
25

Event Correlation using Rule and Object
Based Techniques

Y. A. Nygate
AT&T- Bell Laboratories
6200 E. Broad St. - Rm. 2B253, Columbus, OH 43213, USA.
Tel: 614-860-5976 Fax: 614-868-4021 email: yossi@hercules.cb.att.com

Abstract
Today's competitive market place has forced the telecommunications industry to improve their
service and reliability. One step that telecommunications companies have taken to reduce
network failures is the installation of operations centers to collect data from network elements.
These centers are staffed by network managers who monitor network activity by correlating
alarms across various operational disciplines (switch, facility, traffic) and relating them to a
common cause. Accurate analysis is often difficult due to the volume of data and complexity of
problems.

ECXpert is a product developed recently at AT&T to help network managers monitor and
analyze alarms, take corrective actions, and minimize disruptions to the network. Successful
implementation of event correlation has increased customer revenue since trouble isolation can be

done faster, resulting in quicker restoration of service.
The essence ofECXpert is a high level language with which users can specify network events

and their correlation with alarms. The system is written in Prolog and C++, a powerful
combination which facilitated development to occur on time and in budget. It has been deployed
in network management centers throughout the U.S. and is currently being marketed overseas.
ECXpert is a success story for Prolog within AT&T.

Keywords
Network Management, TNM, Event Correlation, C++, Prolog, Meta-Languages

1 INTRODUCTION

Total Network Management (Nerys, 1993), TNM, is a very large product developed by AT&T
for domestic and international customers. The primary function of TNM is to facilitate early
problem detection and prompt repair of telecommunication network facilities and switches.
TNM users monitor line-oriented displays to analyze alarms generated by failures, correlate the

A. S. Sethi et al. (eds.), Integrated Network Management IV

© Springer Science+Business Media Dordrecht 1995

Event correlation using rule and object based techniques

alarms with knowledge of problem scenarios, and build up a picture of network events. If

necessary, a repair request is generated and users continue monitoring to verify that either the

problem cleared up or that further action is needed to solve the problem.

279

Timely generation of repair requests in response to a large volume of alarms has been

notoriously difficult to do well. One minor problem, that by itself may be of little importance,

can create a major problem when combined with other minor problems. In contrast, one major

problem might generate many additional minor problems. Typically, there are many problems

occurring concurrently in the network resulting in hundreds of active alarms intermingled on the

displays. Users need to group the alarms corresponding to problems, differentiate between

alarms that are the underlying causes and those that are results, generate repair orders, and

monitor resolution of the problem. Due to the volume of data and complexity of modern

telecommunication networks, this task has been difficult to do successfully. This problem is

often called event correlation and can be defined as the analysis and classification of multiple

messages from one or more sources to determine the underlying cause of a failure. The results of

correlating alarms correctly can be used to relate the resultant impact and symptomatic troubles

to the underlying causes.

Successful implementation of event correlation has increased customers' revenue because

trouble isolation can be done faster, resulting in quicker restoration of service. Relating cause to

service impact allows prioritization of repairs so problems that cause service outage and loss of

revenue can be assigned high priority.

This paper describes the Event Correlation Expert feature package, ECXpert, that was

incorporated into the TNM product family to help network managers speedily resolve the

problems of analysis, recognition and resolution of alarms.

2 EVENT CORRELATION IN TELECOMMUNICATIONS

2.1 Monitoring Alarms in Telephone Networks

TNM's primary function is to collect, process, and display messages received from network

elements (NEs). A typical TNM center may collect thousands of alarms per hour and depending

on the type of message, a minor, major or critical alarm may be generated or a previously received

alarm may be cleared. Network managers monitor the alarms using line-oriented displays known

as awareness screens (AS) that update every 6 seconds. The user can see up to 16 alarms on

each page of the AS and can page forward and backward to see other alarms. Each alarm is

displayed in a color corresponding to its severity: red for the most severe, blue for the least

severe, and green for cleared alarms. The main responsibility of the network managers is to

monitor the alarms, picture the current underlying network problems, generate the necessary

repair orders, and continue monitoring the network to verify that their analysis was correct and

the problem was resolved.

To explain event correlation, I shall present a running example in which the network includes

an AT&T 5ESS® switch connected to two other switches made by AT&T and another

manufacturer. Between each NE there are a pair of links that together comprise a path. In our

example, three network events occur. At 4:24 a hardware failure (XI) occurs on the link between

clli_a and clli_y, at 4:50 high traffic demand (X2) occurs at clli_z, and at 5:22 another hardware

failure (X3) occurs on the second link between clli_a and clli_y. The network and location of the

events are shown in Figure 1.

280 Part Two Performance and Fault Management

CLLI· CLLI_Z

Src Name • ATT_S_N

Code= 255-100
D

....

Rest of the

Network

T1-CAR101

ltt......__
..... Jt9......__ LS1 2.._ CLLI =CLLI_Y

FIBER·T4 LS11.._ Src Name= NTI_S_N ~
Code • 255-101

Figure 1 Example Network and Failures.

In telecommunication networks, there are often many more alarms than number of failures as

a combination of failures can create additional problems which may result in other alarms being

generated. For example, after XI and X3 occur since all the links between clli_a and clli_y fail a

path loss message will be generated. After all three failures occur, since it is impossible for traffic

to leave clli_a (as clli_z and the two links to clli_y have failed) a switch isolation message will be

generated. The set of generated alarms is a function of the nature of the problems, their location

and time of occurrence, as well as the configuration of the network. In our example, 19 alarms

were generated and displayed on the AS as shown in Figure 2. If the same three events had

occurred in different places in the network, possibly only three alarms might have been generated.

DATE TIME SYSTEM A OFFICE ZOFFICE 1ROUBLE INDICATION
09jun 5:30 nti s n CLLI Y CLLI A LINK FAIL LSI I
09jun 5:28 5e -s n CLLI-A CLLfY SWITCH ISO 255-001
09jun 5:26 5e_s_n CLLfA CLLI-Y PATH LOSS I
09jun 5:24 5e_s_n CLLCA CLLI-Y LINK FAIL 32-1
09jun 5:22 FIBER-T4 CLLfE CLLI-R HARDWARE FAIL
09jun 5:06 att s n CLLI-Z CLLfA PATH LOSS 31
09jun 5:04 att_s_ n CLLCZ CLLfA LINK FAIL 15-1
09jun 5:02 att_s_ n CLLfZ CLLfA LINK FAIL 15-2
09jun 5:00 5e -. -n CLLfA CLLI-Z PATH LOSS 5
09jun 4:58 5e_s_n CLLCA CLLfZ LINK FAIL 04-1
09jun 4:56 5e_s_ n CLLfA CLLI-Z LINK FAIL 04-2
09jun 4:56 att- s-n CLLI-Z CLLfA CNGSTNRESTART 15-1
09jun 4:55 5e -. -n CLLfA CLLI-Z OVERLOAD FAIL 04-1
09jun 4:54 5e=s=n CLLfA CLLfZ OVERLOAD FAIL 04-2
09jun 4:52 att s n CLLI-Z CLL(A CNGSTNRESTART 15-2
09jun 4:50 at(s=n CLLCZ HI 1RAFFIC DMND
09jun 4:29 nti s n CLLfY CLLI A LINK FAIL LSI 2
09jun 4:27 5e -. -n CLLI-A CLLCY LINK FAIL 32-2
09jun 4:24 T!:CARIOI CLLCD CLLfQ HARDWARE FAIL

Figure 2 Alarms Generated by Network Failures.

Event correlation using rule and object based techniques 281

In large networks, many problems occur concurrently resulting in thousands of active alarms.

Network managers would be overwhelmed if all these alarms were displayed on every users

awareness screen. TNM allows users to specifY viewing options that restrict which alarms are

displayed (such as specific switch types, or regions) and sorting options (such as by time or

severity) These options have to be used prudently. When their view is too restrictive it is often

difficult to see the 'big picture' of network problems. Whereas if they do not make enough

restrictions, they are unable to read the alarms fast enough to keep up with the flow of

information across their screens.

Although useful, viewing options do not utilize the underlying cause and effect relationship

that exists between events and alarms. Consequently, an AS will often contain many pages of

alarms caused by different problems intermingled on the screen. Because these alarms are not

grouped together, it is very difficult to construct an accurate picture of the network problems and

differentiate betw~en alarms that are the underlying causes and those that are results.

2.2 Correlation Trees and Correlation Groups

Many network problems can be depicted as a combination of alarms having a specific cause and

effect relationship. This can be depicted schematically in a correlation tree skeleton as shown in
Figure 3.

SWITCH ISO

I
PATH LOSS

I
LINK FAIL

/""' HDWRFAIL CNGSTN RESTART

OVERLOAD FAIL

I
HI TRAFFIC CEMAND

Figure 3 Correlation Tree Skeleton.

cor _group= 1 time window= 60 minutes

ifnew_msg.Trouble[l-2] =path loss precedence= 2 or
if new _msg.Trouble[l-2]=overload fail precedence =4 or
if new_ msg. Trouble[l-2]=cngstn restart precedence =4

new_msg correlates old_msg when
case old_msg.Trouble[l-3] =hi traffic dmnd

new _msg.A_ Office= old_rnsg.A_ Office or
new _msg.Z_ Office = old_msg.A_ Office

case old_msg.Trouble =anything_ else
(new_msg.A_Of!ke =old_rnsg.A_Office and

new_ msg.Z _Office= old_ msg.Z _Office) or
(new_ msg.A _Office= old_ msg.Z _Office and

new_msg.Z_Office = old_msg.A_Office)

Figure 4 Correlation Group.

In these trees, the child/parent link is equivalent to a cause and effect relationship between

messages. Equivalent messages (such as cngstn restart or overload fail) are on the same node.

Alternative children to a parent are similar to 'or' branches, that is a link fail can cause a path loss

whereas either a hardware jail or cngstn restart /overload fail can cause a link jail. However, it

does not imply that every link jail will always cause a path loss. For example, one needs all the

links between NEs to fail before a path loss occurs. This representation was chosen because

users found it intuitive as they often discussed problems in terms of cause and effect. Using

these skeletons, the 19 alarms that were generated by the three failures can be represented as a

correlation tree instances as shown in Figure 5 below.

282 Part Two Performance and Fault Management

5:28 SWITCH ISO 255-001

~~
5:26 PATH LOSS 1 5:00 PATH LOSS 5

/~
4:27 LINK FAIL 32~2

4:29LINK F AILLS1 2

4:24 HDWR FAIL T1-CAR101

5:24LINK FAIL32-1

5:30 LINK FAll LS1 1

5:22 HDWR FAIL FIBER-T4

5:06 PATH LOSS 31

/"" 4:56 LINK FAIL 04-2 4:5BLINK FAIL 04-1

5:02LINK FAIL15-2 5:04LINK FAIL15-1

I I
4:52 CNGSTN RESTART 15-2

4:54 OVERLOAD FAIL 04-2

4:50 HI TRAFFIC DMND

4:55 OVERLOAO FAll 04-1

4:56 CNGSTN RESTART 15-1

I
4:50 HI TRAFFIC OMND

Figure 5 Correlation Tree Instance.

Each node in the correlation tree is a group of one or more equivalent messages (e.g. the

overload fail at 4:55 and the cngstn restart at 4:56) and two nodes are connected if there is a

cause and effect relationship between them (e.g. the link fail at 4:58 was one of the causes of the

path loss at 5:00). Each branch of the correlation tree corresponds to a branch in the correlation

tree skeleton in Figure 3 with the leaves being the underlying causes of a current network problem

and the root being the result. In our example the skeleton contains a path loss causing a switch

iso. Since both path losses correlate the switch iso and did not correlate each other they became

separate children of the switch iso. In our example the 4 leaves (two hdwr fails and two hi traffic

dmnds are ultimately the cause of the switch iso.

3 ECXPERT

3.1 Correlation Grammar

The primary role ofECXpert is to receive alarms and to dynamically create correlation trees

based on the correlation tree skeletons. Since TNM is sold to many customers - each having

different levels of network management expertise, performance and security constraints- this

package needs to configurable in the field by the customer. ECXpert supports an expert system

shell that provides a pseudo-English description language in which users define correlation

groups that correspond to the correlation tree skeletons. Each correlation group can be viewed as

a model of a particular network problem. Using this language users specify

when a new alarm belongs to a correlation group;

when a new alarm correlates previous alarms that belonged to this group;

the cause and effect relationship between alarms;

what actions to take- e.g. automatic generation of a trouble ticket or invoking a reroute;

a time window- that is only correlate alarms that have occurred within this time window.

The correlation grammar also allows rules to execute database look ups. Administrators can,

then, write correlation groups to make use of network configuration data. For example, a rule

Event correlation using rule and object based techniques 283

might correlate the link jails occurring at 4:27 and 4:29 only if they are physically the same link.

Figure 4 above, shows some of the rules used to correlate the alarms shown in the correlation tree

skeieton in Figure 3.

A correlation group is comprised of three parts. The first part specifies the correlation group

number used when displaying the correlation trees and a time window. The second part assigns a

precedence to each type of message in this group which corresponds to the level in the

correlation tree skeleton. The third part defines when a new message correlates an old(er)

message in the group. For example, this rule states that if the first two words in the trouble field

of a newly received message are path loss, cngstn restart, or overload jail, the message will belong

to correlation group I with precedences 2, 4, and 4 respectively. Furthermore, they will correlate

an older message in this group whose first three words in the trouble field are hi traffic dmnd if

the new message's a_office field or z_office field is the same as the old message's a_office field and

both alarms occurred less than 60 minutes apart. The grammar allows administrator to define

macros; use arithmetic and string comparisons including the use of regular expression; and specify

correlation conditions using logical'and's, 'or's, and parentheses.

In a correlation group of n types of messages, there are n2 possible correlation rules. This

could be very large and cumbersome to write and maintain. To reduce the amount of typing, the

c01:relation grammar provides constructs to allow many messages of the same type to be grouped

together. For example, if we look at the rules in Figure 4, the path loss, cngstn restart, and

overload fail all use the same correlation rules. In addition, there is one specific correlation

condition for the hi traffic dmnd message, all the other messages in the group are correlated using

the anything_ else (default) correlation rule clause. This is both intuitive to the users and

compact. Using this shorthand notation, most correlation groups have O(nlog(n)) lines with

respect to the number of message types.

3.2 Dynamic Manipulation of Correlation Trees.

During normal operation, TNM receives messages from NEs and checks whether the message is

An alarm - indicating a new problem and is then assigned a severity level and is displayed

on the AS and sent to ECXpert for processing.

A clear message - indicating a previous problem that caused an alarm has been corrected

and can be removed from the AS and sent to ECXpert for processing.

An informational message that can be ignored.

As each alarm is received, ECXpert uses the correlation conditions defined by the correlation

groups to add the new alarm to all the relevant correlation trees. The algorithm to do this is quite

complex and beyond the scope of this paper. A complete description of the algorithm can be

found in (Nygate, 1994). In general, as each alarm is processed one or more of the following

actions are taken. The new alarm may

Be added to a tree- indicating that this alarm is part of a larger problem.

Start a new tree - indicating a new problem.

Combine a number of trees- indicating that what were a few small problems before were

really only part of a larger one.

Split a tree - indicating that an underlying cause is responsible for two or more problems.

284 Part Two Performance and Fault Management

Clear an old message - indicating that this problem has now been resolved. This causes

the tree to begin to decompose and if nothing new is added; it will eventually disappear.

4 HOW ECXPERT WAS DEVELOPED

The use of single knowledge representations and techniques for knowledge based system has

been widely used (Abelson and Sussman, 1985). Successful applications have been reported in

the literature in diagnostic systems (Shortliffe, 1976), planners (Ambros-lngerson and Steel,

1988) and heuristic classification (Clancey, 1983).

However, many problems do not suit the problem solving characteristics of any one

particular technique and need to be attacked by a variety of methods. Advocates of applying

multiple methods in a single system (Fikes and Kehler 1985) contend that just as a carpenter has

many tools, each specialized to its purpose, so should there be many tools in the programmer's

kit (Bobrow and Stefik, 1986). Trying to solve a problem that does not fit well into a particular

technique may result in programs that are buggy, slow, awkward and long. However, integrating

multiple methods does incur a cost. For example, modules may be required to transform between

different representations of the same information to optimize processing. But, if the cost is

small, the benefits are great. Programmers can choose the most applicable problem solving

technique to the module in question.

ECXpert integrates C++ and Prolog in a design that utilizes the run-time efficiency and

support for object oriented design of C++ with the powerful meta-programming, semantic

parsing, and pattern matching features ofProlog. The design and development ofECXpert was

based on ASPEN (Nygate and Sterling, 1993), a new multi-paradigm method for developing

knowledge based systems. ASPEN draws on the strengths of those that tout the clarity and

success of single problem solving techniques with those who advocate the power and flexibility

of multiple methods for software development. This compromise is achieved by providing a

structured decomposition that allows each module to use different knowledge based techniques

while defining a set number of modules with well delimited borders and functionalities. More

information on ASPEN can be found in (Nygate, 1994).

ECXpert is comprised of four main modules- a correlation process, a correlation group

compiler, a test correlation process, and a user interface.

4.1 Correlation Process

The correlation process is comprised of a C++ object for collecting alarms from TNM, a Prolog

object for executing the correlation algorithm, and a C++ object to manipulate the database

containing the composite alarm objects, that is the correlation trees.

The Prolog object can be viewed as a forward-chaining correlation engine that takes each

alarm, find what rules it matches and fires a set of rules to update the correlation trees. As each

alarm is processed, the Prolog object determines with which trees the new message correlates.

Then using the algorithm mentioned in section 3.2, it determines the actions the database object

must execute to update the correlation trees.

The correlation process contains 5000 line of C++ code, including 1500 lines for data

structure conversion between C++ objects and Prolog lists; 1700 lines of static Prolog code to

implement the correlation algorithm; and typically 2500 lines of user-supplied correlation rules.

Event correlation using rule and object based techniques 285

4.2 The Correlation Group Compiler

The correlation group compiler is written in Prolog and converts user supplied correlation rules

into Prolog Hom clauses (Kowalski, 1979). These rules are then dynamically linked with the

correlation process. The syntax of the correlation grammar can be specified using a Definite

Clause Grammar. Prolog's support for DCGs made the code generation straightforward. As

mentioned in section 3.1, the correlation grammar provides a compact notation for combining

multiple correlation rules by using 'or's. The compiler expands the disjunctions on the left hand

side of the correlation rules and convert them into Hom Clauses. More information on the use of

Prolog in ECXpert can be found in (Nygate, 1994).

The development ofECXpert is typical of the meta-programming approach to develop

knowledge-based systems as advocated by (Sterling, 1990) and described by (Omit Yal9inalp,

1991) in her Ph.D. thesis. A high-level language is developed for the application which can be

easily compiled into Prolog or executed directly with a simple interpreter.

A typical correlation group contains 100 lines which is compiled into about 250 lines of

Prolog code in 5 seconds. The tokenizer, code generator, and a user friendly error handling

subsystem to help administrators find and fix syntax errors totals 1500 lines ofProlog code.

4.3 User Interface

When a user selects an alarm on the awareness screen, this module retrieves all the correlation

trees to which this alarm belongs and displays them in a pop-up window on the AS monitors.

For example, suppose the user selected the link fail received at 5:24 on the awareness screen, the

correlation window that would be displayed is shown in Figure 6 below.

********** CORRELATION WINDOW**********

PRECEDENCE DATE TIME L SYSTEM A OFFICE Z OFFICE TROUBLE INDICATION

SELECTED: 09jun 5:24 2 5e_s_n CLLI_A CLLI_Y LINKFAIL32-I

***************** CORRELATION GROUP 1 *****************
09jun 5:28 2 5e_s_n CLLI_A CLLI_Y SWITCH ISO 255-001

2 09jun 5:26 2 5e s n CLLI A CLLI Y PATH LOSS I
09jun 5:30 2 nti-::_s::_n CLL(Y CLL(A LINK FAIL LSI I

+ 09jun 5:24 2 5e_s_n CLLI_A CLLI_Y LINK FAIL 32-I

4 09jun 5:22 I FIBER-T4 CLLI_E CLLI_R HARDWARE FAIL

3 09jun 4:29 2 nti s n CLLI_Y CLLI_A LINK FAIL LSI 2
+ 09jnn 4:27 2 5e_s_n CLLI_A CLLI_Y LINKFAIL32-2

4 09jun 4:24 I Tf:CARI01 CLLI_D CLLI_Q HARDWAREFAIL
2 09jnn 5:06 2 att s n CLLI Z CLLI A PATH LOSS 31

+ 09jun 5:00 2 5e_:::s_:::n CLL(A CLL(Z PATH LOSS 5

3 09jun 5:04 2 att s n CLLI_Z CLLI_A LINK FAIL I5-I

+ 09jun 4:58 2 5e_:::s_:::n CLLI_A CLLI_Z LINK FAIL 04-I

4 09jun 4:56 2 5e_s_n CLLI_A CLLI_Z CNGSTN RESTART I5-I

+ 09jun 4:55 2 att_s_n CLLI_Z CLLI_A OVERLOAD FAIL 04-I
5 09jun 4:50 2 att_s_n CLLI_Z HI TRAFFIC DMND

3 09jun 5:02 2 att s n CLLI_Z CLLI A LINK FAIL I5-2

+ 09jun 4:56 2 5e_:::s_:::n CLLI_A CLLCZ LINKFAIL04-2

4 09jun 4:54 2 att_s_n CLLI_A CLLCZ OVERLOAD FAIL 04-2

+ 09jun 4:52 2 att_s_n CLLI_Z CLL(A CNGSTN RESTART I5-2

5 09jun 4:50 2 att s n CLLI Z HI TRAFFIC DMND

Figure 6 Correlation Window.

286 Part Two Performance and Fault Management

The precedence column corresponds to the precedence in the correlation grammar which
allows users to reconstruct the correlation tree. The rest of the columns contain relevant data
that also appeared on the awareness screen. For example, the hi traffic dmnd at 4:50 is a child of
the cngstn restart at 4:52; and the link fail at 4:56 and the link fail at 4:58 are both children of the
path loss at 5:00 which is in turn the child of the switch iso at 5:28. The overload fail at 4:55 and
the cngstn restart at 4:56 are equivalent messages with the cngstn restart being the primary
message.

Alarms in the correlation window are displayed in the same colors as on the AS, red for the
most severe, blue for the least, and cleared alarms in green.

Since many groups can be active at once, the selected message can be in more than one group
and each group can span more than one page. The user is able to scroll forward and backwards in

the correlation screen looking at each group and page.
The correlation algorithm can also handle missing data. If, for example, neither of the path

loss messages at 4:58 and 5:04 were received, the overload fail at 4:55 and cngstn restart at 4:56
would have become children ofthepath loss at 5:06. The precedence column of the correlation
window would display a minus sign to signify that a message was missing as shown in Figure 7.

2 09jun 5:06 2 att s n CLLI Z CLLI A PATII LOSS 31
+ 09jun 5:00 2 5e=:s=:n CLL(A CLL(Z PATII LOSS 5

4 09jun 4:56 2 5e_s_n CLLI A CLLI Z CNGSTN RESTART 15-1
+ 09jun 4:55 2 att_s_n CLLCZ CLL(A OVERLOAD FAIL 04-1

5 09jun 4:50 2 att s n CLLCZ HI TRAFFIC DMND

Figure 7 Correlation Window with Missing Messages.

4.4 Test Correlation Process

To facilitate the administrator's role in writing correlation groups we provided a grammar that
was intuitive, powerful and compact. In addition, once all the syntax errors in the correlation
group were fixed, the administrators were able to verify that the semantics of the correlation
group were correct using a test correlation process that incorporated the 'how' and 'why' (Sterling
and Shapiro, 1986) tools used in Expert Systems. Administrators were able to provide an input
file of high level alarms using the same format as displayed on the AS, send them one by one
through a test correlation process and find out 'why' certain messages belonged to which
correlation group and 'how ' they correlated with other, older, messages in the group. Once they
were satisfied with the results, they could then install the correlation group.

5 USING THE CORRELATION TREE

ECXpert and its use of correlation trees provides many powerful ways of enhancing the
effectiveness of network managers. The most obvious and direct improvement utilizes the fact
that the leaves of the tree are the causes of the network problem with the root being the
consequence. Thus in our example, if a user sees a switch iso, he/she can bring up the
corresponding correlation window and see that the causes (leaves) are the two hardware fails and
the hi traffic dmnd and dispatch a repair order to fix these problems immediately. Each of the
'leaf alarms occur frequently and they typically do not have any major network impact. Without

Event correlation using rule and object based techniques 287

correlation the leaf alarm would not have been fixed as quickly as other more obvious alarms.

Once one of the leaves is fixed, all the messages in its branch often become cleared as well. If
enough leaves are cleared, the r9ot becomes cleared too. This is clearly shown in the correlation
window and allows the user to execute retroactive analysis to see what combination of alarms
(i.e. leaves) caused a network event, and how it was resolved (i.e. green branches).

A far more sophisticated but extremely useful feature ofECXpert, is to display on the AS
only the alarms that correspond to the roots and the leave in the correlation tree while
suppressing intermediate nodes in the tree. This has the immediate impact of reducing clutter on

the awareness screens while leaving the critical nodes that show the overall network problems

with their corresponding underlying causes.
Users can also set the AS restrictions to show a specific class or set of alarms. Whenever the

Event Correlation window is invoked, all the alarms that correlate with the selected alarm are

shown. This allows users to peruse the high level alarms but still have access on demand to all

the low level contributing alarms. Other features include

Escalating all the alarms in the correlation tree to the severity of the most severe alarm in
that tree. For example, if a critical alarm (displayed as red) is added to a tree, all the

alarms in the tree would be escalated and be displayed in red.
Predicting what other problems must occur before a more serious network situation will
occur. This is a very powerful feature as it allows users to estimate how far the network

is away from a catastrophe and they can then protect/reserve the critical remaining

resources.
Allowing users to define actions in the correlation group such as setting off audible alarms

(particularly useful during night shifts!), generating reports, generating new alarms,
automatically starting a repair procedure, etc.

6 RESULTS AND EXTENSIONS

ECXpert has been installed in a number of sites in the U.S. and Europe. The initial. customers, at

NYNEX (NET and NYT), have been using event correlation to manage their SS7 network since

1992. Many other TNM users have since purchased ECXpert including PacBell, Bell South,
SNET, and Bell Atlantic, to correlate alarms in various parts of their network. In addition, TNM

has managed to attract 3 other large domestic customers that previously used our main
competitor's product partially due to the functionality provided by ECXpert.

ECXpert has increased customer revenue by reducing the amount of time to isolate and repair
network problems. Current estimates show that due to decreased network down time and
reduced labor costs, savings at a typical U.S. network operation center are in the range of

$500,000 and $1,000,000 a year.

The current version ofECXpert can correlate about 1000 alarms per hour with 10 correlation
groups active. Although this meets customers current use of the feature package, users are

becoming more sophisticated and are adding more and more correlation groups. ECXpert is
currently running on a Tandem FT computer and is competing for resources with the rest of

TNM. A future release will provide increased performance by allowing ECXpert to run on an

adjunct processor.

Other enhancements currently under development include adding a graphics correlation

window and replacing the relational database that stores the correlation tree with an object

288 Part Two Performance and Fault Management

database. We are also working on a learning module to derive correlation groups automatically.

For example, suppose in a number of 5 minute windows the messages A, B, C, D, and E occurred

in sequence and they all had a common A Office or Z Office .. The learning module could generate

a correlation group with A causing B, B causing C, etc. We denote this as A--+B--+C--+D--+E.

Now suppose there were other instances that consisted of (F, B, C, D, E). The learning module

could now derive a correlation group with (A or F)--+B--+C--+D--+E.
This is a valuable feature as many of our customers do not know all the alarm types and how

they should be correlated to network events. We do supply a default set of correlation groups,

but the customer needs to configure and add rules to match their particular network needs. The

search will be directed by meta-correlation rules written by the customer that will allow them to

specify time windows, fields of interest, and strength (that is how many times must a pattern

repeat before it is more than just a coincidence). The groups will then be generated automatically

and presented to the users for modification, installation, and sometimes for deletion as chance

patterns of messages can be grouped.

7 CONCLUSION

Some indication of the benefits ofProlog for this project can be gained by comparing it with

another knowledge-based, network management feature package developed for TNM. This

application analyzed error messages generated by the SESS switch and recommended repair

procedures. CS was used to implement rules collected from 2 experts from the New England

Telephone Company. One problem limiting general deployment of this package is that the

recommended repair procedures vary between customers. Companies often had different

recommendations as to what to try first, what procedures are too risky, what actions are

considered a breach of security, etc. Thus, although the system had a large amount of expertise,

it was very inflexible and narrow. In contrast to Prolog, a meta-programming approach is not

supported by CS. Although they used a pseudo-English description language to capture the

experts knowledge, no compiler could be written and the hand encoding into CS led to many

misinterpretations and errors.

Meta-programming is a very powerful feature and useful technique that contributed to the

success ofECXpert. Each customer can write their own correlation groups or modify the default

groups we provide. They can then compile, test and use these groups in the field without having

to interact with AT&T and request that we make the changes. Thus, new correlation groups can

be added very quickly and the system can be configured to match each customers individual

needs. Prolog not only facilitates the use of meta-programming, but it also allows changes to be

dynamically linked with running processes. That is, there is no need to recompile the entire

correlation process to use the new set of correlation groups. Nor is there even any need to stop

the correlation process. Rather, correlation groups can be complied off-line and then linked

dynamically with the running process.

Event correlation is not restricted to telecommunications, but is applicable to many other

domains where order must be made of a large volume of related messages. I have spoken to

people who have worked as air traffic controllers, power station operators, and chemical plant

engineers. They all indicated their need to correlate large volumes of data collected from many

pieces of equipment. Moreover, the knowledge required to group these messages together can

also be represented as correlation tree skeletons. Thus, the correlation tree skeletons and the

correlation algorithm used in ECXpert can be reapplied in many other domains, and should be

Event correlation using rule and object based techniques 289

included as a new generic task in problem solving (Chandrasekaran, 1986). Due to the

importance of solving event correlation in leading our competitors and in its potential in other

fields, a patent application with the specifics of my algorithm has already been filed by AT&T.

In conclusion, the multi-paradigm implementation provided a powerful environment that

enabled us to combine the strengths oflogic and object oriented programming. The user

definability, dynamic linking, and the high level of abstraction provided by the correlation groups

have been keys to success. Customers have a syntax that is powerful enough to configure the

system the way they want using a language they can understand.

8 REFERENCES

Ambros-lngerson, J. A. and Steel, S. (1988) Integrating Planning, Execution, and Monitoring,

Proceedings AAAI, 83-88.

Abelson, H. and Sussman, G. (1985) Structure and Interpretation of Computer Programs, MIT

Press, Cambridge.

Bobrow, D. and Stefik, M. (1986) Perspectives in Artificial Intelligence Programming, Readings

in AI and Software Engineering, Morgan Kaufmann, California.

Chandrasekaran, B. (1986) Generic Tasks in Knowledge Based Reasoning: High Level Building

Blocks for Expert System Design, IEEE Expert, 1(3), 23-30.

Clancey, W. (1983) Heuristic Classification, AI Journal, 27.

Fikes, R.; Kehler, T. (1985) Communications of the ACM, 28, 904.

Kowalski, R. (1979) Logic for Problem Solving, North-Holland, Amsterdam.
Nerys, C. (1993) The Complete Diagnostic Tool: Total Network Management, Network Edge

AT&T, 18-22.
Nygate, Y. (1994) ASPEN- Structuring Design of Complex Knowledge Based Systems, Ph.D.

thesis, Case Western Reserve University.

Nygate, Y. and Sterling, L. (1993) ASPEN- Designing Complex Knowledge Based Systems, 1Oth

Israeli Symposium on Artificial Intelligence, 51-60.

Shortliffe, E. H. (1976) MYCIN: Computer-Based Medical Consultations, Else/vier, New York.

Sterling, L. (1990) Meta-Programming in Logic Programming Tutorial Notes, Meta 90, Leuven,

Belgium.

Sterling, L. and Shapiro E. (1986) The Art of Prolog, MIT Press, Cambridge MA.

Yal~inalp, L. U. (1991) Meta-Programming for Knowledge-Based Systems in Prolog, Ph.D.

thesis, Case Western Reserve University.

9 BIOGRAPHY

Yossi Nygate has been employed by AT&T Bell Labs for the past ten years. He has been

responsible for developing telecommunication network management systems integrating C++, C,

and Prolog for domestic and international customers. He received his Ph.D. in computer science

from Case Western Reserve University in 1994. The focus of his research was on problem

solving systems integrating multiple techniques. He received his M.Sc. in computer science from

the Weizmann Institute of Science in 1985 in the area of Expert Systems. His current areas of

interest include practical applications of AI, planning, and automated learning.

