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Abstract

Decision support systems for traffic management systems have to cope with a high volume of events continuously generated by
sensors. Conventional software architectures do not explicitly target the efficient processing of continuous event streams. Recently,
event-driven architectures (EDA) have been proposed as a new paradigm for event-based applications. In this paper we propose
a reference architecture for event-driven traffic management systems, which enables the analysis and processing of complex event
streams in real-time and is therefore well-suited for decision support in sensor-based traffic control systems. We will illustrate our
approach in the domain of road traffic management. In particular, we will report on the redesign of an intelligent transportation
management system (ITMS) prototype for the high-capacity road network in Bilbao, Spain.
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1. Introduction

Decision Support Systems (DSS) are information sys-
tems that provide assistance to humans involved in complex
decision-making processes. The fundamental task for modern
DSS is to help decision-makers in building up and exploring
the implications of their judgements [16]. DSS are indispens-
able components of intelligent traffic management systems [27]
because operators must come to decisions in a short reaction
time based on a huge amount of traffic data.

Nowadays, most traffic control systems are sensor-based:
loop-detectors installed in the roads emit events when cars are
passing [8]. Furthermore, GPS devices or vehicle information
and communication system (VICS) are sending continuously
vehicle positioning data [20]. These technologies provide a
very high volume of fine-grained individual events which must
be processed to analyze the current traffic situation and to take
appropriate control actions.

A key issue of decision support systems in traffic manage-
ment is short latency. The gap between the time the sensor data
is emitted and the time the analysis results are available should
be as short as possible, e.g. to cope with a traffic accident. Ap-
propriate systems must provide real-time decision support [9]
or “Zero Latency” responsiveness as proposed by Gartner [17].

Traffic control systems must analyze millions of events con-
tinuously produced by sensors and vehicles to detect problems
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immediately and to trigger suitable control mechanism.

Current software architectures of decision support systems
are not targeted on those sensor-based systems, i.e. they cannot
deal with the efficient processing of continuous event streams.
Conventional service-oriented architectures (SOA) are based
on a process-oriented control flow, which is not appropriate to
event-driven systems. Due to the high volume of events and
their complex dependencies it is not possible to specify a prede-
fined process flow. Other approaches, such as mainstream, AI-
based multiagent architectures ([28], [4], [10], [30]) focus on
knowledge processing, but do not explicitly target the problems
associated to real-time high-volume event processing. Further-
more, they lack inherent concepts for describing temporal de-
pendencies between events, which are crucial to react appropri-
ately in certain situations [24].

In recent years, event-driven architectures (EDA) have been
proposed as a new architectural paradigm for event-based ap-
plications [25]. The main idea lies in the processing of events
as the central architectural concept. In this paper, we propose
a reference architecture for event-driven decision support sys-
tems. The key concept of our approach is to use complex event
processing (CEP) as the process model for event-driven deci-
sion support. Event streams generated by sensors and vehicles
contain a large volume of different events, which must be trans-
formed, classified, aggregated and evaluated to initiate appro-
priate actions. Our reference architecture enables the analysis
and processing of complex event streams in real-time and is
therefore well-suited for decision support in sensor-based traf-
fic control systems.

The remainder of the paper is organized as follows. In the
next section, we present a distributed EDA-based reference ar-
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chitecture for decision support in traffic management systems.
Section 3 illustrates the effectiveness of our approach through
the redesign of an intelligent transportation management sys-
tem (ITMS) for managing the high-capacity road network of
the Basque town of Bilbao. Section 4 presents the results of
the abstract architecture presented in this paper applied in the
eDraft project [13]. Finally, we summarize the most significant
features of our approach and provide a brief outlook on future
lines of research.

2. EDA for Transport Control Systems

2.1. Event-Driven Architecture - Overview

Event-driven architecture (EDA) provides an architectural
concept for dealing with complex event streams using Com-

plex Event Processing (CEP) as event processing model [25].
Because sensor-based traffic management systems are emitting
continuously data they are particularly suited for CEP.

One main principle of CEP is that events are not independent
from each other, but correlated. Sensor data tends to be strongly
correlated in both time and space. For instance, traffic data mea-
sured at one sensor is highly correlated to the data at an adja-
cent sensor. Similarly, readings observed at one time instant
are highly indicative of the readings observed at the next time
instant. Applications are not interested in individual readings
in time or individual devices in space, but rather in application-
level concepts of temporal and spatial granules [22].

The main task of CEP is Event Pattern Matching to identify
in a huge event cloud those patterns of events which are signif-
icant for a business domain. In traffic control systems millions
of sensor-emitted events are analyzed to discover event patterns
signifying upcoming traffic problems. Pattern matching and
event processing are performed by so-called event-processing
agents (EPAs), which monitor the event streams. Essentially,
EPAs filter, split, aggregate, transform and enrich events. Fur-
thermore, they synthesize new complex events from simple
events. This step takes correlations between events into account
and provides the real power of complex event processing.

 

Figure 1: Complex Event Processing components.

Fig. 1 shows the building blocks of a Complex Event Pro-
cessing (CEP) component. To automate event processing, a for-
malism based on metadata is required. The Event Model pre-
cisely defines the set of possible events with their constraints
and interdependencies. Each event contains general metadata
(event ID, event type, event timestamp) and event-specific in-
formation, e.g. the ID of a loop detector or a car ID. Event

Processing Rules define correlations between events in form
of event patterns, and determine corresponding actions. They
can be expressed by event processing languages (EPLs) based
on event algebras [31], [29] or as SQL-like queries over event
streams [1]. Event processing is based on the Event Data,
which manifests the occurred events, i.e. a set of instances
related to event types specified in the event model. An Event

Processing Engine is a rule engine executing event processing
rules on the event data.

Due to the continuously arriving data, the event processing
engine has to cope with infinite data streams. Therefore, the
pattern matching is characterized by continuous queries that are
issued once and then run continuously over the data stream [3].
To cope with the infinite number of data, sliding windows are
used, i.e. a historical snapshot considering the most recent set
of events. It means that events have a certain lease time and are
deleted if it is expired. The appropriate lease times are event-
type specific: the more abstract an event is, the longer its lease
time is.

2.2. EDA-Architecture for Decision Support Systems

The key issue of EDA-based systems is a precise event
model, which reflects the different stages of event processing
and yields the basis for the overall system architecture. Gen-
erally, all events can be structured in a layered hierarchy: For
decision support systems based on sensor data we can derive a
course-grained event hierarchy, as depicted in fig. 2.

Figure 2: Event hierarchy in decision support systems.

• Raw Sensor Events are the physical events emitted by the
sensors, e.g. loop detectors. Due to technical problems
sensor data is often inconsistent: missed and duplicated
readings, as well as unreliable readings causing outliers
must be compensated [6]. Therefore, the raw sensor events
are pre-processed and cleaned according to [22] to over-
come the inconsistencies.

• Domain Data Events: However, the cleaned sensor data
is too fine-grained and still uncorrelated. DSS are not in-
terested in individual sensors data, but in application-level
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concepts of spatial and temporal granules. Therefore, Do-
main Data Events are derived by mapping raw sensor event
data to domain concepts [11]. For instance, Domain Data
Events correlate data of sensors located in one road seg-
ment, and evaluate average traffic data as traffic density
and occupancy. Furthermore, regular traffic behaviour can
be calculated by analyzing historical sensor data.

• Problem Events: In a problem identification step the do-
main data events are synthesized to problem events, which
characterize a situation that is undesirable for the decision-
maker. For example, a problem event can identify high
traffic density, traffic congestion or a blocked road.

• Cause Events: In a diagnosis step the problem events must
be transformed into a number of cause events, i.e. an ex-
planation in terms of causal features. A cause event hierar-
chy classifies the possible reasons for a problem. For ex-
ample, traffic congestions in a certain area can be caused
by an evening rush hour or by an accident in an adjacent
area.

• Action Events: Based on the diagnosed cause events, an
action planning step is needed, which yields a sequence of
actions to eliminate the related causes and damages. Traf-
fic rerouting to bypass a blocked road is an example of a
possible action. In EDA actions are mapped onto special
action events, which characterize the functional output of
the DSS.

The event hierarchy reflects the decision process, which can
be understood as a sequence of event processing steps. The
system transforms the raw sensor events into more abstract and
sophisticated domain events for evaluating the actual traffic sit-
uation and initiating appropriate traffic control steps.

Each of the event transformation steps is processed by cor-
responding event processing agents (EPA), which compose an
event processing network (EPN) [32]. Accordingly, we can de-
rive a reference architecture as shown in fig. 3. Each event
processing agent represents an expert in the decision process.

The Sensor Processing Agent (SPA) provides the data clean-
ing of the raw sensor events and maps them subsequently to
the domain data events. Domain data events are expressed in
domain concepts, as road segments and traffic data.

The Problem Identification Agent (PIA) executes continuous
queries on the stream of domain data events to derive traffic
problems. A traffic problem can be understood as a state which
deviates from normal traffic conditions. For example, conges-
tions are characterized by the fact that the traffic demand ex-
ceeds the roads capacities.

The Diagnosis Agent (DA) analyzes the incoming problem
events and applies appropriate pattern to create complex cause
events. The event pattern rules infer from the incoming problem
events a set of possible causes.

The Action Planning Agent (APA) executes the final deci-
sion process step. It generates appropriate action events by
processing the cause events. The sequence of generated ac-
tion events are resulting from an action planning task. Ideally,

Figure 3: EDA-based reference architecture for DSS.

the executed action plan should yield to a situation where most
damages have been alleviated and all the problem causes have
been eliminated. The general reasoning method to deal with
this functionality is a planner, using classification reasoning on
predefined plans and subplans.

2.3. Distributed Architecture

Real traffic scenarios exhibit a distributed structure: sensors
are dispersed all over the topology, and traffic flows can often
be consistently conceived within local areas of the network. Be-
cause a well-adapted software architecture should reflect this a
priori structure, we transformed the proposed reference archi-
tecture into a distributed design, according to fig. 4.

In each road section a set of sensors are situated, whose
events are captured and transferred into domain concepts by
a dedicated Sensor Processing Agents (SPA). These sections
define proximity groups [22] related to a set of sensors moni-
toring the same spatial granule. The next steps are defined by
the decision process and performed by a set of Problem Identi-
fication Agents (PIA), Diagnosis Agents (DA) and Action Plan-
ning Agents (APA). Each of these agents makes its own local
decisions based on its upstream events. The agents use their
individual event processing rules modelling the local circum-
stances.

Finally, there is a central Coordination Agent, which collects
the action events of the APAs and resolves possible conflicts,
e.g. if there are two contradictory proposals for traffic rerouting.

This distributed architecture is modularized and scalable. It
reflects the spatial structure of sensor-based traffic control sys-
tems and the fact that decisions are usually made on base of
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Figure 4: Distributed DSS architecture

local data and circumstances. The Coordination Agent solves
conflicts between local decisions due to a global goals and
strategies.

The communication between the agents is event-based as de-
scribed in subsection 2.2; standard message-oriented middle-
ware (MOM) can be used as event channels to exchange data
between the different Event Processing Agents.

2.4. Tool Support

Currently, a number of tools for developing EDA-based ap-
plications are available. Besides many research projects [37]
[2], [36] there are already some commercial products available
[7], [34], [26], [18], [33]. Usually they provide an event pro-
cessing language (EPL) and a corresponding processing engine.
At the moment, no generally accepted standards exist for event
definition, event pattern specification, or rule languages and en-
gines. This lack of standardization is one of the major obstacles
in order to fully exploit the benefits of event-driven architec-
tures.

EPLs can be expressed as ECA (event condition rules) [38],
[29] or as a SQL-based approach of continuous queries over
event streams [1]. Recently, we have investigated the differ-
ences between the two approaches [14] comparing the general
rule system Jess [23] with the Event Query Language of Esper,
an open source event processing engine [15].

• General rule systems, like Jess [23], ILOG JRules [19] or
JBoss Drools [21] are not focused on event stream pro-
cessing. They lack an inherent concept of time: Tempo-
ral dependencies between events and the handling of slid-
ing windows must be integrated manually. Therefore, the
description of event patterns is more complex and cum-
bersome. Furthermore, general rule systems are not op-
timized for dealing with a high volumes of continuously

arriving events. Our experiments with Jess showed some
significant performance drawbacks. For instance, only a
few thousand events per second could be inserted into
the Jess fact base. The Rete algorithm used in general
rule-based systems does not support temporal operators
for defining temporal constraints. Recently, some work
has been proposed for integrating temporal constraints into
Rete [35], [5].

• By contrast, the concept of time is already integrated in
Event Query Languages like Esper [15], Coral8 [7] and
StreamBase [33]. EQL-based systems explicitly target the
efficient processing of complex event streams in real time.
In our case study, experiments showed that Esper performs
much better than Jess; more several 10.000 of events per
second could be processed. Similar to databases, the re-
sponse time depends mainly on the complexity of the event
patterns, especially on how many event streams are joined.

Therefore, in the following case study we will use the open
source event stream processing engine Esper, which provides its
own continuous query language EQL (event processing query
language) [15].

3. Case study

3.1. Scenario

We will illustrate our approach in the domain of road traf-
fic management. In particular, we will report on the redesign,
based on the EDA architecture put forward in the previous sec-
tion, of a DSS prototype for managing a planned extension of
the high-capacity road network in the greater Bilbao area in
Spain [27].

Regular information about the traffic situation in this highly
used area, registered by loop detectors, is received in the Mo-
bility Management Centre. On the basis of this data, traffic op-
erators have to take decisions on what control actions to take in
order to solve or minimize congestion. These actions include:

(1) displaying messages on Variable Message Signal (VMS)
panels installed above the road to warn drivers about traffic
problems or recommend alternative routes and/or

(2) contacting local authorities to send the right people to man-
age the situation.

The DSS has the purpose of assisting operators with their
management task, helping them to configure consistent control
plans for the whole road network, and making the best use of
the available signal devices from a global perspective.

The structure of the high capacity road networks is modelled
in terms of sections, whose shape and structure account for a
certain capacity of traffic flow, connected either linearly or by
ramps, as well as sensors (mostly loop detectors) and actuators
(generally VMS) located at certain sections. In line with the
aforementioned architecture, the conceptual vocabulary of our
application is completed by a number of taxonomies, represent-
ing the set of possible sensor, domain data, problem, diagnosis
and action events.

The reasoning steps of the system follow the same pattern:
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• Firstly, rules listen to the continuous and massive stream
of sensor events and, after performing correction, comple-
tion, etc. of sensor data, relate specific patterns of abstract
data values (qualitative measures of speed, occupancy and
flows) to problem types.

• There may be both generic rules, applicable to all type of
networks with a certain topology (congestions due to ex-
cess demand on trunks), as well as specific patterns (ap-
plicable to a set of sections with a particular location in
the network). Problems at certain sections, and their im-
portance, are modelled in terms of traffic excess at those
sections (comparing demand to capacity).

• Diagnosis is performed by determining the routes that
drivers take from an origin O to a destination D that pass
thorough a problematic section. The relevance of these
causes is expressed in terms of the quantity of traffic flow
that contributes to the detected excess, based on an estima-
tion of the amount of flow between O and D for a specific
time slot and day of the week, and of how much of this
traffic will choose this route in the current context.

• Finally, action events are generated by rules that relate sig-
nal plans (coherent sets of messages on certain VMS) to a
specific distribution of traffic from O to D among different
routes.

It should be noticed that traffic engineers in the Mobility Man-
agement Centre usually conceive the road network in terms of
so-called problem areas (PA) and management areas (MA).
Problem identification and diagnosis on the one hand, and ac-
tion planning on the other, can usually be modelled indepen-
dently in each problem area, and each management area, re-
spectively (see fig. 5).
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Figure 5: Problem Areas (PA) and management areas (MA).

By consequence, at any of the different levels of our DSS
architecture, there are several event processing agents of the
same type (i.e. receiving the same type of events as input and

producing the same type of event as output). In order to gener-
ate control action events, inputs from several different problem
areas (i.e. their corresponding events) are usually necessary.

Furthermore, action events for different management areas
may be in conflict: they may involve physical (e.g. setting dif-
ferent messages on the same VMS) or logical conflicts (e.g. al-
leviating a problem by deviating traffic to an already congested
area). Context-sensitive priority rules assure that the set of ac-
tion events, which represent the recommendations of our sys-
tems to the operators in the Mobility Management Centre, are
free of those conflicts.

3.2. Event Model

The event flow in our application domain follows the event
hierarchy for DSS described in section 2.2 (fig. 2). The follow-
ing types of events can be identified.

Raw Sensor Events are the incoming events from the phys-
ical sensors located on the road. They contain event-specific
information as a sensor id as well as quantitative measures of
speed, occupancy and traffic density.

In our architecture Domain Data Events are split into differ-
ent event types: First, events conveying information about sen-
sors belonging to the same section of the road are aggregated
into one Section Event, with the same attributes and completed
with domain knowledge about its capacity and some informa-
tion about the topology of the road (e.g. the next section in
the traffic direction). Then, an abstraction process transforms
the numeric values into discrete qualitative values generating
Section Abstraction Events. For instance, the measured car ve-
locities are related to the allowed speed limits and assigned to a
qualitative category, e.g. ’SLOW’, ’MEDIUM’, ’FAST’.

With the symbolic data for each section, Problem Identifi-
cation Agents (PIA) apply different traffic problem pattern to
identify and generate Problem Events, which inform about the
location, type, traffic excess, state and category of the problem.

Whenever a problem is detected, the Diagnosis Agent (DA)
has to identify the cause of the problem, and Cause Events are
generated containing information about the problem type and
the routes contributing to it.

Finally, from information about problem causes, Action
Planning Agents (APA) generate Action Events including in-
formation about action plan proposals, the location to execute
the proposal action and an information message to specify ad-
ditional information about the action.

3.3. Event Processing Rules

The following rules are examples of using the Esper engine
and their own continuous query language EQL [15] to imple-
ment some event processing rules that the agents presented
in the proposed architecture implement for the decision sup-
port process. The agents create these rules from their knowl-
edge about the topology of their area of control and the expert
knowledge about problem detection, diagnosis and control ac-
tion planning.
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Figure 6: Example of sensors positions in road sections.

3.3.1. Sensor Processing Agents (SPA)

In this section, we use the fragment of the topology of the
high-capacity road in Bilbao shown in fig. 6, which corre-
sponds to a part of the logical problem area Rontegi Sentido

Aeropuerto/Avanzada. In that figure, two sections and nine sen-
sors are represented.

Domain Rules. The rule shown below contains the three main
parts of EQL rules:

i) insert into creates a new event of a certain event type (here:
SensorInSection);

ii) in the select-clause the fields of the new event are filled;
and

iii) source events are specified in the from-clause.

In particular, that rule adds topology information about sec-
tions in Bilbao’s roads to the information obtained from all Sen-
sor events generated by sensors located in the section ’Rontegi

antes Erandio’, i.e. 302033, 302034, 302035 and 302036. The
section name (id) is added to the sensor numerical data (speed,
occupancy, density and vehicles) and completed with domain
knowledge, like the capacity of the section and part of the topol-
ogy such as next section information.

There exist some similar rules which are only slightly differ-
ent according to the structural properties of the road network.
For instance, all sensor data belonging to the same road section
should be aggregated. The following rule combines the sensor
events of four adjacent sensors. A sliding window of length
size 1 is used to achieve that each arriving Sensor event gener-
ates a new aggregated SensorInSection event. Such topology-
dependent rules can be generated at compile-time from generic
rule patterns based on topology knowledge, and are added au-
tomatically to the event-processing engine.

insert into SensorInSection
select ’Rontegi tras Barakaldo’ as id,

2820 as capacity,
’Rontegi antes Erandio’ as next section,
speed as speed,
occupancy as occupancy,
density as density,
vehicles as vehicles

from Sensor(
id=’302033’
or id=’302034’
or id=’302035’
or id=’302036’).win:length(1);

Aggregation and Abstraction Rules. Traffic engineers use sym-
bolic values (e.g. low speed, high density ...) rather than nu-
merical in their knowledge representation of problem detection
patterns. With this rule, numerical data provided by SensorIn-

Section events are aggregated (all sensor in the same section, in-
dicated in “group by”) and abstracted into qualitative measures.
In this example, we use an external java function to classify the
speed, occupancy and density in three levels: LOW, MEDIUM

and HIGH. The rule pattern uses a sliding window of 1 second,
and generates a new Section event for each section every second
(last line of the rule).

insert into Section
select id,

capacity,
next section,
sum(vehicles) as demand,
Abstraction.absSpeed(avg(speed)) as speed,
Abstraction.absOccupancy(avg(occupancy)) as

occupancy,
Abstraction.absDensity(avg(density)) as density

from SensorInSection.win:time(1 seconds)
group by id

output last every 1 seconds

3.3.2. Problem Identification Agents (PIA)

Problem detection is based on a set of typical patterns that
relate traffic conditions with problem types. In this section we
present some problem patterns implemented as EQL rules used
by the Problem Identification Agents.

Fig. 7 presents one of those patterns: ’retention caused by a
trunk incident’. This pattern matches when a section is charac-
terized by low speed or high occupancy and, in the subsequent
section, shows low or medium density, and either high speed or
low occupancy.

The next rule implements this pattern with Bef and Aft re-
ferring to two consecutive sections. The abovementioned con-
ditions are represented in the where-clause of the EQL rule.
When two specific consecutive sections fulfil the pattern, a
problem is identified and the corresponding new problem event
is generated. The problem event is completed with the specific
characteristics of the identified problem (problem state and cat-

egory).
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Figure 7: Problem pattern ’retention because of trunk incident’

insert into Problem
select Aft.id as location,

’retention because of trunk incident’
as description,
’linear connection’ as type,
Aft.demand-Aft.capacity as excess,
’incident’ as state,
’problem’ as category

from Section.win:time(30 seconds) Aft,
Section.win:time(30 seconds) Bef

where Bef.next section = Aft.id
and (Bef.speed = ’LOW’
or Bef.occupancy = ’HIGH’)
and (Aft.density = ’LOW’
or Aft.density = ’MEDIUM’)
and (Aft.occupancy = ’LOW’
or Aft.speed = ’HIGH’)

group by Aft.id
output last every 30 seconds;

Fig. 8 presents another problem pattern: ’traffic jam in road
narrowing’. That pattern detects a congestion when the section
containing the constriction shows low or medium speed and low
or medium occupancy, while the subsequent section is charac-
terised by a high density and medium or high speed.

Figure 8: Problem pattern ’traffic jam in road narrowings’

The following rule, similar to the previous one, implements
the generic pattern. Bef and Aft are two consecutives sections
that match the pattern.

insert into Problem
select Aft.id as location,

’traffic jam in road narrowing’ as description,
’narrow’ as type,
Aft.demand-Aft.capacity as excess,
’free’ as state,
’incipient’ as category

from Section.win:time(30 seconds) Aft,
Section.win:time(30 seconds) Bef

where Bef.next section = Aft.id
and

( (Bef.speed = ’LOW’
or

Bef.occupancy = ’MEDIUM’)
and (Aft.speed = ’HIGH’
or Aft.occupancy = ’LOW’)
and (Aft.density = ’HIGH’))
or

( ((Bef.speed = ’LOW’
or

Bef.occupancy = ’MEDIUM’)
and (Aft.density = ’HIGH’)))

group by Aft.id
output last every 30 seconds;

3.3.3. Diagnosis Agents (DA)

Most problems are mainly caused by a big amount of ve-
hicles wishing to go through a given section. In our system
the causes of a problem are given by the routes that “provide”
vehicles to the congested section. The following rule is an ex-
ample of such a rule, where the route Rontegi sentido Aerop-

uerto/Avanzada is considered as one of the causes for problems
located in one of the four sections indicated in the where-clause
of the rule. Cause events are generated every 60 seconds, so
as to consider other co-occurring problems that might lead to a
different cause inference.

insert into Cause
select ’Rontegi sentido Aeropuerto/Avanzada’ as route,

category as problem category,
state as problem state,
location as problem location

from Problem.win:time(60 seconds)
where location = ’Rontegi antes Barakaldo’

or location = ’Rontegi tras Barakaldo’
or location = ’Rontegi antes Erandio’
or location = ’Rontegi tras Erandio’

group by location
output last every 60 seconds

3.3.4. Action Planning Agents (APA)

Several different actions can be proposed to solve existing
problems The following two rules show examples of these
types. Firstly, the next rule creates an action event, which spec-
ifies an alternative route if a cause event of the preceding rule
has occurred.
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insert into Action
select ’alternative route’ as action,

’Rontegi sentido Aeropuerto/Avanzada’ as location,
’Lamiako sentido Avanzada’ as message

from Cause.win:time(90 seconds)
where route=’Rontegi sentido Aeropuerto/Avanzada’
output last every 90 seconds

The subsequent rule triggers an emergency call and an alert
message in the appropriate message control panels as soon as
a cause event with state ’incident’ is observed. Occasionally,
conflicting actions must be resolved by a Coordination Agent,
e.g. contradictory proposals for traffic rerouting.

insert into Action
select ’call emergency system’ as action,

problem location as location,
’traffic incident’ as message

from Cause.win:time(90 seconds)
where problem state=’incident’
output last every 90 seconds

4. Results

In the eDraft project (event-driven architecture for traffic
management) [13], we implemented the reference architecture
presented in fig. 3. Because in Esper the concept of processing
agents is already integrated, it is straightforward to transfer our
agent-based architecture to Esper: each processing agent can be
mapped onto a dedicated instance of the Esper process engine.
Distributing the event processing rules on different agents facil-
itates significantly the development of the traffic management
system. Each agent contains only a small number of coherent
processing rules making it easier to adjust, modify and debug
them than in a single rule base.

Unfortunately, Esper does not provide any inherent concept
for distributing events across multiple platforms. Thus, to real-
ize our distributed architecture according to fig.4, inter-process
communication mechanisms must be implemented manually.
This could be achieved by communication proxies that for-
ward events to Esper engines running on different machines
using message-oriented middleware (MOM) or Java remote
method invocation (RMI). In the eDraft project, we started with
a single-server-based version of the decision support system,
which we will migrate to a distributed architecture in the next
future.

All the rules of the traffic management system have been
specified using Espers Event Query Language (EQL) as shown
in section 3.3. Because of the build-in concepts of sliding win-
dows and temporal constraints, it turned out that EQL is well-
suited for defining event processing rules. Nevertheless, there is
some conceptual weakness in Continuous Query Languages as
we discussed in some more details in [12]. For instance, in Es-
per no formal event model can be defined, but event definitions
are hidden in low-level SQL-like code, i.e. event definition and
event processing is intermingled.

In the eDraft project, we conducted two different experimen-
tal scenarios. First, we used the real-world scenario of the Bil-
bao traffic management system: we sent the traffic data mea-
sured in Bilbao as an event stream to our CEP component. The
results of this experiment turned out satisfactory: the imple-
mented rules were capable to detect the problems hidden in the
real-world data; for instance, traffic jams or accidents.

Secondly, we developed a traffic simulator for creating a
stream of raw sensor events which could be processed by our
DSS. The simulator consists of the following building blocks:

• The simulated road area is specified in an appropriate
XML format describing road parts, crossings and sensors.

• The system dynamics is based on a stochastic model,
which specifies the arrival rate of cars, their velocities and
their route. The simulator adapts the cars behavior to the
current traffic situation; e.g. in case of a traffic jam they
slow down.

• Finally, a graphical user interface visualizes the current
traffic situation and allows to trigger traffic problems like
accidents or slow cars. Vice versa, problems detected by
the event processing agents of the DSS can be displayed.

The simulator allowes us to prove our event processing rules
and to adjust them. For instance, we learned that the length
of sliding windows has a great impact on how fast traffic prob-
lems can be detected. Furthermore, the simulation experiments
showed that event-driven architectures are well suited for deci-
sion support in sensor-based traffic control systems. Even high-
volume event streams could be processed in real time.

5. Conclusions

In this paper, we have introduced an EDA-based reference
architecture for DSS for traffic management. We have per-
formed a re-design of an ITMS prototype for a real-world prob-
lem within the framework of that architecture, where event pro-
cessing agents connect streams of increasingly abstract types of
events, making use of a rule-based representation of local traffic
expertise.

While mainstream, AI-based multiagent architectures are an
adequate means of enacting structured knowledge models, they
do not explicitly account for real-time sensor data processing.
So, even though a set of implementation workarounds can as-
sure an adequate response time for relatively small-scale traffic
management DSS, the aforementioned fact is a major obstacle
to the scalability of such systems. Furthermore, multiagent ap-
proaches lack inherent concepts of time: temporal constraints
and sliding windows must be integrated manually.

On the other hand, event-driven architectures are known to
be strong at processing high-volume complex event streams. In
this case, we have shown that a real-world traffic management
scenario can be effectively modelled and implemented within
the EDA framework, thus greatly improving the real-time fea-
tures of such systems and that this is possible without a need
for complex structural transformation of knowledge models.
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Based on a more complete and distributed implementation of
the proposed architecture, we will carry out more quantitative
evaluations of this approach. We expect further improvements
in the response time, and the higher frequency of reasoning cy-
cles, to lead to an enhanced performance of control proposals in
certain situations. We also plan to look into other modern archi-
tectures from the field of Software Engineering, so as to provide
even better support regarding the software design, implementa-
tion, and maintenance aspects of large-scale traffic management
DSS.
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