
Event Clock Automata: from Theory to Practice⋆

G. Geeraerts1⋆⋆, N. Sznajder2, and J.F. Raskin1

1 Université Libre Bruxelles, Département d’Informatique, Brussels, Belgium
2 Université Pierre et Marie Curie, UMR CNRS 7606, LIP6, Paris, France.

{gigeerae,jraskin}@ulb.ac.be, nathalie.sznajder@lip6.fr

Abstract. Event clock automata (ECA) are a model for timed languages that has

been introduced by Alur, Fix and Henzinger as an alternative to timed automata,

with better theoretical properties (for instance, ECA are determinizable while

timed automata are not). In this paper, we revisit and extend the theory of ECA.

We first prove that no finite time abstract language equivalence exists for ECA,

thereby disproving a claim in the original work on ECA. This means in particular

that regions do not form a time abstract bisimulation. Nevertheless, we show

that regions can still be used to build a finite automaton recognizing the untimed

language of an ECA. Then, we extend the classical notions of zones and DBMs

to let them handle event clocks instead of plain clocks (as in timed automata) by

introducing event zones and Event DBMs (EDBMs). We discuss algorithms to

handle event zones represented as EDBMs, as well as (semi-) algorithms based

on EDBMs to decide language emptiness of ECA.

1 Introduction

Timed automata have been introduced by Alur and Dill in the early nineties [2] and

are a successful and popular model to reason about timed behaviors of computer sys-

tems. Where finite automata represent behaviors by finite sequences of actions, timed

automata define sets of timed words (called timed languages) that are finite sequences

of actions, each paired with a real time stamp. To this end, timed automata extend fi-

nite automata with a finite set of real valued clocks, that can be tested and reset with

each action of the system. The theory of timed automata is now well developed [1]. The

algorithms to analyse timed automata have been implemented in several tools such as

Kronos [7] or UppAal (which is increasingly applied in industrial case studies) [4].

Timed automata, however, suffer from certain weaknesses, at least from the theo-

retical point of view. As a matter of fact, timed automata are not determinizable and

cannot be complemented in general [2]. Intuitively, this stems from the fact that the re-

set of the clocks cannot be made deterministic wrt the word being read. Indeed, from a

⋆ Work supported by the projects: (i) QUASIMODO (FP7- ICT-STREP-214755),

Quasimodo: “Quantitative System Properties in Model-Driven-Design of Embedded”,

http://www.quasimodo.aau.dk/, (ii) GASICS (ESF-EUROCORES LogiCCC),

Gasics: “Games for Analysis and Synthesis of Interactive Computational Systems”,

http://www.ulb.ac.be/di/gasics/ and (iii) Moves: “Fundamental Issues in

Modelling, Verification and Evolution of Software”, http://moves.ulb.ac.be, a PAI

program funded by the Federal Belgian Government.
⋆⋆ Partly supported by a ‘Crédit aux chercheurs’ from the Belgian FRS/F.N.R.S.

given location, there can be two transitions, labeled by the same action a but different

reset sets.

This observation has prompted Alur, Fix and Henzinger to introduce the class of

event clock automata (ECA for short) [3], as an alternative model for timed languages.

Unlike timed automata, ECA force the clock resets to be strongly linked to the occur-

rences of actions. More precisely, for each action a of the system, there are two clocks
←−xa and −→xa in an ECA:←−xa is the history clock of a and always records the time elapsed

since the last occurrence of a. Symmetrically,−→xa is the prophecy clock for a, and always

predicts the time distance up to the next occurrence of a. As a consequence, while his-

tory clocks see their values increase with time elapsing (like clocks in timed automata

do), the values of prophecy clocks decrease over time. However, this scheme ensures

that the value of any clock is uniquely determined at any point in the timed word being

read, no matter what path is being followed in the ECA. A nice consequence of this

definition is that ECA are determinizable [3]. While the theory of ECA has witnessed

some developments [12, 10, 14, 8, 11] since the seminal paper, no tool is available that

exploits the full power of event clocks (the only tool we are aware of is TEMPO [13]

and it is restricted to event-recording automata, i.e. ECA with history clocks only).

In this paper, we revisit and extend the theory of ECA, with the hope to make it

more practical and amenable to implementation. A widespread belief [3] about ECA

and their analysis is that ECA are similar enough to timed automata that the classical

techniques (such as regions, zones or DBMs) developed for them can readily be applied

to ECA. The present research, however, highlights fundamental discrepancies between

timed automata and ECA:

1. First, we show that there is no finite time abstract language equivalence on the val-

uations of event clocks, whereas the region equivalence [2] is a finite time abstract

language equivalence for timed automata. This implies, in particular, that regions

do not form a finite time-abstract bisimulation for ECA , thereby contradicting a

claim found in the original paper on ECA [3].

2. With timed automata, checking language emptiness can be done by building the

so-called region automaton [2] which recognizes Untime(L(A)), the untimed ver-

sion ofA’s timed language. A consequence of the surprising result of point 1 is that,

for some ECAA, the region automaton recognizes a strict subset of Untime(L(A)).
Thus, the region automaton (as defined in [2]) is not a sound construction for check-

ing language emptiness of ECA . We show however that a slight modification of the

original definition (that we call the existential region automaton) allows to recover

Untime(L(A)). Unlike the timed automata case, our proof cannot rely on bisimu-

lation arguments, and requires original techniques.

3. Efficient algorithms to analyze timed automata are best implemented using zones

[1], that are in turn represented by DBMs [9]. Unfortunately, zones and DBMs can-

not be directly applied to ECA. Indeed, a zone is, roughly speaking, a conjunction

of constraints of the form x− y ≺ c, where x, y are clocks, ≺ is either < or ≤ and

c is an integer. This makes sense in the case of timed automata, since the difference

of two clock values is an invariant with time elapsing. This is not the case when we

consider event clocks, as prophecy and history clocks evolve in opposite directions

with time elapsing. Thus, we introduce the notions of event-zones and Event DBMs

that can handle constraints of the form x + y ≺ c, when x and y are of different

types.

4. In the case of timed automata two basic, zone-based algorithms for solving lan-

guage emptiness have been studied: the forward analysis algorithm that iteratively

computes all the states reachable from the initial state, and the backward analy-

sis algorithm that computes all the states that can reach an accepting state. While

the former might not terminate in general, the latter is guaranteed to terminate [1].

We show that this is not the case anymore with ECA: both algorithms might not

terminate again because of event clocks evolving in opposite directions.

These observations reflect the structure of the paper. We close it by discussing the pos-

sibility to define widening operators, adapted from the closure by region, and the k-

approximation that have been defined for timed automata [6]. The hardest part of this

future work will be to obtain a proof of correctness for these operators, since, here

again, we will not be able to rely on bisimulation arguments.

Remark Due to lack of space, most proofs have been omitted and can be found in a

companion technical report.

2 Preliminaries

Words and timed words An alphabet Σ is a finite set of symbols. A (finite) word is a

finite sequence w = w0w1 · · ·wn of elements of Σ. We denote the length of w by |w|.
We denote by Σ∗ the set of words over Σ. A timed word over Σ is a pair θ = (τ, w)
such thatw is a word overΣ and τ = τ0τ1 · · · τ|w|−1 is a word over R≥0 with τi ≤ τi+1

for all 0 ≤ i < |w| − 1. We denote by TΣ∗ the set of timed words over Σ. A (timed)

language is a set of (timed) words. For a timed word θ = (τ, w), we let Untime(θ) = w.

For a timed language L, we let Untime(L) = {Untime(θ) | θ ∈ L}.

Event clocks Given an alphabet Σ, we define the set of associated event clocks CΣ =
HΣ ∪ PΣ , where HΣ = {←−xσ | σ ∈ Σ} is the set of history clocks, and PΣ = {−→xσ |
σ ∈ Σ} is the set of prophecy clocks. A valuation of a set of clocks is a function

v : C → R≥0 ∪ {⊥}, where ⊥ means that the clock value is undefined. We denote

by V (C) the set of all valuations of the clocks in C. For a valuation v ∈ V(C), for

all x ∈ HΣ , we let 〈v1(x)〉 = ⌈v(x)⌉ − v(x) and for all x ∈ PΣ , we let 〈v(x)〉 =
v(x) − ⌊v(x)⌋, where ⌊v(x)⌋ and ⌈v(x)⌉ denote respectively the largest previous and

smallest following integer. We also denote by v± the valuation s.t. v±(x) = v(x) for

all x ∈ HΣ , and v±(x) = −v(x) for all x ∈ PΣ .

For all valuation v ∈ V (C) and all d ∈ R≥0 such that v(x) ≥ d for all x ∈ PΣ ∩C,

we define the valuation v + d obtained from v by letting d time units elapse: for all

x ∈ HΣ ∩ C, (v + d)(x) = v(x) + d and for all x ∈ PΣ ∩ C, (v + d)(x) = v(x)− d,

with the convention that ⊥ + d = ⊥ − d = ⊥. A valuation is initial iff v(x) = ⊥ for

all x ∈ HΣ , and final iff v(x) = ⊥ for all x ∈ PΣ . We note v[x := c] the valuation that

matches v on all its clocks except for v(x) that equals c.

An atomic clock constraint over C ⊆ CΣ is either true or of the form x ∼ c, where

x ∈ C, c ∈ N and ∼ ∈ {<,>,=}. A clock constraint over C is a Boolean combi-

nation of atomic clock constraints. We denote Constr (C) the set of all possible clock

constraints over C. A valuation v ∈ V (C) satisfies a clock constraint ψ ∈ Constr (C),
denoted v |= ψ according to the following rules: v |= true, v |= x ∼ c iff v(x) ∼ c,
v |= ¬ψ iff v 6|= ψ, and v |= ψ1 ∧ ψ2 iff v |= ψ1 and v |= ψ2.

Event-clock automata An event-clock automaton A = 〈Q, qi, Σ, δ, α〉 (ECA for short)

is a tuple, where Q is a finite set of locations, qi ∈ Q is the initial location, Σ is an

alphabet, δ ⊆ Q×Σ×Constr (CΣ)×Q is a finite set of edges, and α ⊆ Q is the set of

accepting locations. We additionally require that, for each q ∈ Q, σ ∈ Σ, δ is defined

for a finite number of ψ ∈ Constr (CΣ). An extended state (or simply state) of an ECA

A = 〈Q, qi, Σ, δ, α〉 is a pair (q, v) where q ∈ Q is a location, and v ∈ V (CΣ) is a

valuation.

Runs and accepted language The semantics of an ECA A = 〈Q, qi, Σ, δ, α〉 is best

described by an infinite transition system TSA =
〈

QA, QA
i ,→, α

A
〉

, whereQA = Q×
V (CΣ) is the set of extended states of A, QA

i = {(qi, v) | v is initial}, αA = {(q, v) |
q ∈ α and v is final}. The transition relation→ ⊆ QA×R≥0×QA∪QA×Σ×QA is

s.t. (i)
(

(q, v), t, (q, v′)
)

∈ → iff v′ = v+t (we denote this by (q, v)
t
−→ (q, v′)), and (ii)

(

(q, v), σ, (q′, v′)
)

∈→ iff there is (q, σ, ψ, q′) ∈ δ and v ∈ V (CΣ) s.t. v[−→xσ := 0] = v,

v[←−xσ := 0] = v′ and v |= ψ (we denote this (q, v)
σ
−→ (q′, v′)). We note (q, v)

t,σ
−−→

(q′, v′) whenever there is (q′′, v′′) s.t. (q, v)
t
−→ (q′′, v′′)

σ
−→ (q′, v′′). Intuitively, this

means that an history clock←−xσ always records the time elapsed since the last occurrence

of the corresponding σ event, and that a prophecy clock−→xσ always predicts the delay up

to the next occurrence of σ. Thus, when firing a σ-labeled transition, the guard must be

tested against v (as defined above) because it correctly predicts the next occurrence of σ
and correctly records its last occurrence (unlike v and v′, as v(−→xσ) = 0 and v′(←−xσ) = 0)

A sequence (q0, v0)(t0, w0)(q1, v1)(t1, w1)(q2, v2) · · · (qn, vn) is a (q, v)-run of A
on the timed word θ = (τ, w) iff: (q0, v0) = (q, v), t0 = τ0, for any 1 ≤ i ≤ n − 1:

ti = τi − τi−1, and for any 0 ≤ i ≤ n − 1: (qi, vi)
ti,wi

−−−→ (qi+1, vi+1). A (q, v)-run

is initialized iff (q, v) ∈ QA
i (in this case, we simply call it a run). A (q, v)-run on

θ, ending in (qn, vn) is accepting iff (qn, vn) ∈ α
A. In this case, we say that the run

accepts θ. For an ECA A and an extended state (q, v) of A, we denote by L(A, (q, v))
the set of timed words accepted by a (q, v)-run of A, and by L(A) the set of timed

words accepted by an initialized run of A.

3 Equivalence relations for event-clocks

A classical technique to analyze timed transition systems is to define time abstract

equivalence relations on the set of states, and to reason on the quotient transition sys-

tem. In the case of timed automata, a fundamental concept is the region equivalence [2],

which is a finite time-abstract bisimulation, and allows to decide properties of timed au-

tomata such as reachability. Contrary to a widespread belief [3], we show that the class

q0 q1 q2

b
−→xb = 1 ∧

−→xa > 1

b
−→xa = 1 a

Fig. 1. The automaton Ainf

of ECA does not benefit of these properties, as ECA admit no finite time-abstract

language equivalence.

Time-abstract equivalence relations Let C be a class of ECA, all sharing the same

alphabet Σ. We recall three equivalence notions on event clock valuations:

– . ⊆ V (CΣ)×V (CΣ) is a time abstract simulation relation for the class C iff, for

all A ∈ C, for all location q of A, for all (v1, v2) ∈ ., for all t1 ∈ R≥0, for all a ∈

Σ: (q, v1)
t1,a
−−→ (q′, v′1) implies that there exists t2 ∈ R≥0 s.t. (q, v2)

t2,a
−−→ (q′, v′2)

and v′1 . v′2. In this case, we say that v2 simulates v1. Finally, ≃ ⊆ V (CΣ) ×
V (CΣ) is a time abstract simulation equivalence iff there exists a time abstract

simulation relation . s.t. ≃ = {(v1, v2) | v1 . v2 and v2 . v1}
– ∼ is a time abstract bisimulation equivalence for the class C iff it is a symmetric

time abstract simulation for the class C.

– ≈L ⊆ V (CΣ)×V (CΣ) is a time abstract language equivalence for the class C iff

for all A ∈ C, for all location q of A, for all (v1, v2) ∈ ≈L: Untime(L(q, v1)) =
Untime(L(q, v2))

We say that an equivalence relation is finite iff it is of finite index. Clearly, any time

abstract bisimulation is a time abstract simulation equivalence, and any time abstract

simulation equivalence is a time abstract language equivalence. We prove the absence

of finite time abstract language equivalence for ECA, thanks to Ainf depicted in Fig. 1:

Proposition 1. There is no finite time abstract language equivalence for ECA.

Proof (Sketch). Assume≈L is a time abstract language equivalence on event-clock val-

uations. For any n ∈ N, let vn denote the initial valuation of C{a,b} s.t. vn(−→xa) = n and

vn(−→xb) = 0, and let θn be the timed word (b, 0)(b, 1)(b, 2) · · · (b, n−1)(a, n). Consider

the automatonAinf in Fig. 1 and observe that for all n ≥ 0, Untime(L(Ainf , (q0, v
n))) =

Untime({θn}) = {bna}. Hence for all the (infinitely many) pairs (i, j) with i 6= j:
vi 6≈L v

j , and thus ≈L is not finite. ⊓⊔

Corollary 2. There is no finite time abstract language equivalence, no finite time ab-

stract simulation equivalence and no finite time abstract bisimulation for ECA.

4 Regions and event clocks

For the class of timed automata, the region equivalence has been shown to be a finite

time-abstract bisimulation, which is used to build the so-called region automaton, a

finite-state automaton recognizing Untime(L(A)) for all timed automata A [2]. Corol-

lary 2 tells us that regions are not a time-abstract bisimulation for ECA (contrary to

what was claimed in [3]). Let us show that we can nevertheless rely on the notion of

region to build a finite automaton recognizing Untime(L(A)) for all ECA A.

Regions Let us fix a set of clocks C ⊆ CΣ and a constant cmax ∈ N. We first recall

two region equivalences from the literature. The former, denoted≈cmax , is the classical

Alur-Dill region equivalence for timed automata [2] while the latter (denoted ≈∠

cmax
)

is adapted from Bouyer [6] and refines the former:

– For any v1, v2 ∈ V (C): v1 ≈cmax v2 iff:

(C1) for all x ∈ C, v1(x) = ⊥ iff v2(x) = ⊥,

(C2) for all x ∈ C: either v1(x) > cmax and v2(x) > cmax , or ⌈v1(x)⌉ = ⌈v2(x)⌉
and ⌊v1(x)⌋ = ⌊v2(x)⌋,

(C3) for all x1, x2 ∈ C s.t. v1(x1) ≤ cmax and v1(x2) ≤ cmax : 〈v1(x1)〉 ≤
〈v1(x2)〉 if and only if 〈v2(x1)〉 ≤ 〈v2(x2)〉.

– For all v1, v2 ∈ V (C): v1 ≈
∠

cmax
v2 iff: v1 ≈cmax v2 and:

(C4) For all x1, x2 ∈ C s.t. v1(x1) > cmax or v1(x2) > cmax : either we have
∣

∣v±1 (x1)− v
±
1 (x2)

∣

∣ > 2 · cmax and
∣

∣v±2 (x1)− v
±
2 (x2)

∣

∣ > 2 · cmax ; or we

have ⌊v±1 (x1) − v
±
1 (x2)⌋ = ⌊v

±
2 (x1) − v

±
2 (x2)⌋ and ⌈v±1 (x1) − v

±
1 (x2)⌉ =

⌈v±2 (x1)− v
±
2 (x2)⌉.

Equivalence classes of both ≈cmax and ≈∠

cmax
are called regions. We denote by

Reg (C, cmax) and Reg∠ (C, cmax) the set of regions of ≈cmax and ≈∠

cmax
respec-

tively. Fig. 2 (a), (b) and (c) illustrate these two notions. Comparing (a) and (b) clearly

shows how ≈∠

cmax
refines ≈cmax by introducing diagonal constraints between clocks

larger than cmax . Moreover, (c) shows why we need to rely on v±1 and v±2 in C4: in this

case, C contains an history and a prophecy clock that evolve in opposite directions with

time elapsing. Thus, their sum remains constant over time (hence the 2 · cmax in C4).

Observe that, for any cmax , and for any finite set of clocks C, Reg (C, cmax) and

Reg∠ (C, cmax) are finite sets. A region r on set of clocks C is initial (resp. final) iff it

contains only initial (final) valuations.

Regions are not a language equivalence Since both notions of regions defined above

are finite, Corollary 2 implies that they cannot form a language equivalence for ECA.

Let us explain intuitively why it is not the case. Consider Reg
(

P{a,b}, 1
)

and the two

valuations v1 and v2 in Fig. 2 (a). Clearly, v1 can reach the region where −→xa = 1 and
−→xb > 1, while v2 cannot. Conversely, v2 can reach −→xa > 1 and −→xb = 1 but v2 cannot.

It is easy to build an ECA with cmax = 1 that distinguishes between those two cases

and accepts different words. Then, consider Reg∠
(

P{a,b}, 1
)

and the valuations v3 and

v4 (not shown in the figure) s.t. v3(−→xb) = v4(−→xb) = 1, v3(−→xa) = 4 and v4(−→xa) = 5. It

is easy to see that for Ainf in Fig. 1: Untime(L(Ainf , (q0, v
3))) = {bbba} 6= {bbbba} =

(a) 1

1

−→
xa

−→
a
−→
xb
aluations v1

and v2

(b) 1

1

−→
xa

−→
a
−→
xb

and v2aluations v1
r1

r2

r3

r4
r5

2

2

3 4 (c) 1

1

−→
xa

aluations v1

←−xa2

2

Fig. 2. The sets of regions (a) Reg
(

P{a,b}, 1
)

, (b) Reg∠
(

P{a,b}, 1
)

and (c) Reg∠
(

C{a}, 1
)

.

Dotted arrows show the trajectories followed by the valuations with time elapsing. Curved arrows

are used to refer to selected regions.

Untime(L(Ainf , (q0, v
4))), although v3 and v4 belong to the same region. Indeed, from

v3, the (q0, q0) loop can be fired 3 times before we reach −→xa = 1 and the (q0, q1)
edge can be fired. However, the (q0, q0) loop has to be fired 4 times from v4 before

we reach −→xa = 1 and the (q0, q1) edge can be fired. Remark that these are essentially

the same arguments as in the proof of Proposition 1. These two examples illustrate the

issue with prophecy clocks and regions. Roughly speaking, to keep the set of regions

finite, valuations where the clocks are too large (for instance, > cmax in the case of

Reg (C, cmax)) belong to the same region. This is not a problem for history clocks

as an history clock larger than cmax remains over cmax with time elapsing. This is

not the case for prophecy clocks whose values decrease with time elapsing: eventually,

those clocks reach a value ≤ cmax , but the region equivalence is too coarse to allow to

predict the region they reach.

Region automata Let us now consider the consequence of Corollary 2 on the notion of

region automaton. We first define two variants of the region automaton:

Definition 3. Let A = 〈Q, qi, Σ, δ, α〉 and R be a set of regions on V (CΣ). Then,

the existential (resp. universal)R-region automaton ofA is the finite transition system

RA(∃,R, A) (resp. RA(∀,R, A)) defined by
〈

QR, QR
i , Σ, δ

R, αR
〉

s.t.:

1. QR = Q×R
2. QR

i = {(qi, r) | r is an initial region}
3. δR ⊆ QR × Σ × QR is s.t.

(

(q1, r1), a, (q2, r2)
)

∈ δ iff there exists a valuation

(resp. for all valuations) v1 ∈ r1, there exists a time delay t ∈ R≥0 and a valuation

v2 ∈ r2 s.t. (q1, v1)
t,a
−−→ (q2, v2).

4. αR = {(q, r) | q ∈ α and r is a final region}

LetR =
〈

QR, QR
i , Σ, δ

R, αR
〉

be a region automaton andw be an (untimed) word over

Σ. A run ofR onw = w0w1 . . . wn is a finite sequence (q0, r0)(q1, r1) . . . (qn+1, rn+1)
of states of R s.t.: (q0, r0) ∈ Q

R
i and for all 0 ≤ i ≤ n:

(

(qi, ri), wi, (qi+1, ri+1)
)

∈
δR. Such a run is accepting iff (qn+1, rn+1) ∈ αR (in that case, we say that w is

accepted by R). The language L(R) of R is the set of all untimed words accepted by

R.

Let A be an ECA with alphabet Σ and maximal constant cmax . If we adapt and

apply the notion of region automaton, as defined for timed automata [2], to A we ob-

tain RA(∀,Reg (CΣ , cmax) , A). To alleviate notations, we denote it by RegAut∀ (A).
In the rest of the paper, we also consider three other variants: (i) RegAut∠∀ (A) =
RA(∀,Reg∠ (CΣ , cmax) , A), (ii) RegAut∃ (A) = RA(∃,Reg (CΣ , cmax) , A) and

(iii) RegAut∠∃ (A) = RA(∃,Reg∠ (CΣ , cmax) , A). Observe that, for timed automata,

all these automata coincide, and thus accept the untimed language (this can be proved

by a bisimulation argument) [2]. Let us see how these results adapt (or not) to ECA.

Recognized language of universal region automata Let us show that, in general univer-

sal region automata do not recognize the untimed language of the ECA.

Lemma 4. There is an ECA A such that L(RegAut∀ (A)) (Untime(L(A)) and such

that L(RegAut∠∀ (A)) (Untime(L(A)).

Proof (Sketch). The ECAAinf in Fig. 1 enjoys this property. We detail the arguments for

the second case. Since cmax = 1, the set of regions we consider is depicted in Fig. 2 (b)

(for the valuations where clocks are 6= ⊥). Assume there is, in RegAut∠∀ (Ainf), an edge

of the form
(

(q0, r), b, (q0, r
′)
)

were r is initial. This implies that r′ ∈ {r1, . . . , r5}
(we refer to the names in Fig. 2), because of the guard of the (q0, q0) loop. Since

Untime(L(Ainf)) = {bna | n ≥ 1}, it must be possible to accept an arbitrary num-

ber of b’s from one of the (q0, r
′). Let us show that it is not the case. From r3 and r4

we have edges
(

(q0, r3), b, (q0, r1)
)

and
(

q0, r4), b, (q0, r2)
)

. However, there is no val-

uation v ∈ r1 ∪ r2 s.t. (v + t)(−→xb) = 0 and (v + t)(−→xa) > 1 for some t. Thus, there is,

in RegAut∠∀ (Ainf), no edge of the form
(

(q0, r), b, (q0, r
′)
)

when r ∈ {r1, r2}. Finally,

there is no edge of the form
(

(q0, r5), b, (q0, r)
)

because some valuations of r5 (such as

v1) will reach r3 and some others (such as v2) will stay in r5 after the firing of the loop.

Since we consider an universal automaton, (q0, r5) has no successor. ⊓⊔

Recognized language of existential region automata Fortunately, the definition of ex-

istential region automaton allows us to recover a finite transition system recognizing

exactly Untime(L(A)), for all ECA A. Remark that, to establish this result, we cannot

rely on bisimulation arguments. Let us show that Untime(L(A)) ⊆ L(RegAut∠∃ (A)) ⊆
L(RegAut∃ (A)) ⊆ Untime(L(A)).

The two leftmost inequalities are easily established. Let (q0, v0)(t0, w0)(q1, v1)
(t1, w1) · · · (qn, vn) be an accepting run of A on θ = (τ, w). Thus, θ ∈ L(A). For

all 0 ≤ i ≤ n let ri be the (unique) region containing vi. Then, by definition of

RegAut∠∃ (A), (q0, r0)w0(q1, r1)w1 · · · (qn, rn) is an accepting run of RegAut∠∃ (A) on

w = Untime(θ). Hence Untime(L(A)) ⊆ L(RegAut∠∃ (A)). Second, since ≈∠

cmax
re-

fines ≈cmax , each accepting run (q0, r0)w0(q1, r1)w1 · · · (qn, rn) in RegAut∠∃ (A) cor-

responds to an accepting run (q0, r
′
0)w0(q1, r

′
1)w1 · · · (qn, r

′
n) in RegAut∃ (A), where

for any 0 ≤ i ≤ n, r′i is the (unique) region of Reg (CΣ , cmax) that contains ri. Hence,

L(RegAut∠∃ (A)) ⊆ L(RegAut∃ (A)).
To establish L(RegAut∃ (A)) ⊆ Untime(L(A)) we need to rely on the notion of

weak time successor. The set of weak time successors of v by t time units is:

v+w t =







(

x ∈ PΣ and v(x) > cmax

)

implies v′(x) > cmax − t
v′ ∀x : and

(

x /∈ PΣ or v(x) ≤ cmax or v(x) = ⊥
)

implies v′(x) = (v + t)(x)







As can be seen, weak time successors introduce non-determinism on prophecy clocks

that are larger than cmax . So, v+w t is a set of valuations. Let q be a location of an ECA.

We write (q, v)
t
−→w (q, v′) whenever v′ ∈ (v+w t). Then, a sequence (q0, v0)(t0, w0)

(q1, v1)(t1, w1)(q2, v2) · · · (qn, vn) is an initialized weak run, on θ = (τ, w), of an

ECA A = 〈Q, qi, Σ, δ, α〉 iff q0 = qi, v0 is initial, t0 = τ0, for any 1 ≤ i ≤ n − 1:

ti = τi− τi−1, and for any 0 ≤ i ≤ n− 1: there is (q′i, v
′
i) s.t. (qi, vi)

ti−→w (q′i, v
′
i)

wi−→
(qi+1, vi+1). A weak run is accepting iff qn ∈ α and vn is final. The weak language

wL(A) of A is the set of all timed words θ s.t. there is an accepting weak run on θ.

Clearly, L(A) ⊆ wL(A) as every run is also a weak run. However, the converse also

holds, since the non-determinism appears only on clocks larger than cmax , which the

automaton cannot distinguish:

Proposition 5. For any ECA A: L(A) = wL(A).

Then, we prove that weak time successors enjoy a property which is reminiscent of

time abstract bisimulation. This allows to establish Theorem 7.

Lemma 6. LetC be a set of clocks and let cmax be a natural constant. For any v1, v2 ∈
V (C) s.t. v1 ≈cmax v2, for any t1 ∈ R≥0, there exist t2 and v′ ∈ (v2 +w t2) s.t.

v1 + t1 ≈cmax v
′.

Theorem 7. For any ECA A = (Σ,Q, qi, δ, α): L(RegAut∃ (A)) ⊆ Untime(L(A)).

Proof (Sketch). For every run on w in the region automaton, we build a sequence of

time stamps τ s.t. θ = (τ, w) is in L(A). The main difficulty stems from the fact

that we consider an existential automaton: assume there are
(

(q1, r1), a, (q2, r2)
)

and
(

(q2, r2), b, (q3, r3)
)

in δR. Then, there are v1 ∈ r1, v′1, v2 ∈ r2 and v′2 ∈ r3 s.t.

(q1, v1)
a,t1
−−→ (q2, v

′
1) and (q2, v2)

b,t2
−−→ (q3, v

′
2) for some t1, t2, but possibly with

v′1 6= v2. Building θ by induction is thus more involved than with a universal automaton.

However, for any run of RegAut∃ (A) over a word w ∈ Σ∗, we can inductively build,

by using Lemma 6, a time sequence τ and a weak run of A over (τ, w) that visits the

same locations. By Proposition 5, this concludes the proof. ⊓⊔

Size of the existential region automaton The number of Alur-Dill regions on n clocks

and with maximal constant cmax is at most R(n, cmax) = n!×2n× (2× cmax +2)n

[2]. Adapting this result to take into account the⊥ value, we have: |Reg (CΣ , cmax) | ≤
R(2× |Σ|, cmax + 1). Hence, the number of locations of RegAut∃ (A) for an ECA A
withm locations and alphabetΣ is at mostm×R(2×|Σ|, cmax+1). In [3], a technique

is given to obtain a finite automaton recognizing Untime(L(A)) for all ECA A: first

transform A into a non-deterministic timed automaton [2] A′ s.t. L(A′) = L(A), then

compute the region automaton of A′. However, building A′ incurs a blow up in the

number of clocks and locations, and the size of the region automaton of A′ is at most

m × 2K × R(K, cmax) where K = 6 × |Σ| × (cmax + 2) is an upper bound on

the number of atomic clock constraints in A. Our construction thus yields a smaller

automaton.

5 Zones and event-clocks

In the setting of timed automata, the zone datastructure [9] has been introduced as an

effective way to improve the running time and memory consumption of on-the-fly algo-

rithms for checking emptiness. In this section, we adapt this notion to the framework of

ECA, and discuss forward and backward analysis algorithms. Roughly speaking, a zone

is a symbolic representation for a set of clock valuations that are defined by constraints

of the form x−y ≺ c, where x, y are clocks,≺ is either< or≤, and c is an integer con-

stant. Keeping the difference between clock values makes sense in the setting of timed

automata as all the clocks have always real values and the difference between two clock

values is an invariant over the elapsing of time. To adapt the notion of zone to ECA, we

need to overcome two difficulties. First, prophecy and history clocks evolve in different

directions with time elapsing. Hence, it is not always the case that if v(x) − v(y) = c
then (v + t)(x)− (v + t)(y) = c for all t (for instance if x is a prophecy clocks and y
an history clock). However, the sum of clocks of different types is now an invariant, so

event clock zones must be definable, either by constraints of the form x − y ≺ c, if x
and y are both history or both prophecy clocks, or by constraints of the form x+ y ≺ c
otherwise. Second, clocks can now take the special value⊥. Formally, we introduce the

notion of event-zone as follows.

Definition 8. For a set C of clocks over an alphabet Σ, an event-zone is a subset of

V (C) that is defined by a conjunction of constraints of the form x = ⊥; x ∼ c;
x1 − x2 ∼ c if x1, x2 ∈ HΣ or x1, x2 ∈ PΣ; and x1 + x2 ∼ c if either x1 ∈ HΣ and

x2 ∈ PΣ or x1 ∈ PΣ and x2 ∈ HΣ , with x, x1, x2 ∈ C, ∼ ∈ {≤,≥, <,>} and c ∈ Z.

Event-clock Difference Bound Matrices In the context of timed automata, Difference

Bound Matrices (DBMs for short) have been introduced to represent and manipulate

zones [5, 9]. Let us now adapt DBMs to event clocks.

Formally, an EDBM M of the set of clocks C = {x1, . . . , xn} is a (n + 1) square

matrix of elements from
(

Z×{<,≤}
)

∪{(∞, <), (⊥,=), (?,=)} s.t. for all 0 ≤ i, j,≤
n: mi,j = (⊥,=) implies i = 0 or j = 0 (i.e., ⊥ can only appear in the first position

of a row or column). Thus, a constraint of the form xi = ⊥ will be encoded with either

mi,0 = (⊥,=) or m0,i = (⊥,=). As in the case of DBMs, we assume that the extra

clock x0 is always equal to zero. Moreover, since prophecy clocks decrease with time

evolving, they are encoded by their opposite value in the matrix. Hence the EDBM

naturally encodes sums of variables when the two clocks are of different types. Each

element (mij ,≺ij) of the matrix thus represents either the constraint xi − xj ≺ij mij

or the constraint xi + xj ≺ij mij , depending on the type of xi and xj . Finally, the

special symbol ? encodes the fact that the variable is not constrained (it can take any

real value, or the ⊥ value). Formally, an EDBM M on set of clocks C = {x1, . . . , xn}
represents the zone [[M]] on set of clocks C s.t. v ∈ [[M]] iff for all 0 ≤ i, j ≤ n: if

Mi,j = (c,≺) with c 6= ? then v±(xi) − v
±(xj) ≺ c (assuming v±(x0) denotes the

value 0 and assuming that for all k ∈ Z∪{⊥}:⊥+k = ⊥−k = k+⊥ = k−⊥ = ⊥).

When [[M]] = ∅, we say that M is empty. In the sequel, we also rely on the ≤ ordering

on EDBM elements. We let (m;≺) ≤ (m′;≺′) iff one of the following holds: either (i)
m′ = ?; or (ii) m,m′ ∈ Z ∪ {∞} and m < m′; or (iii) m = m′ and either ≺=≺′ or

≺′=≤.

As an example, consider the two following EDBMs that both represent x1 = ⊥ ∧
0 < x3 − x4 < 1 ∧ x2 + x4 ≤ 2 (where x1, x2 are prophecy clocks, and x3, x4 are

history clocks):













(0,≤) (⊥,=) (?,=) (?,=) (?,=)
(⊥,=) (?,=) (?,=) (?,=) (?,=)
(0,≤) (?,=) (0,≤) (?,=) (?,=)
(?,=) (?,=) (?,=) (0,≤) (1, <)
(?,=) (?,=) (2,≤) (0, <) (0,≤)

























(0,≤) (⊥,=) (∞, <) (0,≤) (0,≤)
(⊥,=) (?,=) (?,=) (?,=) (?,=)
(0,≤) (?,=) (0,≤) (0,≤) (0,≤)
(∞, <) (?,=) (∞, <) (0,≤) (1, <)
(∞, <) (?,=) (2,≤) (0, <) (0,≤)













Normal form EDBMs As in the case of DBMs, we define a normal form for EDBM,

and show how to turn any EDBM M into a normal form EDBM M ′ s.t. [[M]] = [[M ′]].
A non-empty EDBMM is in normal form iff the following holds: (i) for all 1 ≤ i ≤ n:

Mi,0 = (⊥,=) iff M0,i = (⊥,=) and Mi,0 = (?,=) iff M0,i = (?,=), (ii) for all

1 ≤ i ≤ n: Mi,0 ∈ {(⊥,=), (?,=)} implies Mi,j = Mj,i = (?,=) for all 1 ≤ j ≤ n,

(iii) for all 1 ≤ i, j ≤ n : Mi,j = (?,=) iff either Mi,0 ∈ {(?,=), (⊥,=)} or

Mj,0 ∈ {(?,=), (⊥,=)} and (iv) the matrix M ′ is a normal form DBM [9], where M ′

is obtained by projecting away all lines 1 ≤ i ≤ n s.t. Mi,0 ∈ {(?,=), (⊥,=)} and all

columns 1 ≤ j ≤ n s.t. M0,j ∈ {(?,=), (⊥,=)} from M . To canonically represent the

empty zone, we select a particular EDBM M∅ s.t. [[M∅]] = ∅. For example, the latter

EDBM of the above example is in normal form.

Then, given an EDBM M , Algorithm 1 allows to compute a normal form EDBM

M ′ s.t. [[M]] = [[M ′]]. This algorithm relies on the function DBMNormalise(M ,S),
whereM is an (ℓ+1)× (ℓ+1) EDBM, and S ⊆ {0, . . . , ℓ}. DBMNormalise(M ,S)
applies the classical normalisation algorithm for DBMs [9] on the DBM obtained by

projecting away from M all the lines and columns i 6∈ S. Algorithm 1 proceeds in

three steps. In the first loop, we look for lines (resp. columns) i s.t. Mi,0 (resp. M0,i)

is (⊥,=), meaning that there is a constraint imposing that xi = ⊥. In this case, the

correspondingM0,i (resp.Mi,0) must be equal to (⊥,=) too, and all the other elements

in the ith line and column must contain (?,=). If we find a j s.t. Mi,j 6= (?,=) or

Mj,i 6= (?,=), then the zone is empty, and we return M∅. Then, in the second loop,

the algorithm looks for lines (resp. columns) i with the first element equal to (?,=)
but containing a constraint of the form (c,≺), which imposes that the variable i must

be different from ⊥. We record this information by replacing the (?,=) in Mi,0 (resp.

M0,i) by the weakest possible constraint that forces xi to have a value different from⊥.

This is either (0,≤) or (∞, <), depending on the type of xi and is taken care by the

SetCst() function. At this point the set S contains the indices of all variables that

are constrained to be real. The algorithm finishes by calling the normalisation function

for DBMs. Remark, in particular, that the algorithm returns M∅ iff M is empty which

also provides us with a test for EDBM emptiness.

Proposition 9. For all EDBMM , EDBMNormalise(M) returns a normal form EDBM

M ′ s.t. [[M ′]] = [[M]].

Operations on zones The four basic operations we need to perform on event-zones

are: (i) future of an event-zone Z :
−→
Z = {v ∈ V(CΣ) | ∃v

′ ∈ Z, t ∈ R≥0 : v =

1 EDBMNormalise(M) begin

2 Let S = {0} ;

3 foreach 1 ≤ i ≤ n s.t. Mi,0 = (⊥,=) or M0,i = (⊥,=) do

4 if ∃1 ≤ j ≤ n s.t. Mi,j 6= (?,=) or Mj,i 6= (?,=) then return M∅;

5 Mi,0 ← (⊥,=) ; M0,i ← (⊥,=) ;

6 foreach 0 ≤ i, j ≤ n s.t. Mi,j /∈ {(?,=), (⊥,=)} do

7 S ← S ∪ {i, j} ;

8 foreach i, j ∈ S do SetCst(Mi,j) ;

9 M ′ ← DBMNormalise(M ,S) ;

10 if M ′ = Empty then return M∅ ;

11 return M ′ ;

12 SetCst(Mi,j) begin

13 if Mi,j = (?,=) then

14 if xi ∈ PΣ and (xj ∈ HΣ or xj = x0) then Mi,j ← (0,≤) ;

15 else Mi,j ← (∞, <) ;

Algorithm 1: A normalisation algorithm for EDBMs.

v′ + t}; (ii) past of an event-zone Z :
←−
Z = {v ∈ V(CΣ) | ∃t ∈ R≥0 : v + t ∈ Z};

(iii) intersection of two event-zones Z and Z ′; and (iv) release of a clock x in Z:

relx(Z) = {v[x := d] | v ∈ Z, d ∈ R≥0 ∪ {⊥}}. Moreover, we also need to be able to

test for inclusion of two zones encoded as EDBMs. Let M , M1 and M2 be EDBMs in

normal form, on n clocks. Then:

Future If M =M∅, we let
−→
M =M∅. Otherwise, we let

−→
M be s.t.:

−→
M i,j =











(0,≤) if Mij /∈ {(⊥,=), (?,=)}, j = 0 and xi ∈ PΣ

(∞, <) if Mij /∈ {(⊥,=), (?,=)}, j = 0 and xi ∈ HΣ

Mi,j otherwise

Past If M =M∅, we let
←−
M =M∅. Otherwise, we let

←−
M be s.t. for all i, j:

←−
M i,j =











(∞, <) if Mij /∈ {(⊥,=), (?,=)}, i = 0 and xj ∈ PΣ

(0,≤) if Mij /∈ {(⊥,=), (?,=)}, i = 0 and xj ∈ HΣ

Mi,j otherwise

Intersection We consider several cases. If M1 = M∅ or M2 = M∅, we let M1 ∩
M2 = M∅. If there are 0 ≤ i, j ≤ n s.t. M1

i,j 6≤ M2
i,j and M2

i,j 6≤ M1
i,j , we let

M1∩M2 =M∅ too. Otherwise, we let M1∩M2 be the EDBM M ′ s.t for all i, j:
M ′i,j = min(M1

i,j ,M
2
i,j).

Release Let x be an event clock. In the case where M =M∅, we let relx(M) =M∅.

Otherwise, we let relx(M) be the EDBM s.t. for all i, j:

relx(M)i,j =

{

Mi,j if xi 6= x and xj 6= x

(?,=) otherwise

Inclusion We note M1 ⊆M2 iff M1
i,j ≤M

2
i,j for all 0 ≤ i, j ≤ n.

Proposition 10. Let M,M1,M2 be EDBMs in normal form, on set of clocks C. Then,

(i)
−−→
[[M]] =

[[−→
M

]]

, (ii)
←−−
[[M]] =

[[←−
M

]]

, (iii)
[[

M1 ∩M2
]]

=
[[

M1
]]

∩
[[

M2
]]

, (iv) for

all clock x ∈ C, relx([[M]]) = [[relx(M)]] and (v)
[[

M1
]]

⊆
[[

M2
]]

iff M1 ⊆M2.

Forward and backward analysis We present now the forward and backward analysis al-

gorithms adapted to ECA. From now on, we will consider an ECAA = 〈Q, qi, Σ, δ, α〉.

We also let Post ((q, v)) = {(q′, v′) | ∃t, a : (q, v)
t,a
−−→ (q′, v′)} and Pre ((q, v)) =

{(q′, v′) | ∃t, a : (q′, v′)
t,a
−−→ (q, v)} and we extend those operators to sets of states

in the natural way. Moreover, given a set of valuations Z and a location q, we abuse

notations and denote by (q, Z) the set {(q, v) | v ∈ Z}. Also, we let Post∗ ((q, Z)) =
⋃

n∈N Postn ((q, Z)) and Pre∗ ((q, Z)) =
⋃

n∈N Pren ((q, Z)), where Post0 ((q, Z)) =

(q, Z) and Postn ((q, Z)) = Post
(

Postn−1 ((q, Z))
)

, and similarly for Pren ((q, Z)).
The Post and Pre operators are sufficient to solve language emptiness for ECA:

Lemma 11 (adapted from [3], Lemma 1). Let A = 〈Q, qi, Σ, δ, α〉 be an ECA, let

I = {(qi, v) | v is initial}, and let α = {(q, v) | q ∈ α and v is final}. Then:

Post∗ (I) ∩ α 6= ∅ iff Pre∗ (α) ∩ I 6= ∅ iff L(A) 6= ∅.

Let us show how to compute these operators on event-zones. Given a location q, an

event-zone Z on CΣ , and an edge e = (q, a, ψ, q′) ∈ δ, we let:

Poste ((q1, Z)) =

{
(

q′,
(

rel←−xa

(

rel−→xa
(
−→
Z ∩ (−→xa = 0)) ∩ ψ

)

)

∩ (←−xa = 0)
)

if q1 = q

∅ otherwise

Pree ((q1, Z)) =

{
(

q,
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(

rel−→xa
(rel←−xa

(Z ∩ (←−xa = 0)) ∩ ψ)
)

∩ (−→xa = 0)
)

if q1 = q′

∅ otherwise

Then, it is easy to check that Post ((q, Z)) = ∪e∈δPoste ((q, Z)) and that Pre ((q, Z)) =
∪e∈δPree ((q, Z)). With the algorithms on EDBMs presented above, these definitions

can be used to compute the Pre and Post of zones using their EDBM encodings. Re-

mark that Pre and Post return sets of event-zones as these are not closed under union.

Let us now consider the ForwExact and BackExact algorithms to test for lan-

guage emptiness of ECA, shown in Algorithm 2. In these two algorithms Z0 denotes

the zone
∧

x∈HΣ
x = ⊥ containing all the possible initial valuations and Zf denotes the

zone
∧

x∈PΣ
x = ⊥ representing all the possible final valuations. By Lemma 11, it is

clear that ForwExact and BackExact are correct when they terminate. Unfortunately,

Fig. 3 (a) shows an ECA on which the backward algorithm does not terminate. Since

history and prophecy clocks are symmetrical, this example can be adapted to define an

ECA on which the forward algorithm does not terminate either. Remark that in the case

of timed automata, the forward analysis is not guaranteed to terminate, whereas the

backward analysis always terminates (the proof relies on a bisimulation argument) [1].

Proposition 12. Neither ForwExact nor BackExact terminate in general.

1 ForwExact begin

2 Let Visited = ∅ ; Let Wait = {(qi, Z0)} ;

3 while Wait 6= ∅ do

4 Get and remove (q, Z) from Wait ;

5 if q ∈ α and Z ⊆ Zf then return Yes ;

6 if there is no (q, Z′) ∈ Visited s.t. Z ⊆ Z′ then

7 Visited := Visited ∪ {(q, Z)} ; Wait := Wait ∪ Post ((q, Z)) ;

8 return No ;

9 BackExact begin

10 Let Visited = ∅ ; Let Wait = {(q, Zf) | q ∈ α} ;

11 while Wait 6= ∅ do

12 Get and remove (q, Z) from Wait ;

13 if q = qi and Z ⊆ Z0 then return Yes ;

14 if there is no (q, Z′) ∈ Visited s.t. Z ⊆ Z′ then

15 Visited := Visited ∪ {(q, Z)} ; Wait := Wait ∪ Pre ((q, Z)) ;

16 return No ;

Algorithm 2: The forward and backward algorithms

Proof. We give the proof for BackExact, a similar proof for ForwExact can then be

deduced by symmetry. Consider the ECA in Fig. 3 (a). Running the backward analysis

algorithm from (q2, Zf), we obtain, after selecting the transition e = (q2, b,true, q2),
the zone Z1 = −→xa = ⊥ ∧ ←−xb = 0. Then, the transition e′ = (q1, a,

−→xb = 1, q2) is

back-firable and we attain the zone Z2 = −→xa ≥ 0 ∧ −→xb ≥ 1 ∧ −→xb −
−→xa = 1. At this

point the transition e′′ = (q1, a,
←−xa = 1, q1) is back-firable, which leads to the zone

Z3 = −→xb ≥ 1 ∧ −→xa ≥ 0 ∧ 0 ≤ ←−xa ≤ 1 ∧ −→xb −
−→xa ≥ 1 ∧ −→xb +

←−xa ≥ 2. The back-firing

of the e′′ transition can be repeated, and, by induction, after n iterations of the loop,

the algorithm reaches the zone Zn = −→xb ≥ n ∧ −→xa ≥ 0 ∧ 0 ≤ ←−xa ≤ 1 ∧ −→xb −
−→xa ≥

n∧−→xb +
←−xa ≥ n+1. Thus, the condition of the if in line 14 is always fulfilled, and the

algorithm visits an infinite number of zones, without reaching q0. ⊓⊔

6 Future work: widening operators

As said earlier, the zone-based forward analysis algorithm does not terminate either

in the case of timed automata. To recover termination, widening operators have been

defined.The most popular widening operator is the so-called k-approximation on zones

[?]. Roughly speaking, it is defined as follows: in the definition of the zone, replace any

constraint of the form xi ≺ c or xi−xj ≺ c, by respectively xi <∞ and xi−xj <∞
if and only if c > k, and replace any constraint of the form c ≺ xi or c ≺ xi − xj ,

by respectively k < xi and k < xi − xj , if and only if c > k. Such an operator can

be easily computed on DBMs, and is a standard operation implemented in several tools

such as as UppAal [4] for more more than 15 years. Nevertheless, this operator has been

widely discussed in the recent literature since Bouyer has pointed out several flaws in

(a)
q0 q1 q2

a
←−
xa = 1

a

a
−→
xb = 1

b

(b)

1

1

−→
xa

−→
a
−→
xb

Z

= ClosureR(Z) \ Z

=
−→

Z \ Z

r

(c)
1

1

−→
xa

←−xa2

2

r

Z

Fig. 3. (a): An ECA for which backward analysis does not terminate. (b) and (c): Examples for

ClosureR and Approxk

the proposed proofs of soundness [6]. Actually, the k-approximation is sound when

the timed automaton contains no diagonal constraints. Unfortunately, k-approximation

is not sound when the timed automaton contains diagonal constraints, and no sound

widening operator exists in this case.

In [6], Bouyer identifies some subclasses of timed automata for which the widening

operator is provably correct. The idea of the proof relies mainly on the definition of an-

other widening operator, called the closure by regions, which is shown to be sound.

The closure by regions of a zone Z, with respect to a set of regions R is defined

as the smallest set of regions from R that have a non-empty intersection with Z, i.e.

ClosureR(Z) = {r ∈ R | Z ∩ r 6= ∅}. Then, the proof concludes by showing that

Approxk(Z) is sound for some values of k (that are proved to exist) s.t.

Z ⊆ Approxk(Z) ⊆ ClosureR(Z). (1)

In the perspective of bringing ECA from theory to implementation, provably correct

widening operators are necessary, since neither the forward nor the backward algorithm

terminate in general. We plan to adapt the k-approximation to ECA, and we believe

that we can follow the general idea of the proof in [6]. However, the proof techniques

will not be applicable in a straightforward way, for several reasons. First, the proof of

[6] relies on the following property, which holds in the case of timed automata: for

all zone Z and all location q: Post ((q,ClosureR(Z))) ⊆ ClosureR(Post ((q, Z))).
Unfortunately this is not the case in general with ECA. Indeed, consider the zone Z and

the region r in Fig. 3 (b). Clearly, r is included in
−−−−−−−−−→
ClosureR(Z) but r is not included in

ClosureR(
−→
Z) (recall that prophecy clocks decrease with time elapsing). Moreover, the

definition of the k approximation will need to be adapted to the case of ECA. Indeed, the

second inclusion in (1) does not hold when using the k-approximation defined for timed

automata, which merely replaces all constants > k by∞ in the constraints of the zone.

Indeed, consider the event-zone Z defined by←−xa + −→xa ≤ 2 in Fig. 3 (c), together with

the set of regions R = Reg
(

C{a}, 1
)

. Clearly, with such a definition, the constraint
←−xa +−→xa ≤ 2 would be replaced by←−xa +−→xa <∞, which yields an approximation that

intersects with r, and is thus not contained in ClosureR(Z). We keep open for future

works the definition of a provably correct adaptation of the k-approximation for ECA.

References

1. R. Alur. Timed automata. In Proceedings of CAV’99, volume 1633 of Lecture Notes in

Computer Science, pages 8–22. Springer, 1999.

2. R. Alur and D. Dill. A Theory of Timed Automata. Theoretical Computer Science,

126(2):183–236, 1994.

3. R. Alur, L. Fix, and T. A. Henzinger. Event-clock automata: a determinizable class of timed

automata. Theoretical Computer Science, 211(1-2):253–273, 1999.

4. G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi, and M. Hendriks.

Uppaal 4.0. In Proceedings of QEST’06, pages 125–126. IEEE Computer Society, 2006.

5. R. Bellman. Dynamic Programming. Princeton university press, 1957.

6. P. Bouyer. Forward analysis of updatable timed automata. Formal Methods in System Design,

24(3):281–320, May 2004.

7. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos: A model-

checking tool for real-time systems. In Proceedings of CAV’98, volume 1427 of Lecture

Notes in Computer Science, pages 546–550. Springer, 1998.

8. B. Di Giampaolo, G. Geeraerts, J. Raskin, and N. Sznajder. Safraless procedures for timed

specifications. In Proceedings of FORMATS’10, volume 6246 of Lecture Notes in Computer

Science, pages 2–22. Springer, 2010.

9. D. L. Dill. Timing assumptions and verification of finite-state concurrent systems. In Pro-

ceedings of Automatic Verification Methods for Finite State Systems, volume 407 of Lecture

Notes in Computer Science, pages 197–212. Springer, 1989.

10. C. Dima. Kleene theorems for event-clock automata. In Proceedings of FCT’99, volume

1684 of Lecture Notes in Computer Science, pages 215–225. Springer, 1999.

11. D. D’Souza and N. Tabareau. On timed automata with input-determined guards. In Procced-

ings of FORMATS/FTRTFT’04, volume 3253 of Lecture Notes in Computer Science, pages

68–83, 2004.

12. J.-F. Raskin and P.-Y. Schobbens. The logic of event clocks: decidability, complexity and

expressiveness. Automatica, 34(3):247–282, 1998.

13. M. Sorea. Tempo: A model-checker for event-recording automata. In Proceedings of RT-

TOOLS’01, Aalborg, Denmark, August 2001.

14. N. Tang and M. Ogawa. Event-clock visibly pushdown automata. In Proceedings of SOF-

SEM’09, volume 5404 of Lecture Notes in Computer Science, pages 558–569. Springer,

2009.

