) If v isavariableand cisa
condition over t, then Jv ¢ isacondition over ¢.

DEFINITION 4.3

If  is the predicate symbol Initiates, Terminates, or Releases, then a r effect axiomis a formula of
theform Va, f,t[O(a, f,t) = =(a, f,t)], where O(a, f,t) isacondition over ¢t with only a, f, and
t free.

DEFINITION 4.4

A  effect description is a collection of 7 effect axioms written as a single, logically equivalent
effect axiom of theformVa, £, ¢[0(a, f,t) = n(a, f,t)], where O(a, f, t) isacondition over ¢t with
only a, f,and ¢ free.

Let X;,,;+ bethe Initiates effect description Va, f,t[© init(a, f,t) = Initiates(a, f, t)].
Let ¥y, bethe Terminates effect descriptionVa, f, t[© term (a, f,t) = Terminates(a, f,t)].
Let ¥,..; be the Releases effect description Va, f, [0 ¢ (a, f,t) = Releases(a, f,1)].

DEFINITION 4.5
A trigger axiomis aformulaof the form Va, t[Y (a,t) = Happens(a, t)], where Y(a, t) is a condi-
tion over t with only a and ¢ free.
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DEFINITION 4.6

A trigger description isacollection of trigger axiomswritten asasingle, logically equivalent trigger
axiom of the form Va, ¢[Y (a,t) = Happens(a, t)], where Y (a, t) is a condition over ¢ with only a
and ¢ free.

DEFINITION 4.7

An event occurrence is a formula of the form Happens(a, t), where a is an event ground term and ¢
is atimepoint ground term.

DEFINITION 4.8

An event occurrence description is a collection of event occurrences written as a single, logically
equivalent trigger axiom of the form Va, t[Y (a,t) = Happens(a, t)], where Y (a, t) is a condition
over t withonly a and ¢ free.

DEFINITION 4.9

An event description is atrigger description and an event occurrence description written asa single,
logically equivalent trigger axiom of the form Va, ¢[Y (a,t) = Happens(a,t)], where Y (a,t) isa
condition over ¢t with only ¢ and ¢ free.

Let A be an event description.

DEFINITION 4.10
A state constraintisaformulaof theform (1) ¢; = ¢; or (2) ¢; < ¢, Wherec; and ¢, are conditions
over some variablet.

Let ¥ be a conjunction of state constraints.

DEFINITION 4.11

If 7 isthe predicate symbol Trajectory or AntiTrajectory, then an gradual change axiomisaformula
of theformV i, t1, fa, t2[E(f1, t1, f2,t2) = 7(f1,t1, f2, t2)], Where Z(f1, t1, f2, t2) isacondition
over t; withonly f1, t1, fa, and ¢, free.

DEFINITION 4.12

A 7 gradual change description is a collection of 7 gradua change axioms written as a single,
logically equivaent trajectory axiom of theformV f 1, t1, fo, t2[Z2(f1, t1, f2,t2) = 7(f1,t1, f2,t2)],
where Z(f1,t1, f2,t2) isacondition over t; withonly f1, t1, f2, and ¢, free.

Let II;,,; be the Trajectory gradual change description Vf1,t1, f2,t2[Zerai(f1,t1, f2,t2) =
Trajectory(fi,t1, fa, t2)].

Let I1,,.+; bethe AntiTrajectory gradual change descriptionVf1, t1, fo, t2[Zanti(f1,t1, f2,t2) =
AntiTrajectory(f1, t1, fa,t2)].
DEFINITION 4.13
A state description is a conjunction of formulas of the form HoldsAt(f,t), —HoldsAt(f,t),

ReleasedAt(f, t), or ~ReleasedAt(f,t), where f isafluent ground term and ¢ is a timepoint ground
term.

Let I' be a state description.

4.3 Computing circumscription

Our encoding method requires computation of circumscription of effect and event descriptions. We
perform these computations using two theorems of Lifschitz [21]. Thefirst theorem providesarule
for computing circumscription using predicate compl etion:
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THEOREM 4.14

Let p be an n-ary predicate symbol and I'(z+, ..., z,) be aformulawith only z4, ..., z, free. If
I(zy,...,z,) does not mention p, then the circumscription CIRC[Vz 1, ..., z,[l(z1,...,2,) =
p(x1,...,xy)]; plisequivalenttoVay, ..., zp[l(z1,...,2n) © p(x1,...,T0)]

PROOF. See the proof of Proposition 2 by Lifschitz [21]. [ |

The second theorem provides arule for computing circumscription of several predicates.

DEFINITION 4.15
A formulaT is positive relative to a predicate symbol p if al mentionsof p in I are in the range of
an even number of negationsin an equivalent formula obtained by eliminating = and < from I".

THEOREM 4.16
Let p1, ..., pn bepredicate symbolsand I be aformula. If T is positive relative to every p;, then
CIRC[L; p1, - .., py) isequivalent to A, CIRC[T; p;].

PROOF. See the proof of Proposition 14 by Lifschitz [21]. [ |

4.4 Description of the encoding method

We now describe our method for encoding a problem given by X i1, Xierms Zrets A, ¥, Hipajs
e, and .

First, we use the axiomatization DEC of Section 3 instead of the axiomatization EC of Section 2
in order to reduce triply quantified time to singly quantified timein most axioms.

Second, observe that EC and DEC contain atoms involving Initiates, Terminates, Releases, Tra-
jectory and AntiTrajectory, which may lead to a large number of ground atoms. For example,
Initiates(a, f,t) givesriseto A - F' - T ground atoms, where A is the number of events, F' is the
number of fluents, and 7" is the number of timepoints. Therefore, in order to eliminate such atoms,
we expand DEC by performing the following substitutions:

Initiates(a, f,t) = Oinit(a, f,t)
Terminates(a, f,t) = Oterm(a, f, 1)
Releases(a, f,t) = O, (a, [, 1)
Trajectory(f1,t1, f2,t2) = Eiraj(f1,t1, f2,t2)
AntiTrajectory(f1,t1, fa, t2) = Zanti(f1,t1, f2, t2).
For example, if X;,i; IS
[a = Hald(p,0) A f = Holding(p, 0)] = Initiates(a, f,t)
then we replace DEC9 with
[Happens(a, t) A [a = Hold(p,0) A f = Holding(p, 0)]] = HoldsAt(f,t + 1).

Third, we compute CIRC[A; Happens| using Theorems 4.14 and 4.16.

Fourth, we conjoin ¥, T', the expanded DEC, and CIRC[A; Happens].

Fifth, we instantiate quantifiers by replacing Vz ®(x) with A, ®(z;) and 3z ®(z) with \/, ®(z;),
where z; are the constants of the sort of x. This givesa propositional calculus formula.
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Sixth, we simplify the formulausing standard techniques [31, pp. 35-36].

Seventh, we convert the formula to conjunctive normal form using standard techniques [6, pp.
17-18].

Finally, we construct a one-to-one and onto map B that maps the ground atoms of the formulato
Boolean variables. We construct an inverse map B ~! from B. We construct aformulato passto the
satisfiability solver by replacing each ground atom « in the formulawith B(u).

In order to perform model finding, we feed the formula to a satisfiability solver. We decode
satisfying truth assignments produced by the solver by applying B —!. Model finding is useful in
many applications such as determining what can possibly occur given aformalization [1, 10].

Our implementation employs two additional optimizations in order to reduce the size of the en-
coding further. First, note that converting to conjunctive normal form using standard techniques
may result in a combinatorial explosion. We convert to a compact conjunctive normal form using
the technique of renaming subformulas[32, 11]. Second, instead of using asingle sort for all domain
objects, we allow the use of a number of domain-specific sorts.

In order to reduce the encoding time further, our implementation simplifies the expanded DEC in
order to eliminate the quantification over events and fluents. For example, we simplify

[Happens(a, t) A [a = Hold(p,0) A f = Holding(p, 0)]] = HoldsAt(f,t + 1)
to
Happens(Hold(p, 0), t) = HoldsAt(Holding(p, 0),t + 1).

ExAMPLE 4.17 (Encoding of a domain description)
Consider the following domain description. We have an Initiates effect description that states that if
aperson holds an object, then the person will be holding the object:

[a = Hold(p,0) A f = Holding(p, 0)] = Initiates(a, f,t). 4.1

We have a state description that says that at timepoint 0, person P1 is not holding object O1 and
Holding(P1, O1) is not released from the commonsense law of inertia

—HoldsAt(Holding(P1, O1), 0) A —ReleasedAt(Holding(P1, O1), 0). (4.2
We have an event description that states that at timepoint 0, person P1 holds object O1:
[a = Hold(P1,01) A ¢t = 0] = Happens(a, t). 4.3

Suppose that 0 and 1 are the only constants of the timepoint sort, P1 is the only constant of the
person sort, and O1 is the only constant of the object sort. The conjunctive normal form encoding
of this domain description then consists of 10 clauses. We have the clauses for (4.2):

—HoldsAt(Holding(P1, 01), 0)
—ReleasedAt(Holding(P1, 01), 0).

We have the following clauses, which result from the expansion of DEC5, DEC6, DEC7, DECS,
DEC9, and DEC12, respectively, given (4.1):

ReleasedAt(Holding(P1, 01), 1) v HoldsAt(Holding(P1,01),1) v
—HoldsAt(Holding(P1, O1), 0)
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Happens(Hold(P1, 01), 0) v HoldsAt(Holding(P1,01),0) v
ReleasedAt(Holding(P1,01), 1) v —HoldsAt(Holding(P1,01), 1)

Happens(Hold(P1, O1), 0) v ReleasedAt(Holding(P1,01), 1) Vv
—ReleasedAt(Holding(P1, 01), 0)

ReleasedAt(Holding(P1, 01), 0) vV —ReleasedAt(Holding(P1, 01), 1)
HoldsAt(Holding(P1,01), 1) v —~Happens(Hold(P1, O1), 0)

—Happens(Hold(P1, O1), 0) V —ReleasedAt(Holding(P1, O1), 1).

Note that axioms DEC10 and DEC11 are trivialy satisfied since no Terminates or Releases for-
mulas are in the domain description. We have the following clauses, which are equivalent to the
circumscription of Happensin (4.3):

—Happens(Hold(P1, O1), 1)
Happens(Hold(P1, O1), 0).

We construct a map from ground atoms to Boolean variables:

Happens(Hold(P1,01),0) -1
HoldsAt(Holding(P1,01),00 — 2
ReleasedAt(Holding(P1,01),0) — 3
Happeng(Hold(P1,01),1) —4
ReleasedAt(Holding(P1,01),1) — 5
HoldsAt(Holding(P1,01),1) — 6.

We convert the clauses into the standard DIMACS format for satisfiability problems|[5]:

Thefirst line specifies the number of variablesand clauses. Theremaining linesarethe clauses. Each
line consists of a sequence of numbers. A negated variable v is represented by —v; a non-negated
variable v is represented by v. Each line is terminated with the number 0.
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We invoke a satisfiability solver on the problem, which produces one model as output:
1-2-3-4-56
By applying the inverse of the above map, we get:

Happens(Hold(P1, O1),
—HoldsAt(Holding(P1, O1),
—ReleasedAt(Holding(P1, 01),
—Happens(Hold(P1, O1),
—ReleasedAt(Holding(P1, 01),
HoldsAt(Holding(P1, O1),

0)
0)
0)
1)
1)
1).

4.5 Equivalence

We now prove aform of equivalence between a domain description and the encoding of the domain
description produced by our method. We start with some definitions and alemma.

DEFINITION 4.18
Anintermediateatomisan atom of theform Initiates(«, 3, 7), Terminates(a, 3, 7), Releases(a, 3, 7),
Trajectory(f,, 11, B2, T2), Or AntiTrajectory(8y, 1, 82, 72), Where a is an event, 3, 81, and 3, are
fluents, and T, 71, and > aretimepoints.
DEFINITION 4.19
Let Oinit, Oterm, Orets Etraj, aNd Eqn; be as defined above. If A is a formula, then
Expand[A; Oinit; Oterm; Orel; Straj; Zants] 1S defined as follows:
. Oinit(a, B, 1), if Aisof theform Initiates(«, 3, 7),
. Oterm (v, 8, 7), iIf Aisof theform Terminates(«, 5, 7),
. Orer(a, 8, 7), if Alisof theform Releases(«, 3, 7),
. Etraj (81,71, B2, ), if Aisof theform Trajectory(51, 71, B2, T2),
. Zanti (81,71, B2, T2), if Aisof theform AntiTrajectory(51, 71, 82, 72), and
. A with each intermediate atom A replaced with Expand[A; © ;nit; Oterm; Orel; Etraj; Zanti], Oth-
erwise.

DEFINITION 4.20
If Yinitr Ltermyr Srels G)initr Gtermr 67‘8l1 Aa v, Htrajr Manti, Etrajr Eantis and I are as defined
above, then Encode is defined as follows:

EnCOde[DEC; Binit; Sterm; Sret; A; U5 Wirag; Wantss F] =

Expand[DEC; Oinit; Oterm; Orel; Etraj; Eanti] A Cl RC[A, Happens] ANUAL.
LEMMA 4.21
Letzy,...,2,,Yy1,...,y, bDedistinct atoms. Let Xq,...,X,,Y1,...,Y; be propositiona formu-
las not mentioning any of the atoms x4, ..., zy,y1,...,y%. Let Z be a propositional formulain
conjunctive normal form mentioning all of theatoms z 1, ..., zy, y1,. ..,y L&t F = [A]_; X; &
x| A [/\f:1 Y: = yi] A Z. Let G be Z with each occurrence of z; replaced by X; and each occur-
renceof y; replaced by Y;. Let Ag bethe set of atomsmentionedin G. Let 7 be atruth assignment
To : Ag — {T,F}. Let T ¢ bethe extension of T to propositional formulas mentioning the atoms
Ag. Let Ap = Ag U{x1,...,Zn,Y1,-..,Yr}. L&t Tp bethetruth assignment 7r : Ap — {T, F'}
defined as follows:

o Ok~ WDN PP
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Ta(Y;) ifu=y;forsomei

Ta(X;) ifu=x;for somei
Tr(w)=q T
Tea(u)  otherwise.

Let 7 r be the extension of 7 to propositional formulas mentioning the atoms A . Then it is the
case that

Tr(F)=Tifandonlyif T¢(G) =T.

PROCOF. Let 74, ..., Z,, bethe conjunctsof Z and G4, .. ., G, be the corresponding conjuncts of
G. We prove each direction separately.

(=) Suppose T 1 (F) = T. We must show that for everyi e {1,...,m}, T q(G;) = T. Leti bean
arbitrary element of {1,...,m}. From T z(Z) = T, which follows from 7 z(F) = T, it follows
that 7(Z;) = T. Let Ly,..., L, bethediguncts of Z; and M, ..., M, be the corresponding
disuncts of G;. From the definition of 7, it follows that AJ_, Tr(L;) = T(M;). From this
and 7 r(V¥_, L;) = T,itfollowsthat T (\/%_, M;) = T, asrequired.

(<) Suppose T ¢ (G) = T. We must show that (1) foreveryie {1,...,n}, T r(X; & z;) =T, (2)
foreveryie {1,... .k}, Tr(Yi = y;) =T,and (3) foreveryie {1,...,m}, T r(Z;) =T.

(1) Let i be an arbitrary element of {1,...,n}. From the definition of 7 r, it follows that 7 r (X;)
and T p(z;) have the same truth value.

(2) Leti bean arbitrary element of {1, ..., k}. From the definition of 7 r, it followsthat 7 r(Y;) =
ForTp(y)=T.

(3) Let i be an arbitrary element of {1,...,m}. From T ¢(G) = T, it follows that 7 ¢ (G;) = T.
Let My, ..., M, bethedisunctsof G; and L4, ..., L, bethe corresponding disuncts of Z;. From
the definition of 7 5, it followsthat A_, Ta(M;) = T p(L;). Fromthisand T(\V/'_, M;) =T,
itfollowsthat 7 r(\/%_, L;) = T, asrequired. ||
DEFINITION 4.22

A truth assignment 7 : U — {T, F'} with aset V' removed is defined as a truth assignment 7' :
[U—-V]—{T,F}suchthatforevery A\e U — V, T'(A) = T(N).

DEFINITION 4.23
The grounding of aformula A is aformulaobtained from A by instantiating quantifiers and simpli-

fying.
We now proceed to the equival ence theorem:

THEOREM 4.24

Restrict the logic to afinite universe as specified above. If X it, Zterm, Lretr Oinits Oterms Orels
A, W, yyraj, Mantir Etrajr Eants» and I' are as defined above, then the satisfying truth assignments
with intermediate atoms removed of ;

E = CIRC[Z;nit A Zterm N Erer; Initiates, Terminates, Releases| A
CIRC[A; Happens) A ¥ A Ilipqj A Ilgnes AT AEC

are the same as the satisfying truth assignments with intermediate atoms removed of :
D= EnCOde[DEC) Eznzt; Eiﬁerm; Erel; A) \II) Htraj; Hanti; F]

PROOF. L€t z1,...,z, be al the atoms in the grounding of E of the form Initiates(c, 5, 7),
Terminates(a, 8, 7), and Releases(«, 8, 7). Let y1, - . ., yi, beall the atomsin the grounding of E of
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the form Trajectory(51, 71,82, 72) and AntiTrajectory(fi,m,52,72). Let X; = Expand
[«ri; Oinit; Oterm; Orel; Etraj; Eanti]- LetY; = Expand[yi; Oinit; Oterm; Orel; Etraj; Eanti]- Let
Z be the grounding of CIRC[A; Happens A ¥ AT A DEC written in conjunctive normal form. Let

= [/\?:1 Xz A -'Bz] A [/\le sz = yz] NZ. LetG = EXpand[Z, Gznzt; Gterm; erel; Etraj; Eanti]-
Let A be the set of atoms mentioned in G. Let T be atruth assignment 7 : Aq — {T, F}.
Let 7 be the extension of T to propositional formulas mentioning the atoms Ag. Let Ap =
Ag U{z1,...,Zn,Y1,-.-,yr}. Let Tp bethe truth assignment 7 : Ap — {T, F} defined as
follows:

Tg(Xl) if u =z, for somei
Tr(u) =< Ta(Y;) ifu=y,;forsomei
Ta(u)  otherwise.

Let 7 r be the extension of 7 to propositional formulas mentioning the atoms A . From Theo-
rems 4.14 and 4.16, and the definition of Expand, we have

CIRC[Einit A Eterm N Zrer; Initiates, Terminates, Releases| < /\ X; & ;). (4.9)

i=1

From the definition of Expand, we have
[Htraj A Hanti] g [/\ Y; = yt] (45)

From Theorem 3.9 we have EC < DEC. From (4.4), (4.5), Z < CIRC[A;Happens A ¥ A
I' ADEC, and EC' & DEC, we have E < F. From the definition of Encode, we have D &
ExpandDEC; © init; Oterm; Orel; Etraj; Zanti] A CIRC[A; Happeng A ¥ A T'. From the definition
of Expand and since CIRC[A; Happens| A ¥ A T' does not mention any intermediate atoms, we have
D < Expand[DEC A CIRC[A; Happens| A ¥ A T'; Oinit; Oterm; Orel; Etraj; Zants]. From Z &
CIRC[A; Happeng AW AT ADEC wehave D < Expand[Z; © init; Oterm; Orer; Etraj; Eanti]. From
this, we have D & G. FromLemma4.21, E < F,and D < G, wehave T r(E) = T if and only
if Te(D) = T. From this, it follows that the satisfying truth assignments with intermediate atoms
removed of E are the same as the satisfying truth assignments with intermediate atoms removed of
D, as required. [ |

4.6 Deduction
We may use our encoding method to perform deduction:

THEOREM 4.25
Restrict thelogic to afinite universe as specified above. Let X i, Stermy Zrets A, ¥, iraj, Lanti,
and I" be as defined above. If I' is a state description, then

CIRC[Z;nit A Zterm N Zrer; Initiates, Terminates, Releases| A
CIRC[A; Happeng) A ¥ Alipq; A Ilgnsi AT AEC =TV

if and only if
EnCOde[DEC; Yinit; Dterm; Drel; A; v, Htra]y antis ] ': I
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ProoF. Thisfollows from Theorem 4.24, since none of the atoms of I'’ are intermediate. [ |

There are two ways to determine whether the encoding entails I''. (1) We may run a complete
setisfiahility solver on our encoding and the negation of B(I''). The encoding entails I'' iff the
solver does not find any satisfying truth assignments. (2) We may run a compl ete sati sfiability solver
on our encoding, producing a set of satisfying truth assignments. The encoding entails '’ iff for
every satisfying truth assignment, for every conjunct A of I'/, B()) isassigned to 7. This method
has the benefit of filling in additional information (model finding).

4.7 Abduction

We may also use our encoding method to perform event cal culus abduction [ 36, 4, 42]. We start with
some definitions:

DEFINITION 4.26
A goal is astate description.

DEFINITION 4.27
Let Xinits Sterms Zrets ¥, ipgj, anes, @d T be as defined above. Let T beagoal, A,.. be an
event occurrence description, and A ;,.;, be atrigger description. A, isaplanfor I' if and only if

CIRC[Zinit A Tterm A Erer; INnitiates, Terminates, Releases| A
CIRC[Atrig A Agec; Happens A W A Ty A Tgnti AL AEC = TV,

THEOREM 4.28

Restrict thelogic to afinite universeas specified above. Let ¥yt , Zterm, Zrets ¥, Hirgjs Mants, and
I’ beas defined above. Let I'" beagoa and A,,.;, be atrigger description. The following algorithm
findsall plansforI'';

1. Create an empty list of plans.
2. For each satisfying truth assignment 7 of
Encode[DEC; Yinit; Dterms Lrel; Atm’g; Vs Hirags Hangs; T A FI]-
(a) Let A,.. bean event occurrence description constructed from the set of al ground atoms \ of
the form Happens(«, 7) suchthat 7 (\) = T.
(b) If Encode{DEC; Xinit; Lterm; Tret; Atrig A Doce; W3 Miraj; Hangi; T = TV, thenadd A, t0
thelist of plans.

ProoF. This follows from Theorem 4.24, since none of the atoms of I'’ are intermediate and for
every A,.. noneof theatoms of A .. areintermediate. [ |

Thuswefind all plansfor I'' asfollows. We first run acompl ete satisfiability solver on our encoding
augmented with I'’. For each satisfying truth assignment, we form a candidate plan A .. consisting
of a set of Happens atoms. We then run the complete solver on the encoding augmented with
A,ee and the negation of T''. A, isaplan for I iff the solver does not find any satisfying truth
assignments.

5 Evaluation

In this section, we evaluate our method. First, we compare the method to that of Shanahan and
Witkowski [44]. Second, we evaluate our method and that of Shanahan and Witkowski on a set of
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14 event calculus problems. Third, we compare the performance of our method to that of the causal
calculator [10Q], atool for reasoning about action and change using the language of causal theories
[22].

5.1 Comparison with Shanahan and Witkowski’s method

Table 1 compares the coverage of our method for satisfiability-based event calculus reasoning and
that of Shanahan and Witkowski [44]. Causal constraints deal with the instantaneous propagation
of interacting indirect effects, as in idealized electronic circuits [45]. Our method handles problems
involving causal constraints provided that four new predicates and four new axioms are added to the
formulation of the event calculus, as described by Shanahan [41].

Our method handles problems involving concurrent events with cumulative or canceling effects
[39, pp. 301-304] provided that the problems are formulated in the style of Miller and Shanahan [26,
pp. 460-461]. Since our method supports effect axioms with conditions, fluents that are released
from the commonsense law of inertia, and incompletely specified initial situations, our method sup-
ports the use of determining fluents to enable events with nondeterministic effects [40].

Neither method supports digunctive event axioms[39, pp. 342—-345] and neither method supports
compound event axioms [40]. The circumscription of Happensin such axioms cannot be computed
using Theorem 4.14 since Happensis mentioned in T'(x 1, . . ., ).

Event precondition axioms are formulas of the form

Happens(a, t) = condition over .

Event precondition axioms may be used in our method by incorporating them into ¥, with the
cavesat that if theinitial situation is not completely specified, then Happens(a, t) becomesa plan for
the condition over ¢ (see the discussion of Miller and Shanahan [26, p. 465]). Fluent precondition
axioms are the same as effect axioms with conditions.

5.2 Evaluation on event cal culus benchmark problems

We have implemented our method within atool for satisfiability-based reasoning in the event cal cu-
lus[30]. The entire implementation consists of about 10,000 lines of code, with the critical portions
(about 4,000 lines) written in the C language for maximum runtime efficiency. Thetool invokesthe
Relsat 2.0 complete satisfiability solver [2].

We conducted an evaluation of our encoding method and the method of Shanahan and Witkowski
[44] on aset of 14 benchmark reasoning problemsthat have been described for the event calculus by
Shanahan [39, 40]. Table 2 providesthe results of the evaluation. For each problem, the presence of
amark indicates that the method is able to handle, and in the case of our encoding method was suc-
cessfully able to solve, the problem. Our encoding method was able to solve 11 of the 14 problems;
the previous method handles only one dueto itslimited coverage of the event calculus. Our encoding
method was not able to handle the problemsinvolving disjunctive event axioms, compound events,
and effect constraints because it does not support those features of the event calculus. In order to
run using our method, SUPERMARKETTROLLEY was reformulated using the method of Miller and
Shanahan [26, pp. 460-461]. The problems were solved in less than one second.
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TaBLE 1. Coverage of event calculus satisfiability encoding methods (S&W = Shanahan and
Witkowski [44])

Feature of the event calculus S&W
causal constraints

compound event axioms

concurrent events

continuoustime

determining fluents for nondeterminism
discrete time Vv
digunctive event axioms
effect axioms without conditions Vv
effect axioms with conditions
effect constraints

event precondition axioms Vv
fluent precondition axioms

gradua change axioms

incompletely specified initial situations
release from the commonsense law of inertia
state constraints

three-argument Happens

trigger axioms

R R B & &

5.3 Evaluation on zoo world problems

We conducted a performance comparison of our tool and the causal calculator (CCALC) [10]. We
performed the comparison using a collection of zoo world problems proposed by Erik Sandewall and
formalizedin thelanguage of CCALC [1]. Wetranslated the CCAL C formalization of the zoo world
into the event calculus, and used our tool to solve the same set of zoo world test problems solved
by CCALC. The CCALC formalization consists of 62 causal laws and our event calculustrangation
consists of 78 axioms.

Table 3 provides the results of the comparison. The performance of our tool on the test problems
is comparable to that of CCALC. The columns of this table are: (1) the number of variablesin the
satisfiability problem, (2) the number of clauses in the problem, (3) the time taken to encode the
problem, and (4) the time taken by the Relsat 2.0 satisfiability solver to solve the problem. Encoding
and solution times are el apsed wall-clock timein seconds on amachinewith a1.8 GHz Intel Pentium
4 processor and 512 megabytes of RAM. The CCALC encoding time is the sum of the grounding
and completion times. The CCALC runswere performed with CCALC 2.0 beta 8.3 and SWI-Prolog
5.0.10.

6 Conclusion

We have described a method for encoding reasoning problems of a discrete version of the classical
logic event calculus in propositional conjunctive normal form, enabling the problems to be solved
efficiently by off-the-shelf complete satisfiability solvers. The method has been implemented as a



Event Calculus Reasoning Through Satisfiability 727

TABLE 2. Event calculus benchmark problems solved by satisfiability encoding methods (S&W =
Shanahan and Witkowski [44])

Problem Reasoning type | Notablefeatures S&W | Us
BUsRIDE abduction abduction
[39, pp. 359-361] digunctive event axiom

state constraint
CHESSBOARD model finding determining fluent Vv
[40] state constraint
CoOINTOSS model finding determining fluent Vv
[40]
COMMUTER deduction compound event
[40]
DEADORALIVE deduction state constraint Vv
[39, p. 324]
HAPPY deduction state constraint Vv
[40]
KITCHENSINK deduction release frominertia Vv
[39, pp. 326-329] gradual change

trigger axiom
RUSSIANTURKEY model! finding release from inertia Vv
[40]
STOLENCAR abduction abduction Vv Vv
[39, p. 359
STUFFYRooMm deduction state constraint Vv
[39, pp. 288-289]
SUPERMARKETTROLLEY | deduction concurrent event Vv
[39, pp. 302—-304]
THIELSCHERCIRCUIT deduction causal constraint Vv
[40]
WALKINGTURKEY deduction effect constraint
[40]
YALE deduction effect axiom with condition Vv
[39, pp. 322-323]

tool for event calculus reasoning about action and change. The tool successfully solves 11 of 14
benchmark commonsense reasoning problems described for the event cal culus and has performance
comparableto the causal calculator in the zoo world domain.

Several tools now exist for reasoning about action and change. The most similar onesto ours are
the causal calculator, VITAL [7, 19], and £-RES [14, 15]. £-RESisinspired by the event calculus
and a mapping between the event calculus and £ has been described [26].

The advantages of our tool areits efficiency and ease of use due to the familiarity of the classical
logic event calculus, which is a straightforward extension of first-order logic. The disadvantages of
our tool are that it does not support compound events, continuous time, disjunctive event axioms,
and effect constraints.



728 Event Calculus Reasoning Through Satisfiability

TABLE 3. Comparison with CCALC (c) on zoo problems (wall times in seconds)

Problem Variables | Clauses | Encode | Solve
ZOOTEST1 3,609 | 23,355 29.43 | 0.92
c 2,693 | 31,881 14.83 | 12.24
ZOOTEST2 1,072 5,687 244 | 014
c 1,116 8,870 3.67 | 017
ZOOTEST3 1,989 | 12,370 10.70 | 0.44
c 1,726 | 17,895 15.08 | 0.61
ZOOTEST4.1 3,609 | 23,352 29.38 | 1.06
c 2,770 | 32,193 1498 | 4.14
ZOOTEST4.2 4,443 | 28,993 4381 | 1.67
c 3,292 | 39,354 14.90 | 11.54
ZOOTESTS.1 1,812 | 12,692 2397 | 0.77
c 1,483 | 18,120 4469 | 5.04
ZOOTEST5.2 1,812 | 12,694 2390 | 0.68
c 1483 | 18,122 4469 | 5.06
ZOOTEST6 1,179 6,877 4.88 0.21
c 1,127 | 10,428 1485 | 1.10

We have begun to use the tool to develop applications. We are devel oping a commonsense knowl -
edge base, or library of reusable event cal culus representations of commonsense knowledge, for use
with the tool. We are applying the tool and the commonsense knowledge base to the problem of
making inferences and filling in missing information in story understanding [25, 28, 29]. Our ap-
proach consists of (1) using a semantic parser to build a semantic parse of a story text, (2) feeding
the semantic parse to the tool, which produces one or more models of the story, and (3) using the
modelsto answer guestions about the story.

In addition to building applications and extending the method to support more features of the
event calculus, another area for future work is to parallelize the method to run on a computing grid
so that much larger problems can be solved even more quickly.
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