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Abstract

Real-world actions occur often in crowded, dynamic en-

vironments. This poses a difficult challenge for current

approaches to video event detection because it is difficult

to segment the actor from the background due to distract-

ing motion from other objects in the scene. We propose a

technique for event recognition in crowded videos that re-

liably identifies actions in the presence of partial occlusion

and background clutter. Our approach is based on three

key ideas: (1) we efficiently match the volumetric represen-

tation of an event against oversegmented spatio-temporal

video volumes; (2) we augment our shape-based features

using flow; (3) rather than treating an event template as an

atomic entity, we separately match by parts (both in space

and time), enabling robustness against occlusions and ac-

tor variability. Our experiments on human actions, such

as picking up a dropped object or waving in a crowd show

reliable detection with few false positives.

1. Introduction

The goal of event detection is to identify and localize

specified spatio-temporal patterns in video, such as a per-

son waving his or her hand. As observed by Ke et al. [14]

and Shechtman & Irani [24], the task is similar to object

detection in many respects since the pattern can be located

anywhere in the scene (in both space and time) and requires

reliable detection in the presence of significant background

clutter. Event detection is thus distinct from the problem

of human action recognition, where the primary goal is to

classify a short video sequence of an actor performing an

unknown action into one of several classes [2, 23, 32].

Our goal is to perform event detection in challenging

real-world conditions where the action of interest is masked

by the activity of a dynamic and crowded environment.

Consider the examples shown in Figure 1. In Figure 1(a),

the person waving his hand to flag down a bus is partially

occluded, and his arm motion occurs near pedestrians that

generate optical flow in the image. The scene also contains

multiple moving objects and significant clutter that make it

(a) (b)

Figure 1: Examples of successful event detection in crowded

settings. (a) The hand wave is detected despite the par-

tial occlusion and moving objects near the actor’s hand; (b)

The person picking up the dropped object is matched even

though the scene is very cluttered and the dominant motion

is that of the crowd in the background.

difficult to cleanly segment the actor from the background.

In Figure 1(b), the goal is to detect the person picking up an

object from the floor. In this case, the image flow is dom-

inated by the motion of the crowd surrounding the actor,

and the actor’s clothing blends into the scene given the poor

lighting conditions.

Earlier work has identified several promising strategies

that could be employed for event detection. These can be

broadly categorized into approaches based on tracking [21,

26], flow [8,14,24], spatio-temporal shapes [2,3,31,32], and

interest points [7, 20, 23]. A more comprehensive review

of historical work is presented by Aggarwal and Cai [1].

Methods based on tracking process the video frame-by-

frame and segment an object of interest from background

clutter, typically by matching the current frame against a

model. By following the object’s motion through time,

a trace of model parameters is generated; this trace can

be compared with that of the target spatio-temporal pat-

tern to determine whether the observed event is of inter-

est. Tracking-based approaches can incorporate existing

domain knowledge about the target event in the model (e.g.,

joint angle limits in human kinematic models) and the sys-

tem can support online queries since the video is processed

a single frame at a time. However, initializing tracking



Figure 2: An overview of the proposed approach. An event model is constructed from a single training example and efficiently

matched against oversegmented spatio-temporal volumes.

models can be difficult, particularly when the scene con-

tains distracting objects. And while recent work has demon-

strated significant progress in cluttered environments [22],

tracking remains challenging in such environments, and the

tracker output tends to be noisy. An alternate approach to

tracking-based event detection focuses on multi-agent activ-

ities, where each actor is tracked as a blob and activities are

classified based on observed locations and spatial interac-

tions between blobs [12, 13]. These models are well-suited

for expressing activities such as loitering, meeting, arrival

and departure; the focus of our work is on finer-grained

events where the body pose of the actor is critical to recog-

nition.

Flow-based methods for event detection operate directly

on the spatio-temporal sequence, attempting to recognize

the specified pattern by brute-force correlation without seg-

mentation. Efros et al. correlate flow templates with videos

to recognize actions at a distance [8]. Ke et al. [14] train

a cascade of boosted classifiers to process the vertical and

horizontal components of flow in a video sequence using

an algorithm that is similar in spirit to Viola and Jones’

object detector for still images [27]. Shechtman and Irani

propose an algorithm for correlating spatio-temporal event

templates against videos without explicitly computing the

optical flow, which can be noisy on object boundaries [24].

Shape-based methods treat the spatio-temporal volume

of a video sequence as a 3D object. Different events in video

generate distinctive shapes, and the goal of such methods is

to recognize an event by recognizing its shape. Shape-based

methods employ a variety of techniques to characterize the

shape of an event, such as shape invariants [2,32]. For com-

putational efficiency and greater robustness to action varia-

tions, Bobick and Davis [3] project the spatio-temporal vol-

ume down to motion-history images, which Weinland et al.

extend to motion-history volumes [31]. These techniques

work best when the action of interest is performed in a set-

ting that enables reliable segmentation. In particular, for

static scenes, techniques such as background subtraction

can generate high-quality spatio-temporal volumes that are

amenable to this analysis. Unfortunately, these conditions

do not hold in typical real-world videos due to the presence

of multiple moving objects and scene clutter. Similarly, the

extensive research on generalizing shape matching [11, 17]

requires reliable figure/ground separation, which is infea-

sible in crowded scenes using current segmentation tech-

niques. In this paper, we show how ideas from shape-

based event detection can be extended to operate on over-

segmented spatio-temporal volumes and perform well in

challenging conditions.

Recently, space-time interest points [16] have become

popular in the action recognition community [7, 20, 23],

with many parallels to how traditional interest points [18]

have been applied for object recognition. While the spar-

sity of interest points and their resulting computational ef-

ficiency is appealing, space-time interest points suffer the

same drawbacks as their 2D analogues, such as failure to

capture smooth motions and tendency to generate spurious

detections at object boundaries.

We synthesize key ideas from each of the previous ap-

proaches and propose an algorithm to enable event detec-

tion in real-world crowded videos (Section 2). This paper

focuses primarily on two topics: (1) effective representa-

tions of shape and motion for event detection, and (2) effi-

cient matching of event models to over-segmented spatio-

temporal volumes. The models that we match are derived

from a single example and are manually constructed; auto-

matic generation of event models from weakly-labeled ob-

servations is a related interesting problem and is not covered

in the current work.

This paper is organized as follows. First, we show

that spatio-temporal shapes are useful features for event

detection. Where the previous work is typically limited

to scenes with static backgrounds, we demonstrate shape

matching in cluttered scenes with dynamic backgrounds.

Second, we combine our shape descriptor with Shechtman

and Irani’s flow descriptor, which is a complementary fea-

ture that can be computed in cluttered environments with-

out figure/ground separation (Section 3). Third, recognizing

the value of a parts-based representation, which is explic-

itly modeled by the human tracking approaches, and implic-



itly modeled by the interest-point approaches, we break our

action templates into parts and extend the pictorial struc-

tures algorithm [9, 10] to 3D parts for recognition (Sec-

tion 4). Finally, we present an evaluation of event detec-

tion on crowded videos in Section 5. Figure 2 presents an

overview of the approach.

2. Shape Matching

We briefly review the shape matching algorithm pro-

posed in [15]. Space-time events are represented as spatio-

temporal volumes in our system, as shown in Figure 2. The

target events that we wish to recognize are typically one sec-

ond long, and represent actions such as picking up an object

from the ground, or a hand-wave. Denoting the template as

T and the video volume as V , detecting the event involves

sliding the template across all possible locations l in V and

measuring the shape matching distance between T and V .

An event is detected when the distance falls below a spec-

ified threshold. Similar to other sliding-window detection

techniques, this is a rare-event detection task and therefore

keeping the false-positive rate low is extremely important.

The first step is to extract spatio-temporal shape contours

in the video using an unsupervised clustering technique.

This enables us to ignore highly variable and potentially

irrelevant features of the video such as color and texture,

while preserving the object boundaries needed for shape

classification. As a preprocessing step, the video is auto-

matically segmented into regions in space-time using mean

shift, with color and location as the input features [5, 6, 29].

This is the spatio-temporal equivalent of the concept of su-

perpixels [19]. Figure 3 shows an example video sequence

and the resulting segmentation. Note that there is no explicit

figure/ground separation in the segmentation and that the

objects are over-segmented. The degree to which the video

is over-segmented can be adjusted by changing the kernel

bandwidth. However, since finding an “optimal” bandwidth

is difficult and not very meaningful, we use a single value of

the bandwidth in all of our experiments, which errs on the

side of over- rather than under-segmentation. Processing the

video as a spatio-temporal volume (rather than frame-by-

frame) results in better segmentations by preserving tempo-

ral continuity. We have found mean shift to work well in

our task, but in general, any segmentation algorithm could

be used as long as it produces an over-segmentation that

tends to preserve object boundaries.

Our shape matching metric is based on the region inter-

section distance between the template volume and the set

of over-segmented volumes in the video. Given two bi-

nary shapes, A and B, a natural distance metric between

them is the set difference between the union and the in-

tersection of the region, i.e., |A ∪ B \ A ∩ B|. Because

of the over-segmentation, a video volume V at some loca-

tion l = (x, y, t) is composed of a set of k regions such

Figure 3: Input video and corresponding spatio-temporal

segmentation using mean shift. The action is composed of

a set of over-segmented regions.

that V = ∪k
i=1Vi, as shown in Figure 4. A naive approach

for computing the optimal distance between a template vol-

ume T and V is to enumerate through the 2k subsets of

V , compute the voxel distance between T and each subset,

and choose the minimum. This would be prohibitively ex-

pensive even with a small number of regions. In [15], we

showed that whether each region Vi should belong in the op-

timal set can be decided independently of all other regions,

and therefore the distance computation is linear in k, the

number of over-segmented regions. The distance between

the template T and the volume V at location l is defined as

d(T, V ; l) =

k
∑

i=1

d(T, Vi; l), (1)

where

d(T, Vi; l) =

{

|T ∩ Vi| if |T ∩ Vi| < |Vi|/2
|Vi − T ∩ Vi| otherwise.

(2)

This distance metric is equivalent to choosing the optimal

set of over-segmented regions and computing the region in-

tersection distance.

A consequence of employing automatic segmentation (as

opposed to figure/ground separation) is that some objects

will be over-segmented. Regions that are highly textured

could be finely over-segmented, and therefore would result

in a low matching distance to any template. To reduce this

sensitivity to the segmentation granularity, we introduce a

normalizing term that accounts for the flexibility of the can-

didate regions in matching arbitrary templates. The normal-

ized distance is

dN (T, V ; l) =
d(T, V ; l)

ET [d(·, V ; l)]
, (3)

where the denominator is the expected distance of a tem-

plate to the volume V , averaged over T , the set of all pos-



Figure 4: Example showing how a template is matched to an

over-segmented volume using our shape matching method.

The template is drawn in bold, and the distance (mismatch)

is the area of the shaded region.

sible templates that fit within V . By enumerating through

all possible templates that fit in V , we derive the expected

distance to be

k
∑

i=1

1

2|Vi|

|Vi|−1
∑

j=1

(

|Vi|

j

)

min(j, |Vi| − j). (4)

Note that the above term is a function of only |Vi|. There-

fore, we can pre-compute this term so that the run-time

computation reduces to table look-ups.

3. Flow Matching

Optical flow has been shown to be a useful feature for

event detection in video [8,14,24]. Similar to our shape de-

scriptor, it is invariant to appearance and lighting changes

and does not require figure/ground separation. Shechtman

and Irani [24] introduced a flow-based correlation technique

that has been shown to complement our shape descriptor for

event detection [15]. Given two spatial-temporal patches

(of size 7 × 7 × 3) centered at P1 = T (x1, y1, t1) and

P2 = V (x2, y2, t2), traditional matching algorithms first

compute the flow vectors, and then compute the distance

between the flows. The results are often noisy or even inac-

curate at object boundaries. Instead, Shechtman and Irani’s

algorithm computes whether the same flow could have gen-

erated the patches observed in the template and the video.

The local inconsistency in motion between two patches P1

and P2 is given by

m12 =
∆r12

min(∆r1,∆r2) + ǫ
, (5)

where ∆r is the rank increase between the three dimen-

sional and the two dimensional Harris matrix of the patch

from P1, P2, or the concatenation of the two patches in the

case of ∆r12. The flow correlation distance is therefore

dF (T, V ; l) =

∑

i∈T,j∈(T∩V ) mij

|T |
. (6)

Our implementation of this algorithm generates an

unusually-high number of false positives in regions with

little texture. From the equations, it is obvious that uni-

form regions have indeterminate flow, and therefore could

match any possible template. To eliminate such cases, we

add a pre-filtering step to Shechtman and Irani’s algorithm

that discards uniform regions by thresholding on the Harris

score of the region. We discuss how we combine the shape

and flow distance metrics in the next section.

4. Recognition

The previous section describes a method for match-

ing volumetric shape features on automatically-segmented

video. The main strength of the algorithm is that it can per-

form shape matching without precise object masks in the

input video [2, 3, 32]. Further, using template-based match-

ing enables search with only one training example. How-

ever, like all template-based matching techniques [3, 24], it

suffers from limited generalization power due to the vari-

ability in how different people perform the same action. A

standard approach to improve generalization is to break the

model into parts, allowing the parts to move independently,

and to measure the joint appearance and geometric match-

ing score of the parts. Allowing the parts to move makes the

template more robust to the spatial and temporal variability

of actions. This idea has been studied extensively in recog-

nition in both images [30] and video [4, 25]. Therefore,

we extend our baseline matching algorithm by introducing

a parts-based volumetric shape-matching model. Specifi-

cally, we extend the pictorial structures framework [9, 10]

to video volumes to model the geometric configuration of

the parts and to find the optimal match in both appearance

and configuration in the video.

4.1. Matching Parts

A key feature of our baseline algorithm is that it can per-

form shape matching with over-segmented regions. How-

ever, it assumes that the template consists of a single re-

gion, and that only the video is over-segmented. Given a

single template, one must use prior knowledge to break the

template into parts. For events that consist of human ac-

tions, these parts typically correspond to the rigid sections

of the human body, and therefore the process is straight-

forward. We illustrate how one might manually break the

handwave template into parts, as shown in Figure 5. We

note that, for this action, only the upper body moves while

the legs remain stationary. Therefore, a natural break should



(a) Whole (b) Parts

Figure 5: To generalize the model and allow for more vari-

ability in the action, we break the action template (a) into

parts (b). The model can be split in both space or time to

generate the parts.

be at the actor’s waist. Such a break would allow the tem-

plate parts to match people with different heights. Another

natural break would be to split the top half of the action

temporally, thus producing two parts that correspond to the

upward and downward swing of the handwave action. This

allows for some variation in the speed with which people

swing their arms. It is important to note that, just like the

whole template, the parts are also spatio-temporal volumes

and could represent a body part in motion.

We now generalize our baseline algorithm (Section 2)

and describe how we match template parts to over-

segmented regions. Consider the oval template that has

been split into two parts in the toy example illustrated in

Figure 6. Although the whole template matches the oval

(V1 ∪ V2 ∪ V3) in the candidate volume, the parts would

match poorly because the over-segmentation is inconsistent

with the boundaries between the two parts. For example,

our baseline algorithm would not match Part 1 to V1, nor

Part 2 to V3. In general, there is no reason to believe that

they should match because some of the part boundaries are

artificially created (as shown by the dashed lines) and do not

necessarily correspond to any real object boundaries. Our

solution is to introduce additional cuts using a virtual plane

that is aligned to and moves with the template part. For

example, as we slide Part 1 across the video, we subdivide

all the regions that intersect with the cutting plane placed

on the right edge of the Part 1. V2 is divided correctly, and

Part 1 now matches the union of V1 and the shaded region

of V2. For convenience, we only use cutting planes that

are aligned with the principal axes, but in general the plane

can be oriented in any direction. By pre-computing the cuts

and with judicious bookkeeping, the parts-based matching

can be performed with the same computational efficiency as

our baseline shape-based matching algorithm.

4.2. Matching Part Configuration

We now describe how the framework of pictorial struc-

tures [9, 10] can be extended to parts-based event detection

Figure 6: Illustration of how we artificially cut the candidate

volume to match how the whole template is split into its con-

stituent parts. The candidate volume is dynamically cut as

we slide the template parts along it. The cutting process is

very efficient.

in video. Intuitively, each part in the template should match

the video well, and the relative locations of parts should be

in a valid geometric configuration. More formally, consider

a set of n parts that form a tree in a graph. Adopting a

notation based on Felzenszwalb and Huttenlocher [9], let

the part model be specified by a graph G = (P,E). Tem-

plate part Ti is represented as a vertex pi ∈ P and the con-

nection between parts pi and pj is represented as an edge

(pi, pj) ∈ E. The configuration of the parts is specified by

L = (l1, . . . , ln), where li = (xi, yi, ti) is the location of

part Ti in the candidate volume V . Let ai(li) be the distance

in appearance between the template part Ti and the video at

location li. Let dij(li, lj) be the distance in configuration

between parts Ti and Tj when they are placed at locations

li and lj , respectively. The general energy function that we

want to minimize for an optimal match is:

L∗ = argmin
L





n
∑

i=1

ai(li) +
∑

(vi,vj)∈E

dij(li, lj)



 . (7)

The appearance distance a() is a linear combination of

our normalized distance metric (Equation 3) and Irani &

Shechtman’s flow-based correlation distance:

ai(li) = dN (Ti, V ; li) + αdF (Ti, V ; li), (8)

where α = 0.2 (we use the same weight for all experi-

ments). For matching efficiency, our parts model is orga-

nized in a tree structure and we model the relative position

of each part as a Gaussian with a diagonal covariance ma-

trix. Therefore,

dij(li, lj) = βN (li − lj , sij ,Σij), (9)



Model Example Detections

Figure 7: Examples of event detection in crowded video. Training sequences and event models are shown on the left. Detec-

tions in several challenging test sequences are shown on the right. The action mask from the appropriate time in the event

model is overlaid on the test sequence frame, and a bounding box marks the matched location of each part.

where sij is the mean offset and Σij is the diagonal co-

variance. β adjusts the relative weight of the configuration

vs. appearance terms and for all of our experiments we use

β = 0.02. The mean offset is taken from the location where

we cut the parts, and the covariance is set manually, typi-

cally around 10% of the template size. Learning this matrix

from multiple templates is part of our future work. As de-

scribed by Felzenszwalb & Huttenlocher [9], the minimiza-

tion can be efficiently solved using distance transforms and

dynamic programming. Because we employ a sliding win-

dow approach to event detection, we also record the actual

distance solved in the minimization and threshold on that

distance. Only those locations with a distance below a spec-

ified threshold are considered as detections. As discussed

earlier, a key feature of our algorithm is that although a seg-

mented instance of the event template is needed, we do not

assume that the input video can be reliably segmented. This

makes event detection possible in challenging cases, such

as crowded scenes, where reliable segmentation is difficult.

5. Results

To evaluate the effectiveness of our algorithms, we se-

lected events that represent real world actions such as pick-

ing up an object from the ground, waving for a bus, or push-

ing an elevator button (Figure 7). In our previous work [15],

we evaluated our initial matching algorithms on standard

datasets (e.g., the KTH datasets [23]). This data was appro-

priate to evaluate the basic matching capabilities, but it is

too “clean” to evaluate the effectiveness of the techniques

described in this paper. Therefore, we acquired new videos

by using a hand-held camera in environments with moving

people or cars in the background. This data is designed

to evaluate the performance of the algorithm in crowded

scenes. We study the effects of using different combina-

tions of shape and flow descriptors, and parts-based versus

whole shape models. One subject performed one instance



of each action for training1. Between three to six other sub-

jects performed multiple instances of the actions for test-

ing. We collected approximately twenty minutes of video

containing 110 events of interest. The videos were down-

scaled to 160x120 in resolution. There is high variability

in both how the subjects performed the actions and in the

background clutter. There are also significant spatial and

temporal scale differences in the actions as well.

For each event, we create the model from a single in-

stance by interactively segmenting the spatio-temporal vol-

ume using a graph-cut tool similar to [28]. The templates

are typically 60 × 80 × 30 in size and range from 20,000–

80,000 voxels. The whole template is then manually broken

into parts, as shown in Figure 7. The video is automati-

cally segmented using mean shift; the average segment size

is approximately 100 voxels. We scan the event template

over the videos using the shape and flow distance metrics

described earlier, and combine them using pictorial struc-

tures. There are approximately 120,000 possible locations

to be scanned per second of video for a typical template. In

these experiments, to evaluate the robustness of our match-

ing algorithm to variations in observed scale, we match only

at a single fixed scale; in practice, one could match over

multiple scales. The algorithm returns a three-dimensional

distance map representing the matching distance between

the model and the video at every location in the video. For

efficiency, we project the map to a one-dimensional vector

of scores, keeping only the best detection for each frame, as

shown in Figure 8(a). Since it is rare for two instances of an

action to start and end at exactly the same time instant, this

is a reasonable simplification. An event is detected when

the matching distance falls below a specified threshold. We

vary this threshold and count the number of true positives

and false positives to generate the Precision-Recall graphs.

A detected event is considered a true positive if it has greater

than 50% overlap (in space-time) with the labeled event.

We now analyze the performance of our algorithm and

compare it to baseline methods. Figure 7 shows example

detections using our algorithm with the parts-based shape

and flow descriptor in crowded scenes. Note the amount

of clutter and movement from other people near the event.

The precision-recall graphs for all of the actions are shown

in Figures 8(b)–(f). We compare our results to Shecht-

man and Irani’s flow consistency method [24] as a base-

line, labeled as Flow (Whole) in our graphs. This state-

of-the-art baseline method achieves low precision and re-

call in nearly all actions, demonstrating the difficulty of our

dataset. Our combined parts-based shape and flow descrip-

tor is significantly better and outperforms either descrip-

tor alone, which confirms our previous findings [15]. The

parts-based shape descriptor is better than the whole shape

descriptor in the hand-wave, push button, and two-handed

1The two-handed wave template was taken from the KTH videos.

wave actions, while there is little benefit to adding the parts

model for the jumping-jacks and pick-up actions.

6. Conclusion

We present a method for detecting events in crowded

videos. The video is treated as a spatio-temporal volume

and events are detected using our volumetric shape descrip-

tor in combination with Shechtman and Irani’s flow de-

scriptor. Unlike existing shape-based methods, our sys-

tem does not require figure/ground separation, and is thus

more applicable to real-world settings. We extend our base-

line shape matching algorithm to detect event parts (sliced

in both space or time), and generalize the model to rec-

ognize actions with higher actor variability. The parts are

combined using pictorial structures to find the optimal con-

figuration. Our approach detects events in difficult sit-

uations containing highly-cluttered dynamic backgrounds,

and signficantly out-performs the baseline method [24].

This paper emphasizes the matching aspects of event de-

tection and demonstrates robust performance on real-world

videos. The biggest limitation of the current work is that

the model is derived from a single exemplar of the event,

thus limiting our ability to generalize across observed event

variations. Future work will focus on the modeling aspects

of the task, including the automatic selection of event parts

and the aggregation of several training videos into a sin-

gle model. Initial results show that greater generalization

performance can be achieved by combining the matching

scores from multiple event models.
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Figure 8: (a) Projected matching distance on video with three pick-up events. A threshold of 0.6 successfully detects all

of them. (b)–(f) Precision/recall curves for a variety of events. Our parts-based shape and flow descriptor significantly out-

performs all other descriptors. The baseline method [24], labeled as “Flow (Whole)”, achieves low precision and recall in most

actions, demonstrating the difficulty of our dataset.
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