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Abstract— This paper studies the event design in event-
triggered feedback systems with asymptotic stability. A new
event-triggering scheme is presented that may postpone the
occurrence of events over previously proposed methods. Our
approach pertains to nonlinear state-feedback systems. The
resulting event-triggered feedback systems are guaranteed to be
asymptotically stable, provided that the continuous systems are
stabilizable. We also show that the task periods and deadlines
generated by our scheme are bounded strictly away from zero if
the continuous systems are input-to-state stable with respect to
measurement errors. Simulation results indicate that our event-
triggered scheme has a much larger average period compared
with the prior work. Moreover, our scheme also appears to be
robust to task delays.

I. INTRODUCTION

Sampled-data systems sample continuous signals and use

computers to make control decisions based on the sam-

pled data. A great challenge of implementing sampled-data

systems is to determine the sample periods such that the

resulting systems achieve a desired level of performance.

Traditional approaches are based on periodic task models,

in which consecutive invocations of a task are released in a

periodic manner. Lyapunov techniques were used in Zheng

et al. [1] for a class of nonlinear sampled-data systems.

Following that, Nesic et al. [2] used input-to-state stability

(ISS) techniques to bound the inter-sample behavior of

nonlinear systems. Lp stability of such sampled-data systems

was considered in [3]. For networked control systems, the

maximum admissible time interval (MATI) was introduced

by Walsh et al [4]. Further work was done in [5], [6].

As we mentioned above, the preceding approaches are

all based on periodic task models. Such models may be

undesirable in many situations due to their conservativeness.

Under periodic task models, the selection of sample periods

is done before the system is deployed. One therefore has to

ensure adequate behavior over a wide range of uncertainties.

As a result, these selected periods may be shorter than

necessary, which results in significant over-provisioning of

the real-time system hardware. This over-provisioning may

negatively impact the scheduling of other tasks on the same

processing system. In these applications it may be better to

consider alternatives to periodic task models that can more

effectively balance the real-time system’s computational cost

against the control system’s performance.

In recent years, sporadic task models have been consid-

ered for real-time control. A hardware realization of such

models is called event-triggering. Under event-triggering the

system states are sampled when some error signal exceeds a

given threshold [7], [8], [9], [10]. Event-triggering requires

a hardware event detector that may be implemented using

custom analog integrated circuits (ASIC’s) or floating point

gate array (FPGA) processors. A software realization of these

sporadic task models is called self-triggering. Under self-

triggering the next task release time is predicted by the

processing computer based on the current sampled state [11],

[12], [13]. This software approach may be appropriate when

the hardware implementation is unacceptable.

Both realizations of sporadic task models have the ability

to dynamically adjust the task periods to variations in the

system state. This “on-line” property enables event/self-

triggering to generate longer task periods than periodic task

models [13]. One thing worth mentioning is that, provided

the cost associated with using ASIC/FPGA hardware is

acceptable, event-triggering has a lower computational cost

than self-triggering and usually generates longer sample

periods since self-triggering periods are usually conservative

estimates of the periods generated by event-triggering.

This paper studies the event design for event-triggered

feedback systems with asymptotic stability. In all of the prior

work considering stability of event/self-triggered feedback

systems [9], [10], [12], [13], the same Lyapunov function

V is shared by the continuous closed-loop system and the

sampled-data system. Meanwhile, V is required to be mono-

tone decreasing in the sampled-data system as it is in the

continuous system. This is not necessary. As noted in earlier

work on switched system stability, we can still guarantee

asymptotic stability as long as an appropriate subsequence of

V is monotone decreasing [14]. V need not be decreasing all

the time. What this means is that we can lengthen the period

between events by adopting this less restrictive condition on

V in the sampled-data system.

Based on this idea, a new event-triggering scheme is

presented. Our approach pertains to nonlinear state-feedback

systems. The resulting event-triggered feedback systems are

guaranteed to be asymptotically stable, provided that the

continuous systems are stabilizable. We also show that the

task periods and deadlines generated by our scheme are

bounded strictly away from zero if the continuous systems

are input-to-state stable with respect to measurement errors.

Simulation results indicate that our event-triggered scheme

has a much larger average period than the event-triggered

scheme proposed in [9], the self-triggered scheme in [13],

and the MATI in [6]. Moreover, our scheme also appears to

be robust to task delays.

This paper is organized as follows. In section II the prob-

lem is formulated. Section III presents the event-triggering

scheme. Event-triggered feedback systems with non-zero

delays are considered in section IV. Simulation results are

presented in section V. Finally, conclusions are stated in
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section VI.

II. PROBLEM FORMULATION

Consider a nonlinear system with the state equation

ẋ(t) = f(x(t), u(t))

u(t) = γ(x(t)) (1)

x(0) = x0

where x : [0,∞) → Rn is the state trajectory, x0 ∈ Rn

is the non-zero initial state, and u : [0,∞) → Rm is a

control input. In the above equation, f : Rn × Rm → Rn

and γ : R
n → R

m are locally Lipschitz functions.

Assumption 2.1: For the continuous closed-loop system

in equation 1, assume that there exist positive constants

L, α, α, β, β, L1 ∈ R+, a positive definite, C1 function V :
Rn → R+, and two class K functions α1, α2 : R+ → R+

such that

‖f(x, γ(x + e))‖ ≤ L‖x‖ + L‖e‖ (2)

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (3)

−αV (x) − β‖e‖
∂V (x)

∂x
f(x, γ(x + e)) ≤ −αV (x) + β‖e‖ (4)

α−1
1 (‖x‖) ≤ L1‖x‖ (5)

hold for all x, e in a compact set.

Remark 2.1: Equation 4 implies the continuous system

ẋ = f(x, γ(x + e)) is ISS with respect to e. It also suggests

that the continuous closed-loop system in equation 1 is

exponentially stable. Further discussion on this assumption

can be seen in [9].

Remark 2.2: For a linear time invariant system

ẋ(t) = Ax(t) + Bu, u = Kx, x(0) = x0, (6)

assumption 2.1 is satisfied as long as the system defined in

equation 6 is asymptotically stable. Assume W = xT Px is

Lyapunov function of this LTI system. Then V =
√

W =√
xT Px is also a Lyapunov function. Let Q = −P (A +

BK) − (A + BK)T P > 0. So we have

L = max{‖A + BK‖, ‖BK‖},
α = 1

2σmax(P
−1Q), α = 1

2σmin(P−1Q),

β = β = ‖
√

PBK‖, L1 = 1√
σmin(P )

.
(7)

where σmin(P ) denote the minimum singular value of P .

A sampled-data implementation of the closed-loop system

in equation 1 is

ẋ(t) = f(x(t), u(t))

u(t) = γ(x(rk)) (8)

x(0) = x0

for t ∈ [fk, fk+1) and all k = 0, . . . ,∞, where rk denotes

the time when the kth invocation of a control task (also

called “job”) is released for execution on the computer and

fk denotes the time when the kth job has finished executing.

We assume that the system state is also sampled at rk. To

simplify the notation, let Tk = rk+1 − rk denote the kth

sample period, Dk = fk − rk denote the kth task delay. We

also define ek : R+ → R as ek(t) = x(t) − x(rk) over

t ∈ [rk, fk+1) for k ∈ Z
+, which is the measurement error.

This paper considers how to reduce the usage of the

computational resource subject to the guarantee that the

sampled-data system is asymptotically stable. The main idea

is to use the violation of events to trigger the release of the

task so that (1) the event-triggered system is asymptotically

stable and (2) the sample periods can be as long as possible.

In the following sections, we will present our approach

to designing such events and discuss the robustness of

the resulting event-triggered feedback system to external

disturbances and delays.

III. EVENT-TRIGGERED FEEDBACK SYSTEMS

This section introduces the approach to designing the

events that are used to trigger the tasks’ release such that

the resulting event-triggered feedback system has asymptotic

stability. To show asymptotic stability of such a system, we

only need to show the existence of a piecewise continuous

function h : R+ × Rn → R+ such that

h(t|x0) ≥ V (x(t|x0)), for all t ∈ R
+ (9)

lim
t→∞

h(t|x0) = 0, (10)

hold, where x is the state trajectories of the resulting event-

triggered feedback system. Since x is also a function of t,
we use V (t) to denote V (x(t|x0)).

The results in this section focus on sampled-data systems

where rk = fk holds for all k ∈ Z+. We will propose an

event-triggering scheme and show that the resulting system is

asymptotically stable and the sampling period Tk is bounded

from below by a positive constant. To show this, we first

introduce a lemma, which will be used in the later proofs.

Lemma 3.1: For two C1 functions p, q : R+ → R, assume

ξ ∈ R+ is the smallest positive solution to p(t) = q(t). The

following statements hold:

1) If p(0) = q(0), q̇(0) < ṗ(0), and t∗ > 0 satisfies

p(t∗) ≤ q(t∗), then t∗ ≥ ξ;

2) If p(0) > q(0) and t∗ > 0 satisfies p(t∗) ≤ q(t∗), then

t∗ ≥ ξ;

3) If p(0) = q(0) and q̇(0) < ṗ(0), then p(t) ≥ q(t) for

all t ∈ [0, ξ);
4) If p(0) > q(0), then p(t) ≥ q(t) for all t ∈ [0, ξ).

Proof: It can be easily shown taking advantage of the

continuity of p, q, ṗ, q̇.

Theorem 3.2: For the sampled-data system in equation 8,

let assumption 2.1 hold and Dk = 0 for all k ∈ Z
+. If r0 = 0

and the k + 1th task release is triggered by the violation of

V (t) ≤ −δαV (rk)(t − rk) + V (rk), (11)

where δ ∈ (0, 1), then the sampled-data system is asymptot-

ically stable and there exists a positive constant ξ > 0, such

that the sample period, Tk, satisfies Tk ≥ ξ.
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Proof: We first show that the sampling period Tk is

bounded from below by a positive constant. By equation 2,

d

dt
‖ek(t)‖ ≤ ‖ẋ(t)‖ ≤ 2L‖ek(t)‖ + L‖x(rk)‖

holds for all t ∈ [rk, rk+1). Solving this differential inequal-

ity with the initial condition ek(rk) = 0 yields

‖ek(t)‖ ≤ ‖x(rk)‖
2

(

e2LTk − 1
)

(12)

for all t ∈ [rk, rk+1). According to equation 3 and 5,

‖x(rk)‖ ≤ α−1
1 (V (rk)) ≤ L1V (rk) (13)

holds. Applying equation 12 and 13 into equation 4 leads to

the inequality V̇ (t) ≤ −αV (t) + βL1V (rk)
2

(

e2LTk − 1
)

for

t ∈ [rk, rk+1). Solving this differential inequality with the

initial condition V (rk) provides

V (t) ≤ V (rk)e−α(t−rk)

−βL1V (rk)
2α

(

e2LTk − 1
) (

e−α(t−rk) − 1
)

(14)

for all t ∈ [rk, rk+1). Because rk+1 is triggered by the

violation of equation 11,

V (rk+1) = −δαV (rk)Tk + V (rk) (15)

holds. Combining equation 14 and 15 yields

p(Tk) , −αδTk + 1

≤ e−αTk − βL1

2α

(

e2LTk − 1
) (

e−αTk − 1
)

, q(Tk).

It is obvious that p(0) = q(0) = 1 and q̇(0) = −α <
ṗ(0) = −αδ. Therefore, using lemma 3.1, we conclude

Tk ≥ ξ, (16)

where ξ is the smallest positive solution to the equation

p(t) = q(t).
We now show asymptotic stability of the resulting system.

First, define the function h(t|x0) as:

h(t|x0) = −δαV (rk)(t − rk) + V (rk), ∀t ∈ [rk, rk+1). (17)

Because rk+1 is triggered by the violation of equation 11,

V (t) ≤ −δαV (rk)(t − rk) + V (rk) = h(t|x0) (18)

holds for all t ∈ [rk, rk+1), k ∈ Z+.

To show asymptotic stability of the system, we still need

to show limt→∞ h(t|x0) = 0. By the definition of h(t|x0)
in equation 17, we know h(t|x0) is differentiable for t ∈
(rk, rk+1). By equation 3, the derivative of h(t|x0) is

ḣ(t|x0) = −δαV (rk) ≤ −δα · α1(‖x(rk)‖) (19)

for all t ∈ (rk, rk+1), which means h(t|x0) is decreasing

over (rk, rk+1).
Although h(t|x0) may not be differentiable at t = rk for

some k ∈ Z+, it satisfies

lim
t→r

−

k

h(t|x0) = lim
t→r

+

k

h(t|x0) = h(rk|x0),

lim
t→r

−

k

ḣ(t|x0) ≤ −δα · α1(‖x(rk−1)‖), and

lim
t→r

+

k

ḣ(t|x0) ≤ −δα · α1(‖x(rk)‖) (20)

which means for any k ∈ Z
+, h(t|x0) is continuous at t = rk

and the left-hand and right-hand sided derivatives of h(t|x0)
at t = rk are both negative. Since equation 16 holds, rk →
∞ holds. Combining this with equation 19 and 20 yileds

lim
t→∞

h(t|x0) = 0. (21)

Since equation 18 and 21 are satisfied, we can conclude

that the sampled-data system is asymptotically stable.

Remark 3.1: For any k ∈ Z+, rk+1 is triggered when

V (t) intersects the straight line V (t) = −δαV (rk)(t −
rk) + V (rk). This line serves as the threshold. However,

using linear functions of t as the thresholds is not the only

choice for the threshold. Nonlinear functions can also be

used as long as the sequence {x(rk)}∞k=1 converges to zero

and rk+1 − rk > 0 holds for all k ∈ Z+.

IV. NON-ZERO DELAYS

In this section, we consider event-triggered feedback sys-

tems with non-zero delays and show the existence of a non-

zero deadline for the delays with the guarantee of system

stability. The main idea is to use an upper bound of V (fk) as

the starting point of the threshold line. rk+1 is still triggered

when V (t) intersects the threshold line. To ensure the system

stability, we need to properly choose the deadline such that

the sequence {V (rk)}∞k=1 converges to zero. In that way, a

piecewise continuous h(t|x0) can be constructed satisfying

equation 9 and 10. This is shown in figure 1, where the

horizontal axis is time, the vertical axis is the energy V , the

solid curve is the trajectory of V (t), and the dashed lines are

the threshold lines.

rk−1 rkfk−1 fk rk+1 fk+1 rk+2

t

threshold lines

V (t)

Fig. 1. The trajectory of V and the threshold lines in event-triggered
systems with non-zero delays

As we mentioned above, the first step is to find the upper

bound for V (t) for t ∈ [rk, fk), which is shown in the

following lemma.

Lemma 4.1: For the sampled-data system in equation 8,

let assumption 2.1 hold. For any k ∈ Z+, if V (rk−1) ≤
λV (rk) and the delay Dk satisfies Dk < min{∆1, ∆2},

where λ ∈ (1,∞) and ∆1, ∆2 are the smallest positive

solutions to the equation

βL1

α

[

(1 + 3λ
2 )e2L∆1 − λ

2

] (

1 − e−α∆1

)

= ρ∆1, (22)

e−α∆2 +
βL1

α
(1 + λ)e2L∆2

(

e−α∆2 − 1
)

+
βL1

α
λ
2

(

e2L∆2 − 1
) (

e−α∆2 − 1
)

= 1
λ
,

(23)
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respectively, then V (t) ≤ V (rk)(1 + ρDk) and λV (fk) ≥
V (rk) hold for all t ∈ [rk, fk), where ρ ∈ R+ is a positive

constant satisfying ρ > βL1(1 + λ).
Proof: Consider the derivative of ‖ek−1(t)‖.

d

dt
‖ek−1(t)‖ ≤ 2L‖ek−1(t)‖ + L‖x(rk−1)‖

holds for all t ∈ [rk, fk). Solving the differential inequality

with the initial condition ‖ek−1(rk)‖, we have

‖ek−1(t)‖ ≤ ‖ek−1(rk)‖e2LDk +
‖x(rk−1)‖

2

(

e2LDk − 1
)

(24)

for all t ∈ [rk, fk). By equation 4, the inequality

V̇ (t) ≤ −αV (t) + β‖ek−1(t)‖
holds for t ∈ [rk, fk). Combining this inequality with

equation 24 yields

V̇ (t) ≤ −αV (t) + β‖ek−1(rk)‖e2LDk

+β ‖x(rk−1)‖
2

(

e2LDk − 1
)

for all t ∈ [rk, fk). Solving this differential inequality with

the initial condition V (rk) leads to

V (t) ≤ V (rk)e−α(t−rk)

− β
α
‖ek−1(rk)‖e2LDk

(

e−α(t−rk) − 1
)

− β
α

‖x(rk−1)‖
2

(

e2LDk − 1
) (

e−α(t−rk) − 1
)

(25)

for all t ∈ [rk, fk). Using ‖x‖ ≤ α−1
1 (V (x)) ≤ L1V (x) and

V (rk−1) ≤ λV (rk), equation 25 implies

V (t) ≤ V (rk) − βL1

α
(1 + λ)V (rk)e2LDk

(

e−αDk − 1
)

−βL1

α

λV (rk)
2

(

e2LDk − 1
) (

e−αDk − 1
)

(26)

for all t ∈ [rk, fk). By lemma 3.1 and Dk < ∆1, we know

1 − βL1

α
(1 + λ)e2LDk

(

e−αDk − 1
)

−βL1

α
λ
2

(

e2LDk − 1
) (

e−αDk − 1
)

≤ 1 + ρDk

(27)

where ρ > βL1(1 + λ). According to equation 26 and 27, it

is easy to show that V (t) ≤ V (rk)(1 + ρDk) holds for all

t ∈ [rk, fk). Using the similar technique, we can show that

if Dk < ∆2, λV (fk) ≥ V (rk) holds.

Lemma 4.1 shows that V (t) is bounded by a linear func-

tion of delays for t ∈ [rk, fk) as long as Dk < ∆1. Based

on this lemma, we can use the point (fk, V (rk)(1 + ρ∆))
as the start of the threshold line with the slope −δαV (rk),
where ∆ ≤ ∆1 is the deadline for the delays. Asymptotic

stability of the event-triggered feedback system is guaranteed

by theorem 4.3. The proof of theorem 4.3 requires the

following lemma, which shows that the time length between

the finishing time, fk, and the time instant when V (t)
intersects the threshold line is always bounded from below

by a positive function of the deadline.

Lemma 4.2: For the sampled-data system in equation 8,

let assumption 2.1 hold. If V (rk−1) ≤ λV (rk) and the delay

Dk satisfies Dk < ∆ = min{∆1, ∆3}, where λ > 1, ∆ ∈
R+, ∆1 is given by equation 22, and ∆3 ∈ R+ is the smallest

positive solution to

βL1
2+λ

2

(

e2L∆3 − 1
)

− α(1 + ρ∆3 − δ) = 0, (28)

then t∗k − fk ≥ ξ(∆) > 0 holds, where t∗k ≥ fk is the first

time when

V (t∗k) = (1 + ρ∆)V (rk) − δαV (rk)(t∗k − fk). (29)

holds after fk, ρ > βL1(1+λ), ξ(∆) is the smallest positive

solution to

1 + ρ∆ − δατ = (1 + ρ∆)e−ατ − g(τ,∆)(e−ατ−1)
α

,

(30)

with respect to τ , and g : R+ × R+ → R+ is defined by

g(τ, ∆) = βL1

[

2+λ
2

(

e2L∆ − 1
)

e2Lτ + 1
2

(

e2Lτ − 1
)]

.
(31)

Proof: Consider the derivative of ‖ek(t)‖ over the

interval t ∈ [rk, fk):

d

dt
‖ek(t)‖ ≤ 2L‖ek(t)‖ + L‖x(rk)‖ + L‖ek−1(rk)‖.

Solving this differential inequality with the initial condi-

tion ek(rk) = 0, we have

‖ek(t)‖ ≤ ‖x(rk)‖+‖ek−1(rk)‖
2

(

e2LDk − 1
)

(32)

for all t ∈ [rk, fk). The derivative of ek(t) over [fk, t∗k)
satisfies d

dt
‖ek(t)‖ ≤ 2L‖ek(t)‖ + L‖x(rk)‖. Solving this

differential inequality with the initial condition given by

equation 32, we have

‖ek(t)‖ ≤ ‖x(rk)‖+‖ek−1(rk)‖
2

(

e2LDk − 1
)

e2L(t∗k−fk)

+ ‖x(rk)‖
2

(

e2L(t∗k−fk) − 1
)

(33)

holds for all t ∈ [fk, t∗k). By equation 4 and 33, we have

V̇ (t) ≤ −αV (t) + β ‖x(rk)‖
2

(

e2L(t∗k−fk) − 1
)

+β ‖x(rk)‖+‖ek−1(rk)‖
2

(

e2LDk − 1
)

e2L(t∗k−fk)

for all t ∈ [fk, t∗k). Since ‖x(rk)‖ ≤ α−1
1 (V (rk)) ≤

L1V (rk) for all k ∈ Z+ and V (rk−1) ≤ λV (rk), the

inequality above can be further reduced as

V̇ (t) ≤ −αV (t) + g(t∗k − fk, Dk)V (rk), (34)

for all t ∈ [fk, t∗k). Solving the differential inequality in

equation 34 with the initial condition V (fk) leads to

V (t∗k) ≤ V (fk)e−α(t∗k−fk)

− g(t∗k−fk,Dk)V (rk)
α

(

e−α(t∗k−fk) − 1
)

.

Since the hypotheses of lemma 4.1 are satisfied, V (fk) ≤
(1 + ρ∆)V (rk) holds. Applying this and equation 29 to the

inequality above, we have

p(t∗k − fk) , 1 + ρ∆ − δα(t∗k − fk)

≤ (1 + ρ∆)e−α(t∗k−fk) − g(t∗k−fk,∆)
α

(

e−α(t∗k−fk) − 1
)

, q(t∗k − fk)

Notice that p(0) = q(0). Since ∆ < ∆3 implies ṗ(0) >
q̇(0), by lemma 3.1, we know t∗k − fk ≥ ξ(∆) > 0.

Theorem 4.3: For the sampled-data system in equation 8,

let assumption 2.1 hold. If r0 = f0 = 0 and for any k ∈ Z+,

1) Dk < ∆ = min{∆1, ∆2, ∆3, ∆4} holds, where

∆1, ∆2, ∆3 ∈ R+ are defined in equation 22, 23 and
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28, respectively, ∆4 ∈ R
+ is the smallest positive

solution to

ρ∆4 − ξ(∆4)δα = 0 (35)

or ∞ if the positive solution to equation 35 does not

exist, ξ is defined in equation 30, ρ > βL1(1 + λ),
δ ∈ (0, 1), and λ ∈ (1,∞).

2) rk+1 is triggered by the violation of
(

E1

∧

E2

)

∨

E3, (36)

where

E1 : V (t) ≤ (1 + ρ∆ − δα(t − fk))V (rk) (37)

E2 : λV (t) > V (rk) (38)

E3 : rk ≤ t ≤ fk (39)

then the sampled-data system 8 is asymptotically stable.

Proof: By lemma 4.1, we know E1 and E2 always hold

when t = fk. It is easy to show that ξ(0) > 0 according to

equation 30. Therefore, ρDk − ξ(Dk)δα < 0 holds when

Dk = 0. By lemma 3.1 and the definition of ∆4, we have

ρDk − ξ(Dk)δα < 0 for all Dk < ∆4. Consequently , there

must be a positive constant ǫ such that

ρ∆ − ξ(∆)δα < −ǫ, (40)

holds since ∆ < ∆4. We construct a piecewise continuous

function h : R+ × Rn → R+ in the following way:

h(t|x0) =

{

[1 + ρ∆ − δα(t − fk)]V (rk), t ∈ [fk, rk+1)
(1 + ρ∆)V (rk+1), t ∈ [rk+1, fk+1)

(41)

Because rk+1 is triggered by the violation of E1 or E2,

it is easy to show V (t) ≤ h(t|x0) for all t ∈ [fk, rk+1)
and k ∈ Z+. Since Dk < ∆ ≤ ∆1 holds, by lemma 4.1,

V (t) ≤ (1 + ρ∆)V (rk) = h(t|x0) holds for all t ∈ [rk, fk)
and k ∈ Z+. Therefore,

V (t) ≤ h(t|x0) (42)

holds for all t ∈ R
+. We now show that limt→∞ h(t|x0) =

0. Two cases are considered.

Case I: rk+1 is triggered by the violation of E1. Then

h(fk|x0) = (1 + ρ∆)V (rk)

h(fk+1|x0) = (1 + ρ∆)V (rk+1) (43)

Since rk+1 is triggered by the violation of E1, we have

V (rk+1) = [1 + ρ∆ − δα(rk+1 − fk)]V (rk).

By lemma 4.2, we know rk+1 − fk ≥ ξ(∆). So

V (rk+1) ≤ [1 + ρ∆ − δαξ(∆)]V (rk)

holds. Combining this inequality with equation 43, we have

h(fk+1|x0) ≤ [1 + ρ∆ − δαξ(∆)]h(fk|x0), which implies

h(fk+1|x0) ≤ (1 − ǫ)h(fk|x0) (44)

according to equation 40.

Case II: rk+1 is triggered by the violation of E2. Follow-

ing the similar analysis for case I, we have

h(fk+1|x0) =
1

λ
h(fk|x0). (45)

Equation 44 and 45 implies

lim
k→∞

h(fk|x0) = 0 (46)

since λ ∈ (1,∞). Notice that h(t|x0) ≤ h(fk|x0) holds for

all t ≥ fk. So equation 46 implies

lim
t→∞

h(t|x0) = 0. (47)

Equation 42 and 47 are sufficient to conclude that the

sampled-data system is asymptotically stable.

Remark 4.1: Event E2 in equation 38 is used to control

the distance between V (rk+1) and V (rk). The reason to do

this is that if V (rk+1) is arbitrarily small, the deadline will go

to zero, although the sample period might be enlarged. There

is a tradeoff between periods and the predicted deadlines.

V. SIMULATIONS

In this section, we used the inverted pendulum problem

in [13] to demonstrate the proposed event-triggered scheme.

The plant’s linearized state equations were

ẋ =









0 1 0 0
0 0 −mg/M 0
0 0 0 1
0 0 g/ℓ 0









x +









0
1/M

0
−1/(Mℓ)









u

= Ax + Bu

where M = 10, m = 1, ℓ = 3, and g = 10. The system’s

initial state was the vector x0 =
[

0.98 0 0.2 0
]T

. The

controller is u = Kx, where K =
[

2 12 378 210
]

.

The Lyapunov function we used for the continuous closed-

loop system is V (x) =
√

xT Px, where

P =









7 21 222 127
21 106 1180 675
222 1180 26578 14873
127 675 14873 8327









(48)

We compared our event-triggering scheme with the event-

triggering scheme in [9], the self-triggering scheme in [13],

and MATI in [6] when Dk = 0. Recall that the event-

triggering scheme in [9] samples the state when

eT
k (t)Pek(t) = p2xT (t)Px(t).

where p is the real constant

p =
σmin(P )

2σmax(P )

σmin(−P (A + BK) − (A + BK)T P )

‖PBK‖ .

When Dk = 0, the self-triggering scheme in [13] triggers

the k + 1th task release, rk+1, in the following way:

rk+1 = rk +
1

ā
ln

(

1 +
ā‖

√
Nx(rk)‖

‖
√

M(A + BK)x(rk)‖

)

where M = 3
4I + PBBT P and N = 3

8I + PBBT P and

ā = ‖
√

MA
√

M
−1‖.
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MATI in [6] is defined by


















1
L̄r

arctan r(1−λ̄)

2 λ̄
1+λ̄( γ̄

L̄
−1)+1+λ̄

γ̄ > L̄

1−λ̄
L(1+λ̄)

γ̄ = L̄
1

L̄r
arctanh

r(1−λ̄)

2 λ̄
1+λ̄( γ̄

L̄
−1)+1+λ̄

γ̄ < L̄

, (49)

where λ̄ = 0, L̄ = max(0.5σmax(−BK − KT BT ), 0), γ̄ is

the L2 gain for the closed-loop system (ẋ = Aclx + BKe)

from e to −Aclx, and r =

√

∣

∣

∣

γ̄2

L̄2 − 1
∣

∣

∣.

The average periods generated by different schemes are

listed in Table I. It is obvious that our event-triggered scheme

has a much longer average sample period.

TABLE I

COMPARISON OF DIFFERENT SCHEMES

Schemes Average Periods

Our event-triggering scheme (δ = 0.2) 0.4816

Event-triggering scheme in [9] < 10
−5

Self-triggering Scheme in [13] 0.1782

MATI in [6] 0.0169

We then took a look at non-zero delay cases. The pa-

rameters were computed based on equation 7 in remark

2.2, where α = 0.015, β = β = 1042.8, L = 45.58,

L1 = 1.91, ρ = 5993, λ = 2, δ = 0.8. The deadline

based on theorem 4.3 is around 10−12. This deadline is

extremely small, although it is at the same level of the

predicted deadline in [9] which is around 10−13. It is because

the large condition number of P leads to a small α and a big

β, which directly affect the solutions to equation 28 and 35.

Notice that the method we proposed is only for showing the

existence of non-zero deadlines. In practice, for systems with

a large condition number of P , it is better to use dynamic

deadlines because of its “on-line” nature.

We then added random delays satisfying Dk ≤ 0.1 into

the proposed event-triggered feedback system to see how

robust this system can be to delays. We used the violation

of equation 36 to trigger the next release with ∆ = 0. The

results are presented in figure 2. The state trajectories are

shown in the top plot of figure 2. From this plot, we can see

that, the event-triggered feedback system still converges to

the equilibrium even when Dk can be as large as 0.1. The

bottom plot of figure 2 provides the sample periods in this

system. The average period is 0.1882, which is definitely

larger than the periods offered by the prior work. These

simulation results suggest that the event-triggered feedback

system is robust to delays. How to obtain a tighter estimate

of the deadline would be an interesting future topic.

VI. CONCLUSIONS

This paper proposed a new event-triggering scheme. The

resulting event-triggered feedback systems are guaranteed

to be asymptotically stable, provided that the continuous

systems are stabilizable. We show that the task periods and

deadlines generated by our scheme are bounded strictly away

from zero if the continuous systems are ISS with respect

0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

Time

S
ta

te
 T

ra
je

c
to

ri
e

s

 

 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

Time

S
a

m
p

le
 P

e
ri
o

d

y

dy/dt

θ

dθ/dt

Fig. 2. An event-triggered feedback system with Dk ≤ 0.1

to measurement errors. Simulation results indicate that our

event-triggered scheme has a much larger average period

than the previous event/self-triggered schemes. Moreover,

our scheme also appears to be robust to task delays.
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