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Abstract—Modern computing systems are often formed by
multiple components that interact with each other through the
use of shared resources (e.g., CPU, network bandwidth, storage).
In this paper, we consider a representative scenario of one such
system in the context of an Internet of Things application. The
system consists of a network of self-adaptive cameras that share
a communication channel, transmitting streams of frames to a
central node. The cameras can modify a quality parameter to
adapt the amount of information encoded and to affect their
bandwidth requirements and usage. A critical design choice for
such a system is scheduling channel access, i.e., how to determine
the amount of channel capacity that should be used by each of the
cameras at any point in time. Two main issues have to be consid-
ered for the choice of a bandwidth allocation scheme: (i) camera
adaptation and network access scheduling may interfere with
one another, (ii) bandwidth distribution should be triggered only
when necessary, to limit additional overhead. This paper proposes
the first formally verified event-triggered adaptation scheme for
bandwidth allocation, designed to minimize additional overhead
in the network. Desired properties of the system are verified using
model checking. The paper also describes experimental results
obtained with an implementation of the scheme.

I. INTRODUCTION

Modern computing systems in which a multitude of devices

compete for network resources suffer from performance issues

derived from inefficient bandwidth allocation policies. This

problem is often mitigated in bandwidth-constrained systems

by introducing run-time device-level adaptations (e.g. adjust-

ment of operation parameters) to ensure correct information

transmission [1], [2]. Adapting their behavior, the devices are

capable of consequently adjusting their bandwidth require-

ments. Such scenarios present two main issues: (i) the adap-

tation at the device level can interfere with network allocation

policies; (ii) it is quite difficult to obtain formal guarantees on

the system’s behavior, given that multiple adaptation strategies
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(network distribution and device-level adaptation) are active

at the same time – and hence the presence of multiple

independent control loops may lead to interference and result

in disruptive effects [3].

In this paper, we tackle the two aforementioned issues

in bandwidth allocation, ensuring the satisfaction of formal

properties like convergence to a steady state. We apply our

method to a camera surveillance network, in which self-

adaptive cameras compete for network resources to send

streams of frames to a central node.

The cameras adapt the quality of the transmitted frames

every time a new frame is captured. To ensure the satisfaction

of control-theoretical properties, a network manager is trig-

gered periodically to schedule network access [4]. The periodic

solution is desirable because it is equipped with a formal

guarantee of convergence of the system to a single equilibrium

in which all cameras are able to transmit their frames, if this

equilibrium exists. In the opposite case, the time-triggered

action guarantees that no camera can monopolize the network.

Despite this desirable property, the periodic solution has

also severe shortcomings that are mainly related to the choice

of the triggering period. The system may be too slow in

reacting to camera bandwidth requirements if the period of the

manager is too large. On the contrary, the system may exhibit

poor performance due to the overhead caused by unnecessary

actions, if the network manager is triggered too frequently –

given a fixed number of cameras, the overhead of the network

manager execution is approximately constant, so reducing

the network manager period results in higher impact on the

network operation. These limitations can effectively harm the

performance of the system and should be taken into account

when designing a network allocation strategy. Based on these

considerations, this paper introduces an event-triggering policy

for the network manager that minimizes the impact of the

execution overhead on network performance, while taking into

account the dynamic needs of the devices, induced by physical

constraints and environmental factors – in our case study, for

example, image size fluctuations derived from changes in the

scenes captured by the cameras.

This paper provides the following contributions:

• A formal model for the problem of allocating bandwidth

to adaptive devices. We cast this into the problem of a set

of cameras collaborating to deliver the best overall system

performance by modifying their bandwidth requirements



c1 c2 c3

M

allocates

{b∗,t=1, b∗,t=2, . . . }

i1,w=1
i1,w=2
i1,w=3

. . .

i2,w=1
i2,w=2
i2,w=3

. . .
i3,w=1

. . .time

1πalloc 2πalloc 3πalloc

time

0

Fig. 1. System architecture.

and the quality of the encoded frames.

• Application of model checking to the event-triggered net-

work manager. An event-triggered solution limits the for-

mal guarantees provided with classical control-theoretical

tools [5], which are based on the assumption that the

network manager is triggered periodically. Nevertheless, we

show how formal convergence guarantees can be achieved

employing model checking, even when the network manager

is not periodically triggered. We also verify additional

properties and synthesize an optimal triggering strategy that

minimizes the system’s operational cost.

• Implementation and testing of the solution, to combine the

theoretical guarantees with experimental validation.

II. TIME-TRIGGERED ACTIVATION

This section introduces the system and the notation used in

the rest of the paper. The system is composed of a central

node receiving video streams from a set of cameras, Ct =
{c1, . . . , cn}, where t represents the current time instant and

n is the number of active cameras at time t. The central node

also runs a network manager M, in charge of distributing the

available network bandwidth H, e.g., H = 4Mbps.

Figure 1 shows the system architecture when there are three

cameras that capture frames and the network manager that

determines the network access pattern for the cameras. In the

network access timeline, black slots are used to show when

the network manager uses the network, while the other colors

represent the cameras transmitting frames. The third camera,

c3, is turned on when the first two, c1 and c2, have already

transmitted two frames.

This section assumes a time-triggered activation scheme for

the network manager, where the manager periodically senses

the performance of the cameras and chooses the bandwidth

distribution for the next activation period.

A. The camera

This subsection describes the behavior of the cameras where

cp with p ∈ {1, . . . , n} denotes camera p. The camera captures

a stream of frames. Each of these frames is compressed by an

adequate encoder – e.g., MJPEG – and sent to the central node

via the network. The stream of frames is denoted by Ip =
{ip,1, . . . , ip,m}, where p is the camera identifier and m is the

cardinality of the set of frames (the longer the system runs,

the more frames each camera produces). Each element ip,w in

the set, w ∈ {1, . . . ,m}, has the following characteristics.

The value qp,w represents the quality used for frame encod-

ing, as in MJPEG. The quality is an integer number between

1 and 100, initialized using a parameter qp,0, and loosely

represents the percentage of information preserved during

encoding. The value ŝp,w indicates the estimate of the size of

the encoded frame. For each of the cameras, depending on the

resolution used for the recording and on actual manufacturer

parameters, the frame size has a maximum and a minimum

value, respectively denoted by sp,max and sp,min, which we

assume to be known.

The relationship between the quality used for the encoding

qp,w, which can be changed by the camera, and the size of the

resulting frame sp,w is rather complex (see [6] for exponential

models). This complexity is explained by the many factors

on which the relationship between quality and frame size

depends, including but not limited to the scene that the camera

is recording (e.g., the amount of artifacts in the scene), the

sensor used by the camera manufacturer, and the amount of

light that reaches the sensor. In this work we approximate this

relationship using the following affine model

ŝ∗p,w = 0.01 · qp,w · sp,max + δsp,w, (1)

where δsp,w represents a stochastic disturbance on the frame

size. We then saturate the result to ensure that the actual size

is between the minimum and the maximum size:

ŝp,w = max{sp,min,min{sp,max, ŝ
∗
p,w}}. (2)

The model above is used to synthesize a controller for the

camera that adapts its behavior. The camera automatically

changes the quality qp,w to match the amount of network

bandwidth that it can use, using an Adaptive Proportional and

Integral (PI) controller similar to the one developed in [7]1.

The quality parameter q∗p,w is the control signal and roughly

corresponds to the compression level for the frame. The

controller uses as a setpoint the channel size dedicated to the

transmission of the w-th frame Bp,w, and measures the size

of the frame sp,w. In computing the error ep,w we normalize

the difference between the setpoint and the measured value,

dividing it by the setpoint Bp,w.

ep,w =

normalized error
︷ ︸︸ ︷

Bp,w−1 − sp,w−1

Bp,w−1

q∗p,w = kp,Proportional · ep,w + kp,Integral ·
w−1∑

t=1

ep,t

(3)

The integral action ensures that the stationary error is zero,

i.e., that the setpoint is reached whenever possible. In some

cases, reaching the setpoint may not be possible, due to the

presence of saturation thresholds. We saturate the computed

quality q∗p,w using the minimum and maximum quality values

which we set at qmin and qmax respectively2,

qp,w = max{qmin,min{qmax, q
∗
p,w}}. (4)

1Given the model in Equation (2), an adaptive PI controller is capable of
achieving a zero steady-state error and selecting the desired quality.

2Ideally, the quality is a number between 1 and 100, since it represents the
compression level. However, we impose saturation levels that are based on
our prior experience with the equipment, using qmin = 15 and qmax = 85.



The gains kp and ki are parameters of the controller inside the

camera and determine how aggressive the adaptation is. We

also implemented an anti-windup mechanism in the controller.

B. The network manager

To determine how to distribute the network bandwidth we

use the approach proposed in [8] for CPU allocation and

extend it to handle network bandwidth allocation. The network

has a fixed capacity H. The network manager M is in

charge of allocating a specific amount of the available network

bandwidth to each of the cameras. For every instant of time t
at which the network manager is invoked, M selects a vector

b∗,w, whose elements sum to one.

∀t,M selects b∗,t = [b1,t, . . . , bn,t]
such that

∑n

p=1
bp,t = 1

(5)

This means that each of the elements of b∗,t determines the

fraction of the available bandwidth that is assigned to each

video stream until the next network manager activation.

The assignment is enforced periodically, in a Time Division

Multiplexed Access (TDMA) fashion. The network manager

uses an allocation period πalloc = 30ms during which each

active camera is expected to transmit a frame.

We denote by tw the start time of the transmission of the w-

th frame and with tM,w the time when the network manager

computed the most recent bandwidth distribution vector b∗,w
when the w-th frame transmission starts. The manager allows

camera cp to transmit data for the w-th frame for an amount of

time that corresponds to the computed fraction of the TDMA

period bp,tM,w
· πalloc. The total amount of data that cp is

allowed to transmit for the w-th frame is Bp,w.

Bp,w = bp,tM,w
· πalloc · H (6)

If the size of the encoded frame is greater than the amount

of data that the camera can transmit, sp,w > Bp,w, the frame is

dropped, as it would be outdated for the next transmission slot.

The current transmission slot is lost and cannot be reclaimed

by any other camera.

The network manager is periodically triggered with period

πM, which must be a multiple of πalloc and a parameter in our

implementation. In its first invocation, at time 0, the manager

equally divides the available bandwidth among the cameras.

The following network manager interventions, happening at

times {πM, 2πM, 3πM, . . . } assign the bandwidth based on

the following relationship, from [8], where the index t denotes

the current time instant and t+ 1 the following one.

bp,t+1 = bp,t + ε · {−λp,t · fp,t + bp,t ·

n∑

i=1

[λi,t · fi,t]} (7)

Equation (7) decides the bandwidth assignment for camera

p in the next time instant, and introduces the following

parameters: (i) ε is a small constant used to limit the change

in bandwidth that is allocated at every step. The choice

of a suitable value for ε depends on the trade-off between

the responsiveness of the manager (higher values making it

converge faster, in principle, but also making it likely to have

overshoots) and its robustness to disturbances (lower values

increase convergence time favoring a more stable behavior in

the presence of transient disturbances)3; (ii) λp,t ∈ (0, 1) is

a weight that denotes the fraction of adaptation that should

be carried out by the network manager. A lower λp,t value

indicates that the network manager is less willing to accom-

modate the needs of the p-th camera. The importance of this

value lies in the relative difference between the values assigned

to all the cameras. If all the cameras have an equal λp,t, the

network manager is not going to favor any of them. If one of

the cameras has a higher value with respect to the others, the

network manager is “prioritizing” the needs of that camera

over the others. In the following, we assume that λp,t does

not change during execution, and use λp as a shorthand, for

simplicity. A change in the value of λp has no impact on

our analysis, and can be used to change the network manager

preference during runtime; (iii) fp,t is a function that we call

the matching function, which expresses to what extent the

amount of network bandwidth given to the p-th camera at

time t is a good fit for the current quality.

The matching function fp,tw is a concept introduced in [8]

and should determine a match between the quality qp,w (which

influences the frame size sp,w) and the resource allocation

Bp,w available for the camera when the transmission of the

w-th frame happens. In our implementation, we choose to use

(Bp,w − sp,w)/Bp,w, also equal to the normalized error ep,w
in Equation (3) as the matching function. For the analysis

in [8] to hold – which proves properties such as starvation

avoidance, balance, convergence, and stability, discussed in

Section II-C –, the matching function should satisfy the

following properties:

(P1a) fp,tw > 0 if Bp,w > sp,w,

(P1b) fp,tw < 0 if Bp,w < sp,w,

(P1c) fp,tw = 0 if Bp,w = sp,w;

(P2a) fp,tw ≥ fp,tw−1
if qp,w ≤ qp,w−1,

(P2b) fp,tw ≤ fp,tw−1
if qp,w ≥ qp,w−1;

(P3a) fp,tw ≥ fp,tw−1
if bp,tw ≥ bp,tw−1

,

(P3b) fp,tw ≤ fp,tw−1
if bp,w ≤ bp,tw−1

.

These properties entail that the matching function must be

positive if the bandwidth given is abundant, negative if it is

insufficient, and zero if the match is perfect (P1); that the

matching function must increase when the quality is decreased

and decrease with increased quality (P2); and, finally, that the

matching function increases when more bandwidth is assigned

and decreases when bandwidth is removed (P3).

Our implementation choice for the matching function –

ep,w, from Equation (3) – automatically satisfies properties

(P1a-c) and (P3a-b). If one assumes the disturbance δsp,w to

be negligible, it is possible to use Equation (1) to verify that

properties (P2a) and (P2b) hold. Notice that the matching func-

tion corresponds to the normalized error used by the camera

controller described in Section II-A. In the following we will

use fp,t to indicate the value of the matching function over

time and fp,tw to indicate the value of the matching function

computed for the frame w transmitted at time tw. Also, we

use bp to indicate the sequence of bandwidth assignments

for camera cp over time 〈bp,0, bp,1, . . . 〉 and qp to indicate

3Typical values for ε are between 0.1 and 0.6.



the sequence of quality per frame chosen by the camera

〈qp,w=0, qp,w=1, . . . 〉. An example timeline can be seen in

Appendix A.

C. System behavior

From a theoretical perspective, the resource allocation and

camera adaptation schemes are not different from the CPU

allocation and service level adjustment proposed in [8]. The

behavior of the system has therefore been analyzed and some

properties have been proven [5]. Here we only give a brief

summary of these properties.

• Starvation avoidance. A positive amount of resource is

guaranteed for all cameras that have a non-zero weight, i.e.,

∀{t, p}, λp > 0 ⇒ bp,t > 0.

• Balance. The balance property holds in case of overload

conditions. The network is overloaded at time t when the

capacity H is not enough to guarantee that all the cameras

have a matching function greater or equal to zero (∀p, qp,t =
qmin, fp,t ≤ 0)∧ (∃i, fi,t < 0). In this case, it is guaranteed

that no camera can monopolize the available bandwidth at

the expense of the others.

• Convergence. The amount of bandwidth allocated to each

camera and the streams’ quality converge to a stationary

point which corresponds to a fair resource distribution (a

distribution in which the matching function is zero for all the

cameras) whenever possible (in non-overload conditions)

both in case of synchronous (the cameras update their

quality at the same time) [5, Theorem 4.1] and asynchronous

updates (the cameras update their quality potentially at

different times) [5, Theorem 4.2].

• Scalability. One of the reasons behind this resource alloca-

tion strategy is its linear time complexity. The bandwidth

to be allocated can be computed in linear time with respect

to the number of cameras, according to Equation (7). This

can scale to many cameras and is therefore beneficial in a

complex setup. Appendix C shows the overhead introduced

by the network manager’s execution for a varying number

of cameras. The execution overhead shown is per network

manager activation. With periodic execution, for large pe-

riod values, the impact of the overhead tends to become

negligible, but the system is less responsive. On the contrary,

when the network manager period is short, the overhead is

significant, but the system is more responsive.

III. TOWARDS EVENT-TRIGGERED ACTIVATION

As briefly summarized in Section II-C, using time-triggered

activation for the network manager allows us to guarantee

some desired properties of the system behavior. One key

assumption, needed to derive the formal proof of convergence,

is the periodic computation of the resource distribution.

Time-triggered activation, however, has two major draw-

backs. The first drawback is the difficulty in choosing an

appropriate value for the period πM, which has a remarkable

impact on the system performance. The second drawback is

the additional overhead imposed by periodic activation of

the network manager, when only negligible adjustments are

needed. In the following, we briefly discuss these drawbacks,

using data from our implementation to back up our claims.
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Fig. 2. Time-triggered activation with different network manager periods:
bandwidth allocation (b1 and b2) and image quality (q1 and q2).

A. Period choice

An experiment was conducted with a network composed of

two cameras and a network manager, running the system for

90s. The first camera, c1, was active for the entire duration

of the experiment, [0s, 90s], pointing at a scene with many

artifacts. The second camera, c2, was transmitting during the

interval [30s, 55s] and directed towards a scene that was easier

to encode, with fewer artifacts. More precisely, c2 is turned on

a few seconds before, notifies the network manager and gets

some bandwidth allocated (around 28s), but starts transmitting

frames only after an initial handshake. The values of λ1 and

λ2 are equal and set to 0.5. k1,Proportional and k2,Proportional are

set to 10 and the values of k1,Integral and k2,Integral are set to 10.

Finally, the value of ε in the network manager is set to 0.5.

To highlight the criticality of this choice, we ran the exper-

iment using different periods: πM = 300ms, πM = 600ms,

and πM = 3000ms. Figure 2 shows the percentage of

bandwidth assigned to the cameras (b1 and b2) and the quality

set by the camera controllers (q1 and q2) in the three different

cases, in the most interesting time interval, when the second

camera is joining and when both cameras are active.

When the network manager runs with period πM = 600ms,

the system shows the desired behavior. Immediately after c2
joins the network, the bandwidth is automatically redistributed,

half of it being assigned to the new camera. The reduction of

the available bandwidth for c1 causes a quality drop. While the

quality q1 is decreased, the quality q2 settles to a value that

allows the camera to transmit the frames. On the contrary,

when the network manager period is longer (πM = 3000ms),

the system still reaches a steady state, but the quality q2 is

much higher than in the previous case, and the reduction in

quality for q1 is substantial, which is undesirable given that

the first camera is capturing a scene with more artifacts than

the second one. Looking at the frame size, one discovers that

the higher quality does not come with additional information

being transmitted, since the camera is pointing to a scene that

has fewer artifacts. Hence, in this case the network manager



would have done a much better job accommodating the needs

of c1. Finally, the plots for πM = 300ms show that the system

converges to values that are similar to the ones observed when

πM = 600ms. However, the quality of the image produced

by the first camera is lower than it could be, and the system

shows oscillations.

For this specific execution conditions, the choice of the

period πM = 600ms is the best among the three tested

choices, but different execution conditions can lead to other

values being preferable. To develop a solution that is not tied

to a specific use case and is applicable in practice, one has to

design an event-based intervention policy that triggers network

manager interventions only when necessary.

B. Resource allocation overhead

Even if we assume that we have the knowledge required to

select the best period for a specific scenario, when the system

reaches an equilibrium, it is in a fixed point where things do

not change unless there is a change in the execution conditions.

In such cases, there is no need to carry out substantial changes

in the amount of resources assigned and one should carefully

evaluate the overhead of computing a new resource allocation,

balancing it against the benefit obtained in terms of overall

system performance.

To evaluate the computational overhead of determining a

new resource distribution, we measured the time it takes for

the network manager to: (i) retrieve data about the size of

the last frame sent by the cameras, compute the matching

function for the cameras using fp,t = ep,w as specified in

Equation (3), (ii) compute the new resource distribution vector

b∗,t according to Equation (7), and (iii) inform the cameras

about their transmission slots’ duration.

We collected 5000 samples of the duration of the manager’s

execution with a network of two cameras and computed the

following statistics. The average overhead is 0.0030s, with

a standard deviation of 0.0284s (1% of the total time if the

activation period is πM = 300ms, 0.5% when πM = 600ms
and 0.1% when πM = 3000ms ). Maximum and minimum

values are respectively 0.9863s and 0.0001s. The maximum

value is most likely caused by additional workload and should

happen infrequently. However, if this was the real computation

time, the network would not be able to operate at all when

πM = 300ms or πM = 600ms, since the entire time in the

period is spent for the network manager computation and none

is left for camera transmissions. When πM = 3000ms, 33%

of the time in the period would be devoted to the network

manager execution. Note that the time complexity for the

execution of the network manager increases linearly with the

number of cameras as specified in Section II-C, which is

the best alternative when the network manager should take

into account the needs of all the cameras (meaning that the

network manager needs to at least compute a performance

metric for each of the cameras) [8]. This means that using a

different algorithm for the network manager computation will

achieve no significant scalability benefit and improvements on

execution time should be obtained in a different way – e.g.

skipping executions.

Executing the network manager fewer times reduces the

overhead for the system. This indicates that avoiding un-

necessary calls to the network manager code would be very

beneficial for the system and would improve its performance.

Leaving the periodic solution in place, this benefit can be

achieved using a longer period for the periodic activation

scheme. However, the experiment presented in Section III-A

demonstrated that a larger activation period is not always a

viable alternative. This motivates our investigation of an event-

triggered activation scheme.

IV. EVENT-TRIGGERED ACTIVATION

The purpose of an event-based solution is to quickly react

only when needed, avoiding unnecessary interventions. To

design an event-based network manager, we need to define a

set of event-triggering rules that determine when the network

manager is invoked and can intervene, and to describe how the

corresponding events are handled. In the following, we use t−

to indicate the time instant that precedes t, and – at time t –

we denote the most recent frame that camera cp transmitted

by ip,wt
. Using this notation, wt represents the index of the

last frame the camera transmitted at time t.
The choice done in this paper is to employ the following

two triggering rules and to trigger an event at time t if:

• Ct− 6= Ct, i.e., the network manager is triggered if the set

of cameras changes. In this case, one or more cameras

are either removed or added to the set4. The network

manager handles this event by re-distributing the bandwidth

equally among the active cameras at time t, ∀cp ∈ Ct =
{c1, . . . , cn}, bp,t = 1/n. At time t, after the network

manager performs the allocation, it sets a timeout τunresp, a

multiple of πalloc. If there is one or more cameras that have

not transmitted any frame in the time interval (t, t+τunresp],
said cameras are removed from the set, triggering the same

event at time t + τunresp. This mimics the behavior of the

time-triggered network manager, as seen in the example

shown in Figure 2.

• (∃cp s.t. τthr < |ep,wt
|) ∧ (t mod πalloc = 0), i.e., when the

transmission round completes for all the cameras, at least

one of them has a normalized error whose absolute value

is higher than a specific threshold τthr, a parameter of the

triggering policy. Just like in its time-triggered counterpart,

the event-based version of the network manager allocates

the bandwidth fractions as specified in Equation (7).

With this event-triggering policy, the critical implementation

choice is the value τthr. The normalized error will often be

included in the interval [−1, 1], although this is not guaranteed

by the expression in Equation (3). Nonetheless, when the

absolute value of the normalized error is higher than 1,

the camera has encoded a frame whose size is double with

respect to the channel size. Therefore, we assume that a value

of 1 or higher should always trigger the network manager

intervention. We determine that τthr is bounded to the open

interval (0, 1). Within the given interval, assigning a low value

4Given the TDMA bandwidth reservations, changes to the set of cameras
that occur when a round is in progress are deferred to the closest multiple of
πalloc, therefore (t mod πalloc = 0).



to τthr forces the network manager to intervene often. On

the contrary, when τthr approaches 1, the network manager

is triggered less often and relies more on the adaptation done

by the cameras.

More complex triggering policies can be defined, some

examples can be found in [9], [10]. Despite their complexity,

in event- and self-triggered controllers the triggering rules are

usually based on measurements from the system.

The main drawback of the transition to an event-triggered

network manager is that the properties proved in Section II-C

do not necessarily hold in the event-based implementation.

The proof of the properties relies on the fact that the network

manager acts at pre-determined time instants. This cannot

be guaranteed in an event-based implementation, in which

manager interventions depend on the triggering rule.

In the following section, we therefore use model checking to

obtain formal guarantees on the behavior and the convergence

of the system. We therefore provide a background on model

checking and show the results obtained with our model.

V. FORMAL METHODS

This section introduces our use of model checking to verify

properties and to select optimal alternatives for the resource

manager implementation. We first introduce some background

on Probabilistic Model Checking (PMC) in Section V-A. Then

we introduce the model of the system in Section V-B and the

properties we prove in Section V-C. Finally, we discuss an

optimal network manager activation strategy generated by our

model checker in Section V-D.

A. Background on model checking

Probabilistic Model Checking (PMC) [11] is a set of formal

verification techniques that enable modeling of systems that

exhibit stochastic behavior, as well as the analysis of quantita-

tive properties that concern costs/rewards (e.g., resource usage,

time) and probabilities (e.g., of violating a safety invariant).

In PMC, systems are modeled as state-transition systems

augmented with probabilities such as discrete-time Markov

chains (DTMC), Markov decision processes (MDP), proba-

bilistic timed automata (PTA), and properties are expressed

using some form of probabilistic temporal logic, such as prob-

abilistic reward computation-tree logic (PRCTL) [12], which

state that some probability or reward meet some threshold.

An example of a probability-based PRCTL property is

P≥1[G Halloc = H], which captures the invariant “the allocated

bandwidth to the cameras is always equal to the total available

bandwidth.” In this property, the probability quantifier P states

that the path formula within the square brackets (globally5

Halloc = H) is satisfied with probability 1. We assume that

Halloc is the sum of allocated bandwidth to all cameras.

Reasoning about strategies6 is also a fundamental aspect of

PMC. It enables checking for the existence of a strategy that is

5The G modality in PRCTL, read as “globally” or “always” states that a
given formula is satisfied across all states in a sequence that captures a system
execution trace. The semantics of G in PRCTL is analogous to those found
in other temporal logics like CTL [13] or LTL [14].

6Strategies – also referred to a as policies or adversaries – resolve the
nondeterministic choices of a probabilistic model (in this case MDP), selecting
which action to take in every state.

able to satisfy a threshold or optimize an objective expressed

in PRCTL, in systems described using formalisms that support

the specification of nondeterministic choices, like MDP.

For example, employing the PRCTL reward minimization

operator Rr

min=?[F φ] enables the synthesis of a strategy that

minimizes the accrued reward r along paths that lead to

states finally satisfying the state formula φ. An example of

a property employing this operator for strategy synthesis is

Rnmi

min=?[F t = tmax], meaning “find a strategy that minimizes

the number of total network manager interventions (captured

in reward nmi) throughout a system execution period (0, tmax),
i.e., when time is equal to tmax.”

In this section, we illustrate probabilistic modeling of the

camera network system using the high-level language of the

probabilistic model checker PRISM [15], in which DTMCs

and MDPs can be expressed as processes formed by sets of

commands like the following

[action] guard → p1 : u1 + ... + pn : un

where guard is a predicate over the model variables. Each

update ui describes a transition that the process can make

(by executing action) if the guard is satisfied. An update is

specified by giving the new values of the variables, and has a

probability pi ∈ [0, 1]7. In an MDP model, multiple commands

with overlapping guards introduce local nondeterminism and

allow the model checker to select the alternative that resolves

the nondeterministic choice in the best possible way with

respect to the property captured at the strategy synthesis level.

B. System model

The model consists of a set of modules, each of them

capturing the behavior of one of the entities in the system.

The entire model is composed of one module per camera,

one module for the network manager and one module for

the scheduler. The model imposes turns in executing all

the components: it starts with the cameras performing their

actions – sending a frame each – and then continues with

the scheduler, which checks if the network manager should

be executed, calling it if necessary. During its execution, the

network manager changes the bandwidth allocation. Then the

scheduler passes again the turn to the set of cameras. The

PRISM code for the camera and the manager is displayed in

Appendix B, while in the following we describe the Scheduler,

shown in Listing 1.

The scheduler maintains two state variables, choice done
and calling nm (lines 4-5), which keep track of when the

choice about invocation is made and if the network manager

is to be called or not. The code in this model can be employed

in two alternative ways. If the model checker is executed with

constant synth schedule set to true (line 1), it synthesizes

a strategy by resolving the nondeterminism between actions

best dont (lines 8-12) and best do (lines 13-17), whose

guards overlap. The strategy minimizes a cost function defined

7In our model, we do not take advantage of probabilities. For each action,
we define a single update rule, with implicit probability 1. However, we could
incorporate probabilistic choices with limited and localized modifications.
Probabilistic update rules can be beneficial when modeling physical phenom-
ena like disturbances, occurring with a certain probability and affecting the
modules, e.g., changes in frame size due to artifacts in the images.



in this case as a penalty for every dropped frame and for each

network manager intervention (cf. Section V-D).

1 const bool synth schedule = true; // prism synthesis
2 const bool event = true; // event−based version
3 module scheduler
4 choice done: bool init false;
5 calling nm: bool init false;
6 // prism synthesis (synth schedule = true) best dont and best do:
7 // conditions are the same, choices are different
8 [best dont] (synth schedule) & // if prism synthesis
9 (turn = sche) &

10 (rounds < max frames) &
11 (!choice done) −> // choice is not yet done
12 (calling rm’ = false) & (choice done’ = true); // choice no
13 [best do] (synth schedule) & // if prism synthesis
14 (turn = sche) &
15 (rounds < max frames) &
16 (!choice done) −> // choice is not yet done
17 (calling rm’ = true) & (choice done’ = true); // choice yes
18 // decision without synthesis
19 // if some of the cameras set want nm to true, call the manager
20 [decision] (!synth schedule) & // only if not prism synthesis
21 (turn = sche) &
22 (rounds < max frames) &
23 (!choice done) −> // choice is not yet done
24 (calling nm’ = want nm) & (choice done’ = true);
25 // network manager calls or not after decision is made above
26 [] (turn = sche) & (rounds < max frames) & (choice done) &
27 (calling nm) −> // let’s call the manager
28 (turn’ = nmng) & (calling nm’ = false); // giving turn to manager
29 [] (turn = sche) & (rounds < max frames) & (choice done) &
30 (!calling rm) −> // not calling the manager (or already called)
31 (turn’ = cam1) & // giving turn to first camera
32 (rounds’ = rounds + 1) & // advancing rounds
33 (choice done’ = false) & // reset for next iteration
34 (want nm’ = event ? false : true) & // time−based acts every time
35 (nmchange’ = false); // have not performed any change
36 endmodule

Listing 1. Scheduler module description

Alternatively, if the model checker is called with the variable

synth schedule set to false, the scheduler can be executed

either in the time-triggered version, where the period is simply

a constant representing πalloc or in the event-triggered version

(the constant event should be set to true in line 2). In the

event-triggered version, the action labelled decision (lines 20-

24) determines if the network manager should be called or not.

If the network manager is not to be called, the last action (lines

29-35) is performed and the turn is passed to the camera. In

the opposite case (lines 26-28), the network manager is called

and, when executed, it returns the control to the scheduler that

then passes the turn to the first camera (lines 29-35).

C. Formal guarantees

With respect to the properties discussed in Section II-C,

starvation avoidance and balance depend on how Equation 7

is constructed and are not influenced by the event-triggering

rule, as long as the network manager is triggered at least one

time when the set of cameras changes. Our triggering scheme

guarantees that the network manager is triggered once when a

new camera joins the system or leaves it, therefore starvation

avoidance and balance are satisfied.

On the contrary, in the case of convergence we have

no a priori guarantee that the property holds in the event-

triggered version of the network manager. In fact, the proof

of convergence depends on the assumption that the network

manager is periodically triggered and changes the resource

assignment at specific time instants. We therefore want to

express the property using a PRCTL formula and check it

resorting to the probabilistic model checker capabilities.

We can formalize convergence for our system as

the PRCTL formula P≥1[F(G!(any change event))], where

any change event is defined in our formal model as the dis-

junction nmchange∨c1change∨ . . .∨cnchange. The property

can be interpreted as “the probability that the system will

eventually reach a state for which no change event occurs in

the remainder of the execution is 1”. In practice, this translates

to checking that for all potential execution paths, the system

always reaches a state from which the resource manager does

not make any further updates to bandwidth assignment, and

the cameras do not make any further adjustments in quality.

We checked this property for the event-triggered version of

our model in executions with max frames = 30 (which means

that convergence must occur before a cycle of 30 frames per

camera is completed), for a network of two cameras, and for

all the combination of values of λ1, λ2 and τthr belonging to

the vector [0.01, 0.02, . . . 0.99], and assessed its satisfaction.

In addition to the assessment of properties described in

Section II-C, we can also conduct sanity checks, like assessing

the satisfaction of invariants. An example is checking that the

system always takes advantage of all the available bandwidth,

assigning it to the cameras. We can formalize this property

as P≥1[G used bw = max bw], where used bw is a formula

defined as the summation of all bw x variables in the model,

where x is the camera number (see Listing 3, lines 4-5).

Finally, we can also compare different design alternatives

for the triggering rules, to see which alternative exhibits the

most desirable behaviour. One example is checking the number

of resource manager interventions during the execution of the

system, which should ideally be minimized. We can capture

this property in PRCTL as Rnm calls

max=? [F rounds = max frames],
which can be interpreted as “maximum number of manager

interventions (encoded in reward structure nm calls) until

the end of the execution (the maximum number of frames

defined above as max frames)”. This property relies on the

definition of the reward structure nm calls that captures the

total number of network manager interventions (encoded in

variable nm interventions in Listing 3, line 11).

D. Event-triggering policy synthesis

In addition to checking properties on a given version of

the formal model, we can also use the model checker to

synthesize triggering policies for the network manager that are

optimal with respect to a specific property. The key idea behind

the synthesis is leaving the intervention choice underspecified

in the model as a nondeterministic choice between actions

whose guards overlap – in our case between the scheduler

actions best dont and best do (Listing 1, lines 8 and 13,

respectively). In such a way, the model checker can resolve

the nondeterminism by synthesizing a policy that optimizes an

objective function embedded in a PRCTL formula.

In this case, we are interested in minimizing the un-

desirable behaviours of the system, that include the num-

ber of dropped frames, as well as the amount of net-

work manager interventions. We wrap both metrics into



a single cost function that we label total cost, encoded

as the sum of penalty frames · (drop1+ . . .+ dropn) and

penalty intervention · (nm interventions), where dropx is the

number of dropped frames for camera x at the end of the exe-

cution (Listing 2, line 23). The constants penalty frames and

penalty interventions capture the relative importance of both

penalized aspects of system operation, in our case set to 10
for dropped frames and 1 for network manager interventions.

The two constants are set to separate the undesired behaviours

by an order of magnitude and penalize dropped frames more

than resource redistribution.

Based on the definition of total cost, we can define a

reward structure that captures its value at the end of the

execution of the system, and employ it for synthesis in the

PRCTL property Rtotal cost

min=? [F rounds = max frames], which

instructs the model checker to “find a strategy that minimizes

the penalty of operating the system based on the total cost

accrued throughout the execution of the system.”

The synthesized strategy instructs the network manager

to wait until the cameras have reached convergence (two

transmitted frames) before acting twice to distribute network

bandwidth in the best possible way. The optimal strategy in

this case is the sequence 〈best dont, best dont, best do,

best do〉 followed by an infinite sequence of best dont. The

synthesis of this “optimal” sequence does not take into account

further changes that happen in the system – e.g., the scene

of one camera has more artifacts. The strategy minimizes the

cost for operating the system in the current conditions, without

knowledge of what will happen in subsequent time instants.

After determining the best policy for minimizing the

total cost, we can fix it on the model and check other

properties like the one defined for convergence in Section V-C.

We checked convergence, as well as the invariant for full

bandwidth allocation, which were always satisfied for the same

set of λ1 and λ2 (weights on camera vs. network manager

adaptation) values described in V-C.

For some set of parameters, the total cost of running

the optimal policy is the same as some specific values for

the threshold τthr. For some other set of parameters, on the

contrary, the minimum total cost that is achieved using this

strategy cannot be achieved with any value of the threshold,

showing that the threshold based policy is not necessarily

optimal. In a static environment, the strategy synthesized

by PRISM is the best choice to minimize the total cost

of operation. However, usually the execution environment is

dynamic and the policy should react to changes that may

happen, like additional artifacts in one of the images. Despite

this strategy being optimal, at run time it should be coupled

with an algorithm that detects when the strategy should be

re-applied, and re-triggers the strategy start or the policy

synthesis process. From a practical standpoint, the threshold-

based policy shows very good properties and is therefore a

good triggering rule, though potentially sub-optimal.

Another question that we can answer using model checking

is finding the best threshold value for a specific situation. This

is similar to the optimal strategy synthesis, and entails finding

the best threshold value for the specific conditions that the

system starts from, assuming that nothing else interferes – e.g.,

additional artifacts in the images captured by the cameras. The

result is the threshold that minimizes the total operational cost

for the system, given the current status.

VI. EXPERIMENTAL RESULTS

This section introduces the experimental validation we con-

ducted with our camera network. To dynamically change the

amount of bandwidth allocated, we need an underlying archi-

tecture that supports reservations with bandwidth adaptation.

For this, we use Flexible Time Triggered (FTT) paradigm [1],

which enforces adaptive hard reservations. In our implemen-

tation we use the Switched Ethernet (SE) implementation

FTT-SE [16]. FTT-SE uses trigger messages from the master

(the network manager) to the slaves (the cameras) to change

the allocated bandwidth, providing guarantees on minimum

bandwidth allocation [2].

We show the behavior of our implementation with an

experimental result with three or four physical units: the

network manager and two or three cameras. Each unit runs

Fedora 24. The first unit runs the network manager and has

a Intel Core i7-4790, 8 core CPU with 32 GB RAM. The

other units are off-the-shelf Logitech C270 cameras. Results

with three cameras are shown in Appendix D. Notice that our

experiments are stress tests, as the network bandwidth is not

enough to transmit all the frames, and frame dropping must

occur to guarantee correct operation.

Our experiment has the following setup: k1,Proportional = 10,

k2,Proportional = 10, k1,Integral = 0.5, k2,Integral = 1, q1,0 = q2,0 =
15, q1,max = q2,max = 85, q1,min = q2,min = 15, λ1 =
0.7, λ2 = 0.3, ε = 0.4, πalloc = 30ms, H = 4Mbps. We

deliberately set a low total available bandwidth to stress the

system in under-provisioning conditions, and make sure that

adaptation is needed. We ran the experiment varying the value

of the threshold τthr, and with the PRISM strategy. We also

computed the best threshold value with the PRISM model

checker, discovering that its value is 0.3.

In the conducted experiment, both the cameras were added

to the network simultaneously. Camera c1 recorded a scene

with many artifacts and c2 recorded a simpler scene. The-

oretically c1 would require a larger amount of bandwidth

generating larger sized images at lower qualities and c2 would

require a lower amount of bandwidth. Figure 3 shows the

results of the experiment. The red dashed line represents the

PRISM strategy, that settles providing more bandwidth to c1
and less to c2. Despite having less bandwidth, the quality of

c2 reaches the maximum level of 85, while the quality of c1
oscillates to absorb changes in the scene and adapt to the

current execution conditions. The other lines represent the ex-

ecution with different values of the threshold (lower values of

τthr are represented with lighter lines). Independently of what

the threshold is, the event-triggered network manager behaves

similarly to the PRISM strategy, allocating more bandwidth

to c1. Figure 4 shows the metrics collected for different

schemes during the experiment. Looking at the interventions

we can observe that the network manager acts more often
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Fig. 3. Event-triggered activation with τthr ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and
the optimal strategy synthesized by PRISM: bandwidth allocation (b1 and
b2) and image quality (q1 and q2).

when the threshold is lower, with the PRISM strategy having

2 interventions. Note that in the first 100 frames, the solution

synthesized by the model checker drops approximately 10%

less frames than any of the other solutions for both cameras,

and minimizes overall cost.

This is consistent with the model checking results, which

indicate that the PRISM strategy improves over all the possi-

ble threshold-based policies, and that an event-triggered policy

with a threshold of τthr = 0.3 minimizes total cost. When the

system runs for more time, however, the cameras will record

images with different artifacts, and the optimal policy and the

the best threshold, computed by the model checker, will not

necessarily hold anymore.

Indeed, if we compute the same metrics for a longer

time frame during which the recorded images are subject to

changes and modifications unknown to the PRISM strategy,

the results differ. For all the alternatives, the percentage of

dropped frames decreases, indicating that the system is capable

of adjusting to even extreme underprovisioning. Computing

the metrics for the entire run of the experiment, the lowest

total cost is 13731, achieved when the system uses an event-

triggering strategy with τthr = 0.1, while the PRISM strategy

achieves a cost of 14172. One of the drawbacks of the

PRISM strategy is the lack of adaptation to real-time changes

in the camera environment which might lead to bandwidth

requirements different than the one initially allocated. This

confirms the need for constant adaptation and re-evaluation of

the optimal strategy, but it also demonstrates the potential for

efficient solution generation using model checking.

VII. RELATED WORK

The topic of self-adaptive cameras has been investigated in

the scope of video transmission over the Internet or in local

area networks [17], [18], [19], [7], [20], [21], focusing on

video transmission and image compression. The former led to

protocols such as RTP, RTSP, SIP and their improvements.

These protocols measure key network parameters, such as

bandwidth usage, packet loss rate, and round-trip delays, to

cope with network load conditions, controlling the load sub-

mitted to the network [22] or using traffic prioritization [23].

The latter led to standards such as MJPEG, JPEG2000,

MPEG-4, H.264 and more recently MPEG-H and H.265 that

explore redundant information within sequences of frames.

These techniques frequently impose strong delays and addi-

tional processing in the camera.

Surveillance – as other domains like augmented reality [24],

industrial supervised multimedia control [19], multimedia em-

bedded systems [25], automated inspection [26] and vehicle

navigation [27] – impose limitations on the acceptable delays.

In these cases, image compression is frequently preferred

to video compression for the lower latency incurred and

lower memory and computing requirements. Nevertheless, any

compression also incurs variability in transmission frame sizes

that further complicates the matching with the instantaneous

network conditions and motivated substantial research into

adaptive techniques [19], [25], [7]. These works focused on

adapting streams to what the network provides, without net-

work scheduling. Scheduling can be achieved using network

reservations (channels), as with RSVP or lower layer real-time

protocols, with the risk of poor network bandwidth efficiency.

The work in [6] addressed this problem using adaptive network

channels provided by a global network manager that tracks the

actual use that each camera is doing of its allocated bandwidth.

In this paper, we use an approach based on control theory

for quality adaptation similar to the one applied in [7]. On

top of that, we complement the camera adaptation strategy

with network bandwidth distribution. We also employ model

checking to verify desirable properties of the system. Better

performance can be obtained [20] using domain-knowledge

to optimize the bandwidth allocation, but this paper assumes

no prior knowledge. The behavior of cameras that transmit

streams over wireless networks has also been investigated

in [21], highlighting the need for adaptation, in this case

reducing or increasing the amount of processing done at the

node level. The approach solves a more complex problem with

respect to the one discussed in this paper, but does not provide

any analytic guarantee. In contrast, our solution is equipped

with the guarantees obtained via model checking.

Probabilistic model checking has been employed to verify

performance properties of a video streaming system in [28],

where high-fidelity simulations are abstracted into probabilis-

tic higher-level models for analysis. PMC is also employed

for verification of safety and timeliness properties in air traffic

control systems [29]. In contrast with this work, we also utilize

the model checker for strategy synthesis. Strategy synthesis via

PMC has been used to optimize run-time properties of cloud-

based systems, balancing performance and operation cost [30].

Contrary to all the mentioned papers, we use PMC to verify

a class of properties that is typically related with control-

theoretical guarantees, like convergence.
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VIII. CONCLUSION

This paper presented an event-triggered bandwidth alloca-

tion scheme designed to complement self-adaptive cameras

that adapt the quality of their video streams to match specific

bandwidth assignment. The main contributions provided by the

paper are: (i) the design of an adaptation scheme capable of

handling the requirements of multiple adaptive entities while

preserving the independence of the single-entity adaptation,

(ii) the implementation and testing of the adaptation scheme,

and (iii) the use of model checking to verify desirable prop-

erties of the system.

The adaptation scheme has been tested with a network of up

to three cameras and different strategies for the invocation of

the network manager. Future work include testing using more

network elements, and investigating the online generation and

enactment of the most cost effective strategy, as determined by

the model checker. We also plan to verify additional properties,

especially with respect to the involved parameters for both the

camera and the network manager adaptation. Finally, introduc-

ing more complex network topology will further increase the

applicability of the proposed technique.

REFERENCES

[1] P. Pedreiras and L. Almeida. The flexible time-triggered (FTT)
paradigm: an approach to qos management in distributed real-time sys-
tems. In International Parallel and Distributed Processing Symposium,
2003.

[2] L. Almeida, P. Pedreiras, J. Ferreira, M. Calha, J. A. Fonseca, R. Marau,
V. Silva, and E. Martins. Online QoS adaptation with the flexible time-
triggered (FTT) communication paradigm. In Handbook of Real-Time
and Embedded Systems, 2007.

[3] J. Heo and T. Abdelzaher. Adaptguard: Guarding adaptive systems
from instability. In 6th ACM International Conference on Autonomic
Computing, 2009.

[4] Gautham Nayak Seetanadi, Luis Oliveira, Luis Almeida, Karl-Erik
Arzen, and Martina Maggio. Game-theoretic network bandwidth dis-
tribution for self-adaptive cameras. In 15th International Workshop on
Real-Time Networks, 2017.

[5] G.C. Chasparis, M. Maggio, E. Bini, and K.-E. Årzén. Design and
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APPENDIX A

A TIMELINE EXAMPLE

This appendix introduces an example of the system timeline,

to familiarize with the terminology and illustrate the different

quantities involved in the system’s behavior.

Figure 5 shows these quantities graphically. The period of

the network manager πM is equal to three times the period

of the allocation, πM = 3πalloc = 90ms. The index t counts

the network manager interventions, while the index w counts

the frame transmitted. At time 0ms, which corresponds to

t = 0, the network manager decides the initial fraction of

bandwidth to be assigned to both cameras (b1,0 and b2,0). This

initial assignment determines the value of the actual amount

of bandwidth that each frame is allowed to consume in each

camera until the next manager intervention (B1,1 − B1,3 for

camera c1, and B2,1 − B2,3 for camera c2). At time 90ms
(t = 1), the network manager chooses a different allocation,

affecting the next three frames for the cameras. For each frame,

the cameras determine a quality, that in turn affects the frame

size.

c2

c1

M

0ms 30ms 60ms 90ms . . . time →

t = 0 t = 1 t = 2

M assigns bp=1,t=1, bp=2,t=1

i1,1 i1,2 i1,3 i1,4 i1,5 i1,6

i2,1 i2,2 i2,3 i2,4 i2,5 i2,6

ip=1,w=2 : qp=1,w=2 → sp=1,w=2

bp=1,t=0 → Bp=1,w=2

Fig. 5. Example of system timeline.

The gray box in the Figure shows relevant dependencies

for i1,2, the second image transmitted by the first camera. The

quality q1,2 determines the frame size s1,2. The bandwidth

allocation computed in the first network manager intervention

at t = 0, bp=1,t=0, determines the size of the channel that

the frame is allowed to use Bp=1,w=2. The following quality

q1,3 will then be computed using the difference between the

network bandwidth allocated to the frame B1,2 and the size

of the encoded frame s1,2.

APPENDIX B

MODEL OF CAMERA AND NETWORK MANAGER BEHAVIOR

Listing 2 shows the description of the behavior of an

arbitrary camera in the network – in this case c1. The first

part of the code (lines 1-7) introduces terms and constants that

are then used for the camera state update: the proportional

and integral gain k1,Proportional and k1,Integral, the minimum

and maximum quality qmin and qmax, and the minimum and

maximum frame size s1,min and s1,max. The second part of

the code (lines 9-11) introduces the expressions that should

be computed for the model checking and for the camera

controller: the calculation of the frame size according to Equa-

tion (2), the update of the quality in the controller according

to Equation (4), and the calculation of the normalized error,

or matching function, as the term e1,w in Equation (3).

1 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CAMERA PARAMETERS
2 const double k1pro = 10.0; // proportional gain
3 const double k1int = 5.0; // integral gain
4 const int minimum quality = 15; // minimum quality
5 const int maximum quality = 85; // maximum quality
6 const int minimum framesize = 64; // minimum of X bytes
7 const int maximum framesize = 100000; // maximum of X bytes
8 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CAMERA FORMULAS
9 formula framesize1 = ... // compute frame size according to equation (2)

10 formula update q1 = ... // control action according to equation (3) and (4)
11 formula f1 = ... // matching function e1,w according to equation (3)
12 // ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ CAMERA MODULE
13 module c1
14 q1: [minimum quality..maximum quality] init maximum quality;
15 s1: [minimum framesize..maximum framesize] init maximum framesize;
16 tran1: int init 0; // number of frames transmitted by camera 1
17 drop1: int init 0; // number of frames dropped by camera 1
18 [] (turn = cam1) −> (turn’ = cam2) // next in round
19 & (q1’ = update q1) // update quality with controller
20 & (s1’ = framesize1) // compute framesize
21 & (c1change’ = (q1 = update q1 ? false : true)) // check if change
22 & (tran1’ = compute tn1 <= t1 ? tran1+1: tran1) // if transmitted
23 & (drop1’ = compute tn1 > t1 ? drop1+1: drop1) // if dropped
24 & (want nm’ = f1 > threshold event | f1 < −threshold event ? true :

want nm); // check threshold
25 endmodule

Listing 2. Camera module description

Finally, the last part (lines 13-25) contains the camera module,

which captures the logic of the state update for the camera.

The camera can only perform one action to update its state

variables during its turn (lines 18-24). This update includes

yielding the turn to the next camera in the list (line 18), or

to the scheduler (in the last camera case). The action also

updates the internal value for the current quality parameter

q1,w, determines the frame size based on the old quality value,

computes a boolean value that assess if there was a change

in quality (used for property verification, cf. Section V-C),

and determines if the frame was transmitted or dropped.

Finally, for the event-triggered network manager version, the

action determines if the camera triggers an intervention of the

network manager based on the value of the threshold (line 24).

1 formula update bw1 = ... // update bw according to equation (7)
2 formula update bw2 = ... // update bw according to equation (7)
3 module nm
4 bw1: [min bw..max bw] init floor(max bw / num cameras);
5 bw2: [min bw..max bw] init ceil(max bw / num cameras);
6 nm interventions: int init 0;
7 [] (turn = nmng) −> (want nm’ = false) & // reset because done
8 (bw1’ = update bw1) & // update camera 1
9 (bw2’ = update bw2) & // update camera 2

10 (nmchange’ = (bw1 = update bw1 ? false : true)) &
11 (nm interventions’ = nm interventions+1) &
12 (turn’ = sche); // go back to the scheduler
13 endmodule

Listing 3. Network manager module description

The code for the network manager (Listing 3) is similar, in

structure, to the code for a camera. When invoked, the manager

performs a single action updating the bandwidth distribution

(lines 8-9), it determines if there was a change updating a

boolean value (line 10), it updates a counter that keeps track

of the number of performed interventions (line 11), and finally

it passes the turn to the scheduler (line 12).



APPENDIX C

OVERHEAD EVALUATION

In our experimental evaluation, we have considered a system

composed of two cameras. However, in a classical IoT setup,

there are a multitude of devices sharing the network. As

recalled in Sections II and III, one of the advantages of

using the allocation policy proposed in [8] is its linear time

complexity with respect to the number of cameras.

To collect the overhead data, we have randomized the values

of λ{1..m} where m is the number of cameras for the exper-

iment. We have then measured the overhead of invoking the

function that: (i) computes the network bandwidth distribution

according to Equation (7), (ii) saturates the computed values

using a minimum and maximum threshold, (iii) saves the old

values for the following iteration. We measured the time to

invoke the function 105 times and computed its average to

obtain a reasonable estimate of the overhead. Figure 6 shows

the average overhead in nanoseconds, when the number of

cameras varies from 1 to 100. The complexity increases lin-

early with the number of cameras, which makes this algorithm

practical for modern networks.
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Fig. 6. Average overhead measured for the computation of the network
allocation.

APPENDIX D

ADDITIONAL RESULTS

This appendix presents additional experiments that assess

the performance of the complete system. This set of ex-

periments was conducted with a system that includes three

cameras. We run the system with the time-triggered solu-

tion described in Section II, and with the event-triggered

network manager described in Section IV, each of them

using different parameters. For the time-triggered network

manager, the only solution parameter is the manager pe-

riod πM. In our experiments the period belongs to the set

{600ms, 3000ms, 6000ms}. For the event-triggered solution,

we experimented with the triggering threshold τthr belonging

to the set {0.1, 0.2, 0.3}. As explained in Section V the

optimal triggering policy, despite its optimality in terms of cost

minimization, is not a viable solution for long experiments,

because the environment dynamically changes and the network

manager should be aware of these changes to trigger the

“reaction-to-changes protocol”. We have therefore excluded

the PRISM strategy from this set of experiments.

Table I reports the results of this set of experiments. Each

row represents a one-hour long run of the system using a spe-

cific strategy. The first three rows show the time-triggered (TT)

TABLE I
ADDITIONAL EXPERIMENT: 3-CAMERAS SYSTEM

strategy
c1

Tx%
c2

Tx%
c3

Tx%
nmint

total
cost

TT (πM = 600ms) 37.66 37.04 40.46 4460 1069140
TT (πM = 3000ms) 45.18 43.14 45.83 958 956198
TT (πM = 6000ms) 35.99 37.83 36.63 435 1092125
ET (τthr = 0.1) 48.08 47.92 56.59 7 848977
ET (τthr = 0.2) 53.88 49.26 59.75 5 789735
ET (τthr = 0.3) 43.46 45.48 51.25 3 920403

solutions, while remaining rows represent the event-triggered

(ET) solutions. The parameters chosen for the solutions follow

in parenthesis. The columns represent the percentage of frames

that are correctly transmitted for the three cameras, cx Tx%

for camera x, the number of interventions of the network

manager nmint and the total cost computed as defined in

Section V-D. For correct operation, frame dropping must

occur, as the network bandwidth is not enough for all the

cameras. This is because we plan to stress the system and

test it in extreme conditions. The event-triggered version of

the network manager achieves lower running costs and higher

percentages of transmitted frames for the cameras, with a very

small number of interventions in the system. In the event-

triggered category, a threshold τthr = 0.2 minimizes the total

cost for running the system, achieving the highest percentage

of transmitted frames with a low number of interventions. The

resource manager intervenes only 5 times. This is a negligible

overhead, especially compared to the time-triggered policy that

achieves the best cost, which has period πM = 3000ms and

intervenes 958 times. The higher number of interventions does

not result in a higher number of transmitted frames.

To confirm the validity of these results, we executed each

experiment 10 times, and computed the total cost for each

execution. We display the cost using box plots, in Figure 7.

The event-triggered strategy has lower median values in terms

of cost, although a couple of outliers are shown with τthr = 0.3.

This implies that τthr = 0.2 is a more flexible value, as also

discussed for the single run results shown in Table I. The

time-triggered solutions have higher median cost, and higher

maximum values. At the same time, the time-triggered solution

may achieve lower cost (see for example πM = 6000ms)

but seems to be less predictable (the range is wider). The

experiments highlight that using an event-triggered solution

increased the overall predictability of the system.
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Fig. 7. Total cost box plot for 10 1-hour long executions traces.


