
Event Detection in Twitter
Jianshu Weng

Services Platform Lab, HP Labs Singapore
jianshu.weng@hp.com

Bu-Sung Lee
Services Platform Lab, HP Labs Singapore and

School of Computer Engineering, Nanyang Technological University
francis.lee@hp.com

Abstract

Twitter, as a form of social media, is fast emerging in re-
cent years. Users are using Twitter to report real-life events.
This paper focuses on detecting those events by analyzing
the text stream in Twitter. Although event detection has long
been a research topic, the characteristics of Twitter make it
a non-trivial task. Tweets reporting such events are usually
overwhelmed by high flood of meaningless “babbles”. More-
over, event detection algorithm needs to be scalable given the
sheer amount of tweets. This paper attempts to tackle these
challenges with EDCoW (Event Detection with C lustering
of Wavelet-based Signals). EDCoW builds signals for indi-
vidual words by applying wavelet analysis on the frequency-
based raw signals of the words. It then filters away the
trivial words by looking at their corresponding signal auto-
correlations. The remaining words are then clustered to form
events with a modularity-based graph partitioning technique.
Experimental results show promising result of EDCoW.

Introduction
Microblogging, as a form of social media, is fast emerg-
ing in recent years. One of the most representative exam-
ples is Twitter, which allows users to publish short tweets
(messages within a 140-character limit) about “what’s hap-
pening”. Real-life events are reported in Twitter. For exam-
ple, the Iranian election protests in 2009 were extensively
reported by Twitter users. Reporting those events could pro-
vide different perspectives to news items than traditional me-
dia, and also valuable user sentiment about certain compa-
nies/products.

This paper focuses on detecting those events to have a bet-
ter understanding of what users are really discussing about
in Twitter. Event detection has long been a research topic
(Yang, Pierce, and Carbonell 1998). The underlying assump-
tion is that some related words would show an increase in
the usage when an event is happening. An event is therefore
conventionally represented by a number of keywords show-
ing burst in appearance count (Yang, Pierce, and Carbonell
1998; Kleinberg 2002). For example, “iran” would be used
more often when users are discussing about the Iranian elec-
tion protests. This paper also adapts such representation of
event. Nevertheless, the characteristics of Twitter pose new
challenges:

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• The contents in Twitter are dynamically changing and
increasing. According to http://tweespeed.com, there are
more than 15,000 tweets per minute by average published
in Twitter. Existing algorithms typically detect events by
clustering together words with similar burst patterns. Fur-
thermore, it is usually required to pre-set the number of
events that would be detected, which is difficult to obtain
in Twitter due to its real-time nature. A more scalable ap-
proach for event detection is therefore desired.

• Conventionally, event detection is conducted on formal
document collections, e.g. academic papers (Kleinberg
2002) and news articles (Fung et al. 2005). It is assumed
that all the documents in the collections are somehow re-
lated to a number of undiscovered events. However, this
is not the case in Twitter, where tweets reporting big real-
life events are usually overwhelmed by high flood of triv-
ial ones. According to a study by Pear Analytics (Pear-
Analytics 2009), about 40% of all the tweets are pointless
“babbles” like “have to get something from the minimart
downstairs”. Such tweets are important to build a user’s
social presence (Kaplan and Haenlein 2010). Neverthe-
less, they are insignificant and should not require attention
from the majority of the audience. It is therefore naive to
assume that any word in tweets showing burst is related
to certain big event. A good example is the popular hash-
tag “#musicmonday”. It shows some bursts every Monday
since it is commonly used to suggest music on Mondays.
However, such bursts obviously do not correspond to an
event that majority of the users would pay attention to.
Event detection in Twitter is expected to differentiate the
big events from the trivial ones, which existing algorithms
largely fail.

To tackle these challenges, this paper proposes EDCoW
(Event Detection with C lustering of Wavelet-based Sig-
nals), which is briefly described as follows. EDCoW builds
signals for individual words which captures only the bursts
in the words’ appearance. The signals can be fast computed
by wavelet analysis and requires less space for storage. It
then filters away the trivial words by looking at their corre-
sponding signal auto-correlations. EDCoW then measures
the cross correlation between signals. Next, it detects the
events by clustering signals together by modularity-based
graph partitioning, which can be solved with a scalable

401

Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media

eigenvalue algorithm. To differentiate the big events from
trivial ones, EDCoW also quantifies the events’ significance,
which depends on two factors, namely the number of words
and the cross correlation among the words relating to the
event.

In the rest of this paper, we first present a brief survey of
relate work. Next, we give a concise description of wavelet
analysis, before EDCoW is illustrated in detail. Experimen-
tal studies are also presented to show the performance of
EDCoW. Finally, we conclude with directions for future
work.

Related Work

Existing event detection algorithms can be broadly classified
into two categories: document-pivot methods and feature-
pivot methods. The former detects events by clustering doc-
uments based on the semantics distance between documents
(Yang, Pierce, and Carbonell 1998), while the latter studies
the distributions of words and discovers events by grouping
words together (Kleinberg 2002). EDCoW could be viewed
as a feature-pivot method. We therefore focus on represen-
tative feature-pivot methods here.

In (Kleinberg 2002), Kleinberg proposes to detect events
using an infinite-state automaton, in which events are mod-
eled as state transitions. Different from this work, Fung et
al. model individual word’s appearance as binomial distribu-
tion, and identify burst of each word with a threshold-based
heuristic (Fung et al. 2005) .

All these algorithms essentially detect events by analyz-
ing word-specific signals in the time domain. There are
also attempts to analyze signals in the frequency domain.
In (He, Chang, and Lim 2007), the authors apply Discrete
Fourier Transformation (DFT), which converts the signals
from the time domain into the frequency domain. A burst in
the time domain corresponds to a spike in the frequency do-
main. However, DFT cannot locate the time periods when
the bursts happen, which is important in event detection.
(He, Chang, and Lim 2007) remedies this by estimating such
periods with the Gaussian Mixture model.

Compared to DFT, wavelet transformation has more de-
sirable features. Wavelet refers to a quickly varnishing os-
cillating function (Daubechies 1992; Kaiser 1994). Unlike
the sine and cosine used in the DFT, which are localized
in frequency but extend infinitely in time, wavelets are
localized in both time and frequency domain. Therefore,
wavelet transformation is able to provide precise measure-
ments about when and to what extent bursts take place in the
signal. This makes wavelet transformation a better choice
for event detection, and is applied in this paper to build sig-
nals for individual words. It has also been applied to detect
events from Flickr data in (Chen and Roy 2009).

There is recently an emerging interest in harvesting social
intelligence from Twitter. For example, (Petrović, Osborne,
and Lavrenko 2010) try to detect whether users discuss any
new event that have never appeared before in Twitter. How-
ever, it does not differentiate whether the new event, if any, is
trivial or not. In (Sakaki, Okazaki, and Matsuo 2010), the au-
thors exploit tweets to detect critical events like earthquake.
They formulate event detection as a classification problem.

However, users are required to specify explicitly the events
to be detected. And a new classifier needs to be trained to
detect new event, which makes it difficult to be extended.

Wavelet Analysis

Wavelet analysis is applied in EDCoW to build signal for
individual words. This section gives a brief introduction of
related concepts.

Wavelet Transformation

The wavelet analysis provides precise measurements regard-
ing when and how the frequency of the signal changes over
time (Kaiser 1994). The wavelet is a quickly vanishing os-
cillating function. Unlike sine and cosine function of Fourier
analysis, which are precisely localized in frequency but ex-
tend infinitely in time, wavelets are relatively localized in
both time and frequency.

The core of wavelet analysis is wavelet transformation.
Wavelet transformation converts signal from the time do-
main to the time-scale domain (scale can be considered as
the inverse of frequency). It decomposes a signal into a com-
bination of wavelet coefficients and a set of linearly inde-
pendent basis functions. The set of basis functions, termed
wavelet family, are generated by scaling and translating a
chosen mother wavelet ψ(t). Scaling corresponds to stretch-
ing or shrinking ψ(t), while translation moving it to differ-
ent temporal position without changing its shape. In other
words, a wavelet family ψa,b(t) are defined as (Daubechies
1992):

ψa,b(t) = |a|−1/2ψ(
t− b

a
) (1)

where a, b ∈ R, a �= 0 are the scale and translation parame-
ters respectively, and t is the time.

Wavelet transformation is classified into continuous
wavelet transformation (CWT) and discrete wavelet trans-
formation (DWT). Generally speaking, CWT provides a re-
dundant representation of the signal under analysis. It is also
time consuming to compute directly. In contrast, DWT pro-
vides a non-redundant, highly efficient wavelet representa-
tion of the signal. For (i) a special selection of the mother
wavelet function ψ(t) and (ii) a discrete set of parameters,
aj = 2−j and bj,k = 2−jk, with j, k ∈ Z, the wavelet
family in DWT is defined as ψj,k(t) = 2j/2ψ(2jt − k),
which constitutes an orthonormal basis of L2(R). The ad-
vantage of orthonormal basis is that any arbitrary function
could be uniquely decomposed and the decomposition can
be inverted.

DWT provides a non-redundant representation of the sig-
nal S and its values constitute the coefficients in a wavelet
series, i.e. < S,ψj,k >= Cj(k). Cj(k) denotes the k-th co-
efficient in scale j. DWT produces only as many coefficients
as there are sample points within the signal under analysis S,
without loss of information. These wavelet coefficients pro-
vide full information in a simple way and a direct estimation
of local energies at the different scales.

Assume the signal is given by the sampled values, i.e. S =
{s0(n)|n = 1, ...,M}, where the sampling rate is ts and M
is the total number of sample points in the signal. Suppose

402

that the sampling rate is ts = 1. If the decomposition is car-
ried out over all scales, i.e.NJ = log2(M), the signal can be

reconstructed by S(t) =
NJ∑
j=1

∑
k

Cj(k)ψj,k(t) =
NJ∑
j=1

rj(t),

where the wavelet coefficients Cj(k) can be interpreted as
the local residual errors between successive signal approxi-
mations at scales j and j + 1 respectively, and rj(t) is the
detail signal at scale j, that contains information of the sig-
nal S(t) corresponding with the frequencies 2jωs ≤ |ω| ≤
2jωs.

Wavelet Energy, Entropy, and H-Measure

Since the wavelet family in DWT is an orthonormal basis for
L2(R), the concept of energy derived from Fourier theory
can also be applied (Adelson and Bergen 1985). The wavelet
energy of signal S at each scale j (j ≤ NJ) can be computed
as:

Ej =
∑
k

|Cj(k)|2 (2)

The wavelet energy at scale NJ + 1 can be derived as:

ENJ+1 =
∑
k

|ANJ
(k)|2 (3)

The total wavelet energy carried by signal S is subsequently
computed as follows:

Etotal =

NJ+1∑
j=1

Ej (4)

A normalized ρ-value measures the relative wavelet energy
(RWE) at each individual scale j:

ρj =
Ej

Etotal
(5)

NJ+1∑
j=1

ρj = 1. The distribution {ρj}represents the signal’s

wavelet energy distribution across different scales (Rosso et
al. 2001).

Evaluating the Shannon Entropy (Shannon 1948) on dis-
tribution {ρj} leads to the measurement of Shannon wavelet
entropy (SWE) of signal S (Rosso et al. 2001):

SWE(S) = −
∑
j

ρj · log ρj (6)

SWE measures the signal energy distribution at different
scales (i.e. frequency bands). H-Measure of signal S is de-
fined as:

H(S) = SWE(S)/SWEmax (7)
which is a normalized value of SWE(S). SWEmax is ob-
tained with a uniform distribution of signal energy across
different scales, e.g. {ρj} = { 1

NJ+1 ,
1

NJ+1 , · · · 1
NJ+1}.

EDCoW in Detail

This section details EDCoW ’s three main components: (1)
signal construction, (2) cross correlation computation, and
(3) modularity-based graph partitioning.

Construction of Signals with Wavelet Analysis

The signal for each individual word (unigram) is built in two
stages. Assuming Tc is the current time. In the first stage, the
signal for a word w at Tc can be written as a sequence:

Sw = [sw(1), sw(2), · · · , sw(Tc)] (8)

sw(t) at each sample point t is given by its DF-IDF score,
which is defined as:

sw(t) =
Nw(t)

N(t)
× log

∑Tc

i=1N(i)∑Tc

i=1Nw(i)
(9)

The first component of the right hand side (RHS) of Eq. (9)
is DF (document frequency). Nw(t) is the number of tweets
which contain word w and appear after sample point t − 1
but before t, and N(t) is the number of all the tweets in
the same period of time. DF is the counterpart of TF in TF-
IDF (Term Frequency-Inverse Document Frequency), which
is commonly used to measure words’ importance in text re-
trieval (Salton and Buckley 1988). The difference is that DF
only counts the number of tweets containing word w. This
is necessary in the context of Twitter, since usually multiple
appearances of the same word are associated with the same
event in one single short tweet. The second component of
RHS of Eq. (9) is equivalent to IDF. The difference is that,
the collection size is fixed for the conventional IDF, whereas
new tweets are generated very fast in Twitter. Therefore, the
IDF component in Eq. (9) makes it possible to accommo-
date new words. sw(t) takes a high value if word w is used
more often than others from t− 1 to t while it is rarely used
before Tc, and a low value otherwise.

In the second stage, the signal is built with the help of a
sliding window, which covers a number of 1st-stage sample
points. Denote the size of the sliding window as Δ. Each
2nd-stage sample point captures how much the change in
sw(t) is in the sliding window, if there is any.

In this stage, the signal for word w at current time T ′c is
again represented as a sequence:

S′w = [s′w(1), s
′
w(2), · · · , s′w(T ′c)] (10)

Note that t in the first stage and t′ in the second stage are
not necessarily in the same unit. For example, the interval
between two consecutive t’s in the first stage could be 10
minutes, while the interval in the second stage could be 60
minutes. In this case, Δ = 6.

To compute the value of s′w(t
′) at each 2nd-stage sam-

ple point, EDCoW first moves the sliding window to cover
1st-stage sample points from sw((t

′ − 2) ∗ Δ + 1) to
sw((t

′ − 1) ∗ Δ). Denote the signal fragment in this win-
dow as Dt′−1. EDCoW then derives the H-measure of the
signal in Dt′−1. Denote it as Ht′−1. Next, EDCoW shifts
the sliding window to cover 1st-stage sample points from
sw((t

′−1)∗Δ+1) to sw(t′ ∗Δ). Denote the new fragment
as Dt′ . Then, EDCoW concatenates segment Dt′−1 and Dt′

sequentially to form a larger segment Dt∗ , whose H-measure
is also obtained. Denoted it as Ht∗ . Subsequently, the value
of s′w(t

′) is calculated as:

s′w(t
′) =

{
Ht∗−Ht′−1

Ht′−1
if (Ht∗ > Ht′−1);

0 otherwise
(11)

403

If there is no change in sw(t) within Dt′ , there will be no
significant difference between s′w(t

′) and s′w(t
′ − 1). On

the other hand, an increase/decrease in the usage of word w
would cause sw(t) in Dt′ to appear in more/less scales. This
is translated into an increase/decrease of wavelet entropy in
Dt∗ from that in Dt′−1. And s′w(t

′) encodes how much the
change is.

Figure 1 illustrates the two stages of signal construc-
tion in EDCoW. Figure 2 gives an example of the sig-

1st stage 4210 3 6 7 85 ……... Tct=

210 3 ……... T’c

9

D1 D2

D2*

2nd stage,
=3

t'=

Figure 1: Two Stages of Signal Construction
nals constructed based on tweets published by a number
of Singapore-based Twitter users on June 16, 2010. On

2180 2200 2220 2240 2260 2280 2300
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time Index (10-min interval)

D
FI

D
F

S
co

re

flood
orchard

(a) after first stage

365 370 375 380
0

0.05

0.1

0.15

0.2

0.25

Time Index (60-min interval)

C
ha

ng
e

of
 W

av
el

et
 E

nt
ro

py

flood
orchard

(b) after second stage

Figure 2: Example of Signals (2 stages)
that day, there was a heavy downpour in Singapore, which
caused flash flood in the premium shopping belt Orchard
road. At each sample point in Figure 2(a),Nw(t) is the num-
ber of the tweets published in the past 10 minutes which con-
tains the specific word, while N(t) is the number of all the
tweets published in the same period of time. Figure 2(b) is
generated with Δ = 6, i.e. one 2nd-stage sample point en-
codes the change of a word’s appearance pattern in the past
60 minutes. Figure 2 shows that the bursts of the words are
more salient in the corresponding 2nd-stage signals.

By capturing the change of a word’s appearance pattern
within a period of time in one 2nd-stage sample point, it re-
duces the space required to store the signal. In fact, event de-
tection needs only the information whether a word exhibits
any burst within certain period of time (i.e. Δ in the case of
EDCoW). As we can see in Figure 2, 1st-stage signal con-
tains redundant information about the complete appearance
history of a specific word. Nevertheless, most existing algo-
rithms store data equivalent to the 1st-stage signal.

After the signals are built, each word is then represented
as its corresponding signal in the next two components1.

Computation of Cross Correlation

EDCoW detects events by grouping a set of words with sim-
ilar patterns of burst. To achieve this, the similarities be-
tween words need to be computed first.

1In the rest of this paper, “signal” and “word” are used inter-
changeably.

This component receives as input a segment of signals.
Depending on the application scenario, the length of seg-
ment varies. For example, it could be 24 hours, if a sum-
mary of the events happened in one day is needed. It could
also be as short as a few minutes, if a timelier understanding
of what is happening is required. Denote this segment as SI ,
and individual signal in this segment SIi .

In signal processing, cross correlation is a common mea-
sure of similarity between two signals (Orfanidis 1996).
Represent two signals as functions, f(t) and g(t), the cross
correlation between the two is defined as:

(f � g)(t) =
∑

f ∗ (τ)g(t+ τ) (12)

Here, f∗ denotes the complex conjugate of f . Computation
of cross correlation basically shifts one signal (i.e. g in Eq.
(12)) and calculates the dot product between the two signals.
In other words, it measures the similarity between the two
signals as a function of a time-lag applied to one of them.

Cross correlation could also be applied on a signal itself.
In this case, it is termed as auto correlation, which always
shows a peak at a lag of zero, unless the signal is trivial zero
signal. Given this, the auto correlation (with zero time lag)
could be used to evaluate how trivial a word is. Denote signal
SIi ’s auto correlation as AIi .

Cross correlation computation is a pair-wise operation.
Given the large number of words used in Twitter, it is expen-
sive to measure cross correlation between all pairs of sig-
nals. Nevertheless, a large number of signals are in fact triv-
ial. Figure 3 illustrates the distribution of AIi within SIi of
24-hour worth of signal. The distribution is highly skewed,
i.e. the majority of the signals are trivial (with AIi ≈ 0).
Given this, we discard the signals with AIi < θ1. To set

Figure 3: Skewed Distribution of Auto Correlation Values
θ1, EDCoW first computes the median absolute deviation
(MAD) of all AIi within SIi :

MAD(SI) = median(|AIi − median(AIi)|) (13)

MAD is a statistically robust measure of the variability of a
sample of data in the presence of “outliers” (Walker 1931).
In the case of EDCoW, we are interested in those “out-
liers” with outstandingly high AIi though. Therefore, we fil-
ter away those signals withAIi < θ1, and θ1 is set as follows:

θ1 = median(AIi) + γ ×MAD(SI) (14)

Empirically, γ is not less than 10 due to the high skewness
of AIi distribution.

Denote the number of the remaining signals as K. Cross
correlation is then computed in a pair-wise manner between

404

all the remaining K signals. Currently, the cross correlation
between a pair of signals is calculated without applying time
lag2. Denote the cross correlation between SIi and SIj as
Xij .

It is observed that the distribution of Xij exhibits a simi-
lar skewness as the one shown in Figure 3. Given this, for
each signal SIi , EDCoW applies another threshold θ2 on
Xij , which is defined as follows:

θ2 = medianSIj ∈SI (Xij) + γ ×MADSIj ∈SI (Xij) (15)

Here, γ is the same as then one in Eq. (14). We then set
Xij = 0 if Xij ≤ θ2.

The remaining non-zero Xij’s are then arranged in a
square matrix to form the correlation matrix M. Since we
are only interested in the similarity between pairs of signals,
the cells on the main diagonal of M are set to be 0. M is
highly sparse after applying threshold θ2. Figure 4 shows a
portion of matrix M built from the data used in Figure 2. It
shows the cross correlation between the top 20 words with
the highest AIi on that day.

Figure 4: Illustration of Correlation Matrix M. The lighter
the color of the cell in the matrix, the higher the similarity
between the two signals is, and vice versa.

The main computation task in this component is the pair-
wise cross correlation computation, which apparently has a
time complexity of O(n2), where n is the number of individ-
ual signals involved in the computation. n is generally very
small after filtering with θ1 (in Eq. (14)). For example, in the
experimental studies, less than 5% of all the words remain
after filtering with θ1. The quadratic complexity is therefore
still tractable.

Detection of Event by Modularity-based Graph
Partitioning

Matrix M is a symmetric sparse matrix. From a graph theo-
retical point of view, it can be viewed as the adjacency ma-
trix of a sparse undirected weighted graph G = (V,E,W).
Here, the vertex set V contains all the K signals after filter-
ing with auto correlation, while the edge set E = V × V .
There is an edge between two vertices vi and vj (vi, vj ∈ V)
if Xij > θ2, and the weight wij = Xij .

With such a graph theoretical interpretation of M, event
detection can then be formulated as a graph partitioning

2As mentioned earlier, cross correlation measure the similarity
between two signals as a time lag applied to one of them. By vary-
ing the time lag, it is possible to study the temporal relationship
between two words, e.g. a word appears earlier than another in an
event. We plan such study in future work.

problem, i.e. to cut the graph into subgraphs. Each subgraph
corresponds to an event, which contains a set of words with
high cross correlation. And the cross correlation between
words in different subgraphs are expected to be low.

Newman proposes a metric called modularity to measure
the quality of such partitioning (Newman 2004; 2006). The
modularity of a graph is defined as the sum of weights of
all the edges that fall within subgraphs (after partitioning)
subtracted by the expected edge weight sum if edges were
placed at random. A positive modularity indicates possible
presence of partitioning. We can define node vi’s degree as
di =

∑
j wji. The sum of all the edge weights in G is de-

fined as m =
∑

i di/2. The modularity of the partitioning is
defined as:

Q =
1

2m

∑
ij

(wij − di · dj
2m

)δci,cj (16)

where ci and cj are the index of the subgraph that node vi
and vj belong to respectively, and δci,cj is the Kronecker
delta. δci,cj = 1 if ci = cj , or δci,cj = 0 otherwise.

The goal here is to partition G such that Q is maxi-
mized. Newman has proposed very intuitive and efficient
spectral graph theory-based approach to solve this optimiza-
tion problem (Newman 2006). It first constructs a modular-
ity matrix (B) of the graph G, whose elements are defined
as:

Bij = wij − di · dj
2m

(17)

Eigen-analysis is then conducted on the symmetric matrixB
to find its largest eigenvalue and corresponding eigenvector
(−→v). Finally, G is split into two subgraphs based on the signs
of the elements in −→v . The spectral method is recursively
applied to each of the two pieces to further divide them into
smaller subgraphs.

Note that, with the modularity-based graph partitioning,
EDCoW does not require extra parameter to pre-set the
number of subgraphs (i.e. events) to be generated. It stops
automatically when no more subgraph can be constructed
(i.e. Q < 0). This is one of the advantages EDCoW has
over other algorithms.

The main computation task in this component is finding
the largest eigenvalue (and corresponding eigenvector) of
the sparse symmetric modularity matrix B. This can be ef-
ficiently solved by power iteration, which is able to scale
up with the increase of the number of words used in tweets
(Ipsen and Wills 2006)

Quantification of Event Significance

Note that EDCoW requires each individual event to have
at least two words, since the smallest subgraph after graph
partitioning contains two nodes. This is rationale, since it is
rare that a big event would only be described by one word
if there are so many users discussing about it. Nevertheless,
since each tweet is usually very short (less than 140 charac-
ters), it is not reasonable for an event to be associated with
too many words either.

Given this, EDCoW defines a measurement to evaluate
the events’ significance. Denote the subgraph (after parti-
tioning) corresponding to an event as C = (V c, Ec,W c).

405

V c is the vertex set,Ec = V c×V c,W c contains the weights
of the edges, which are given by a portion of correlation ma-
trix M. The event significance is then defined as:

ε = (
∑

wc
ij)×

e1.5n

(2n)!
, n = |V c| (18)

Eq. (18) contains two parts. The first part sums up all the
cross correlation values between signals associated with an
event. The second part discounts the significance if the event
is associated with too many words. The higher ε is, the more
significant the event is. Finally, EDCoW filters events with
exceptionally low value of ε (i.e. ε� 0.1).

Empirical Evaluation

To validate the correctness of EDCoW, we conduct an ex-
perimental study with a dataset collected from Twitter.

Dataset Used

The dataset used in the experiments is collected with the fol-
lowing procedure:

1. Obtain the top 1000 Singapore-based 3 Twitter users with
the most followers from http://twitaholic.com/. Denote
this set as U .

2. For each user inU , include her Singapore-based followers
and friends within 2 hops. Denote this aggregated set as
U∗.

3. For each user in U∗, collect the tweets published in June
2010.

Twitter REST API4 is used to facilitate the data collec-
tion. There is a total of 19,256 unique users, i.e. |U∗| =
19, 256. The total number of tweets collected is 4,331,937.
The tweets collected are tokenized into words. Stop-words
are filtered. We also filter (1) words with non-English char-
acters, and (2) words with no more than three characters.
Stemming is also applied. There are 638,457 unique words
in total after filtering and stemming.

Experimental Settings

Before applying EDCoW, we further clean up the dataset.
First of all, rare words are filtered, since they are less pos-
sible to be associated with an event. A threshold of five ap-
pearances every day by average is applied5. We further filter
words with certain patterns being repeated more than two
times, e.g. “booooo” (“o” being repeated 5 times) and “haha-
haah” (“ha” being repeated 3 times). Such words are mainly
used for emotional expression, and not useful in defining
events. There are 8,140 unique words left after cleaning up.

To build signals for individual words, we set the interval
between two consecutive 1st-stage sample points to be 10

3A user is considered Singapore-based if she specifies “Singa-
pore” as her location in the profile.

4Twitter API: http://dev.twitter.com/doc#rest-api.
5To be consistent with Eq. (9), here we count the word appear-

ance by the number of tweets using the word, even the word may
appear in one single tweet more than once.

minutes, and Δ = 6. By doing so, the final signals con-
structed capture the hourly change of individual words’ ap-
pearance patterns. EDCoW is then applied to detect events
on every day in June 2010.

Correctness of EDCoW
In a typical information retrieval context, recall and pre-
cision are two widely used performance metrics. Given a
collection of document, recall is defined as the fraction of
the relevant documents retrieved to the total number of rel-
evant documents should have been returned. In the case of
EDCoW, “relevant” means there is a real-life event corre-
sponding to the detected event. However, it is not feasible
to enumerate all the real-life events happened in June 2010
in the dataset. It is therefore difficult to measure EDCoW ’s
recall. Given this, we concentrate on precision rather than
recall, which measures the portion of the “relevant” events
detected by EDCoW to all the events detected. Table 1 lists
all the events (with ε > 0.1) detected by EDCoW.

Since no ground truth is available about all the “relevant”
events, we manually check the events detected by EDCoW
one by one. There is no event (with ε > 0.1) detected on
June 1-3, 6, and 19-30. Out of the 21 events detected, we find
three events which do not correspond to any real-life event,
i.e. Event 6, 9, and 10 in Table 1. There is one event which
is a mixture of more than one real-life event, i.e. Event 7. It
is associated with two words, which correspond to two non-
related real-life events. Event 13 is detected to associate with
two words “#svk” and “#svn”, which relate to two teams
in the World Cup 2010. There was no clear real-life event
related to the two teams on that day though. Therefore, the
precision of EDCoW in this case is 76.2%.

EDCoW has one tunable parameter, i.e. γ in Eq. (14) and
(15). The result so far is obtained with γ = 40. We also
study EDCoW ’s performance with different γ values, i.e.
γ = 10, 20, 30, 50.

A smaller value of γ (i.e. γ < 40) fails to filter away
signals with trivial auto correlation, many of which are in-
cluded in the graph partitioning to form the events. In this
case, most of the events detected by EDCoW are associated
with a large number of words, and therefore small ε val-
ues. We also manually check the events detected by EDCoW
with different γ values. None of the five events with ε > 0.1
detected by EDCoW with γ = 10 corresponds to any real-
life event. The precision in this case is 0. For γ = 20, only
one out of seven events is “relevant”, which corresponds to
Event 3 in Table 1. This is translated to a precision of 14.3%.
For γ = 30, only two out of 12 events are “relevant”, which
correspond to Event 2 and 3 in Table 1. The precision is
therefore 16.7%.

A larger value of γ filters more signals away. In this case,
some of the “relevant” events, if any, are already filtered be-
fore graph partitioning is applied to detect them. We again
manually check the events detected. Although more events
(with ε > 0.1) are detected, only one new “relevant” event
other than those listed in Table 1 is detected. It is associated
with two words “ghana” and “#gha”, and corresponds to a
match between team Ghana and Serbia on June 13, 2010.
There are another eight “relevant” events out of the total 40

406

Day Event ε value Event Description
1-3 No event detected

4

1. democrat, naoto 0.417 Ruling Democratic Party of Japan elected Naoto Kan as chief.
2. ss501, suju 0.414 Korean popular bands Super Junior’s and SS501’s performance on mubank.
3. music, mubank 0.401 Related to Event 2, mubank is a popular KBS entertainment show.
4. shindong, youngsaeng 0.365 Related to Event 2, Shindong and Youngsaeng are member of the two bands.
5. junior, eunhyuk 0.124 Related to Event 2, Eunhyuk is a member of super junior.

5 6. robben, break 0.404 No clear corresponding real-life even
6 No event detected

7
7. kobe, kristen 0.417 Two events: Kristen Stewart won some MTV awards, and Kobe Bryant in a NBA match.
8. #iphone4, ios4, iphone 0.416 iPhone 4 released during WWDC 2010

8
9. reformat, hamilton 0.391 No clear corresponding real-life event
10. avocado, commence, ongoing 0.124 No clear corresponding real-life event

9 11. #failwhale, twitter 0.360
A number of users complained they could not use twitter due to over-capacity.

A logo with whale is usually used to denote over-capacity.
10 12. vuvuzela, soccer 0.387 People started to talk about world cup.
11 13. #svk, #svn 0.418 #svk and #svn represent Team Slovakia and Slovenia in World Cup 2010.
12 14. #kor, greec, #gre 0.102 A match between South Korea and Greece in World Cup 2010.
13 15. whale, twitter 0.417 Similar as Event 10.
14 16. lippi, italy 0.326 Italy football team coach Marcello Lippi made some comments after a match in World Cup 2010.

15
17. drogba, ivory 0.417 Football player Drogba from Ivory Coast is given special permission to play in World Cup 2010.
18. #prk, #bra, north 0.114 A match between North Korea and Brazil in World Cup 2010.

16 19. orchard, flood 0.357 Flood in Orchard Road.
17 20. greec, #gre, nigeria 0.122 A match between Greece and Nigeria in World Cup 2010.

18 21. #srb, podolski 0.403
A match between Germany and Serbia in World Cup 2010.

Podolski is a member of Team Germany in World Cup 2010.
19-30 No event detected

Table 1: All the Events Detected by EDCoW in June 2010

detected events, which correspond to Event 1, 2, 3, 5 (with
different words though), 7, 11, 13, and 20 in Table 1. The
precision is 22.5%.

Comparison with Other Methods

In the experimental study, EDCoW is applied to detect the
events on a daily basis. To some extent, this is equivalent to
topic modeling, whose goal is to discover the “topics” that
occur in a collection of documents. Given this, we aggregate
all the tweets published on one day as one single document,
and then apply topic modeling on the collection of docu-
ments (i.e. all the 30 documents for June 2010). We apply
Latent Dirichlet Allocation (LDA), a widely used statistical
topic modeling technique, on the document collection. We
then compare the result generated from LDA with that by
EDCoW.

In LDA, each document is a mixture of various topics,
and the document-topic distribution is assumed to have a
Dirichlet prior (with hype-parameter α). Each topic itself
is a mixture of various words, and the topic-word distribu-
tion is again assumed to have a Dirichlet prior (with hype-
parameter β) as well. LDA is conditioned on three parame-
ters, i.e. Dirichlet hyper-parameters α, β, and topic number
T 6. In this study, they are set as T = 50, α = 50/T and
β = 0.1. Due to the space constraint, the complete result of
all the topics (each topic is represented as a list of top words)
is omitted here. Instead, the top-4 topics identified on June
16, 2010 are listed in Table 2. The “probability” in this ta-
ble is the probability that the corresponding topic appears in

6Due to space constraint, readers are referred to (Blei, Ng, and
Jordan 2003) for the details of LDA.

a document (i.e. all the tweets published on one particular
day).

As it can be seen from Table 2, one of the obvious draw-
backs of applying LDA in the context of event detection is
that, the result generated by LDA is more difficult to inter-
pret than the one listed in Table 1. Although “flood” and “or-
chard” are identified as the top words for the most related
topic on June 16, 2010, they are mixed with other words
as well. It is also not straightforward to see that Topic 8
may be related to “world cup”. The other two top topics are
even more difficult to interpret as their top-words are all triv-
ial words. Moreover, after setting the number of topics (i.e.
T), it would always return a distribution over T topics for
each document no matter whether the document (i.e. tweets
published on one particular day) has discussed about any
real-life event or not. Further processing is required to im-
prove the results generated by LDA in the context of event
detection, e.g. applying threshold-based heuristics to filter
non-eventful topics and words. In contrast, EDCoW has the
ability to filter trivial words away before applying cluster-
ing technique to detect the events. More importantly, it re-
quires no parameter to specify the number of events. It will
automatically generate different number of events based on
users’ discussions in the tweets.

Conclusions and Future work

This paper focuses on detecting events by analyzing the
contents published in Twitter. This paper proposes EDCoW
(Event Detection with C lustering of Wavelet-based Sig-
nals). Experimental studies show that EDCoW achieves a
fairly good performance. Nevertheless, EDCoW still has
space for improvement.

First of all, currently EDCoW treats each word indepen-

407

Day Topic ID Probability Top Words

16

13 0.229 flood, orchard, rain, spain, road, weather, singapor, love, cold
48 0.095 time, don, feel, sleep, love, tomorrow, happi, home, hate
11 0.091 time, love, don, feel, wait, watch, singapor, hope, life
8 0.079 watch, world, cup, match, time, love, don, south, goal

Table 2: Topics Detected by LDA on June 16, 2010

dently. Such treatment may potentially group words asso-
ciated with different real-life events together, as shown by
the experimental study results. We plan to extend EDCoW
by incorporating more factors, e.g. words need to be seman-
tically close enough to be clustered to form an event. Sec-
ond, we plan to study EDCoW ’s performance with dataset
of a larger scale. We also plan to investigate the possibility
of compiling a ground truth automatically for the dataset,
so that a more objective comparison with other algorithms
could be conducted. Third, currently EDCoW does not ex-
ploit the relationship among users. It deserves a further study
to see how the analysis of the relationship among users could
contribute to event detection. Last but not least, the current
design of EDCoW does not apply time lag when computing
the cross correlation between a pair of words. We plan to in-
troduce time lag and study the interaction between different
words, e.g. whether one word appears earlier than another
in one event. This could potentially contribute to study the
temporal evolution of event.

Acknowledgements

We would like to thank Prof. Lim Ee-Peng from School of
Information Systems, Singapore Management University for
his valuable comments and discussion.

References

Adelson, E. H., and Bergen, J. R. 1985. Spatiotemporal en-
ergy models for the perception of motion. Journal of Optical
Society of America A 2(2):284–299.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
dirichlet allocation. Journal of Machine Learning Research
3:993–1022.
Chen, L., and Roy, A. 2009. Event detection from flickr data
through wavelet-based spatial analysis. In CIKM ’09: Pro-
ceedings of the 18th ACM conference on Information and
knowledge management, 523–532. New York, NY, USA:
ACM.
Daubechies, I. 1992. Ten lectures on wavelets. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics.
Fung, G. P. C.; Yu, J. X.; Yu, P. S.; and Lu, H. 2005. Parame-
ter free bursty events detection in text streams. In VLDB ’05:
Proceedings of the 31st international conference on Very
large data bases, 181–192. VLDB Endowment.
He, Q.; Chang, K.; and Lim, E.-P. 2007. Analyzing fea-
ture trajectories for event detection. In SIGIR ’07: Proceed-
ings of the 30th annual international ACM SIGIR conference
on Research and development in information retrieval, 207–
214. New York, NY, USA: ACM.
Ipsen, I. C., and Wills, R. S. 2006. Mathematical properties
and analysis of google’s pagerank. Boletı́n de la Sociedad
Espaǹola de Matemática Aplicada 34:191–196.

Kaiser, G. 1994. A friendly guide to wavelets. Cambridge,
MA, USA: Birkhauser Boston Inc.
Kaplan, A. M., and Haenlein, M. 2010. The early bird
catches the news: Nine things you should know about micro-
blogging. Business Horizons To appear:–.
Kleinberg, J. 2002. Bursty and hierarchical structure in
streams. In KDD ’02: Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery
and data mining, 91–101. New York, NY, USA: ACM.
Newman, M. E. J. 2004. Fast algorithm for detect-
ing community structure in networks. Physical Review. E
69(6):066133.
Newman, M. E. J. 2006. Modularity and community struc-
ture in networks. Proceedings of the National Academy of
Sciences 103(23):8577–8582.
Orfanidis, S. J. 1996. Optimum Signal Processing.
McGraw-Hill.
PearAnalytics. 2009. Twitter study - au-
gust 2009. http://www.pearanalytics.com/wp-
content/uploads/2009/08/Twitter-Study-August-2009.pdf.
Petrović, S.; Osborne, M.; and Lavrenko, V. 2010. Stream-
ing first story detection with application to twitter. In
NAACL ’10: Proceedings of the 11th Annual Conference of
the North American Chapter of the Association for Compu-
tational Linguistics.
Rosso, O. A.; Blanco, S.; Yordanova, J.; Kolev, V.; Figliola,
A.; Schürmann, M.; and Başar, E. 2001. Wavelet entropy:
a new tool for analysis of short duration brain electrical sig-
nals. Journal of Neuroscience Methods 105(1):65 – 75.
Sakaki, T.; Okazaki, M.; and Matsuo, Y. 2010. Earthquake
shakes twitter users: real-time event detection by social sen-
sors. In WWW ’10: Proceedings of the 19th international
conference on World wide web, 851–860. New York, NY,
USA: ACM.
Salton, G., and Buckley, C. 1988. Term-weighting ap-
proaches in automatic text retrieval. Information Processing
& Management 24(5):513 – 523.
Shannon, C. E. 1948. A mathematical theory of communi-
cation. Bell System Technical Journal 27:623–656.
Walker, H. 1931. Studies in the History of the Statistical
Method. Williams & Wilkins Co.
Yang, Y.; Pierce, T.; and Carbonell, J. 1998. A study of retro-
spective and on-line event detection. In SIGIR ’98: Proceed-
ings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval, 28–
36. New York, NY, USA: ACM.

408

