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Restricted Boltzmann Machines (RBMs) and Deep Belief Networks have been

demonstrated to perform efficiently in a variety of applications, such as dimensionality

reduction, feature learning, and classification. Their implementation on neuromorphic

hardware platforms emulating large-scale networks of spiking neurons can have significant

advantages from the perspectives of scalability, power dissipation and real-time interfacing

with the environment. However, the traditional RBM architecture and the commonly used

training algorithm known as Contrastive Divergence (CD) are based on discrete updates

and exact arithmetics which do not directly map onto a dynamical neural substrate. Here,

we present an event-driven variation of CD to train a RBM constructed with Integrate

& Fire (I&F) neurons, that is constrained by the limitations of existing and near future

neuromorphic hardware platforms. Our strategy is based on neural sampling, which

allows us to synthesize a spiking neural network that samples from a target Boltzmann

distribution. The recurrent activity of the network replaces the discrete steps of the CD

algorithm, while Spike Time Dependent Plasticity (STDP) carries out the weight updates

in an online, asynchronous fashion. We demonstrate our approach by training an RBM

composed of leaky I&F neurons with STDP synapses to learn a generative model of

the MNIST hand-written digit dataset, and by testing it in recognition, generation and

cue integration tasks. Our results contribute to a machine learning-driven approach for

synthesizing networks of spiking neurons capable of carrying out practical, high-level

functionality.

Keywords: synaptic plasticity, neuromorphic cognition, Markov chain monte carlo, recurrent neural network,

generative model

1. INTRODUCTION

Machine learning algorithms based on stochastic neural network

models such as RBMs and deep networks are currently the state-

of-the-art in several practical tasks (Hinton and Salakhutdinov,

2006; Bengio, 2009). The training of these models requires sig-

nificant computational resources, and is often carried out using

power-hungry hardware such as large clusters (Le et al., 2011)

or graphics processing units (Bergstra et al., 2010). Their imple-

mentation in dedicated hardware platforms can therefore be very

appealing from the perspectives of power dissipation and of

scalability.

Neuromorphic Very Large Scale Integration (VLSI) systems

exploit the physics of the device to emulate very densely the

performance of biological neurons in a real-time fashion, while

dissipating very low power (Mead, 1989; Indiveri et al., 2011).

The distributed structure of RBMs suggests that neuromorphic

VLSI circuits and systems can become ideal candidates for such a

platform. Furthermore, the communication between neuromor-

phic components is often mediated using asynchronous address-

events (Deiss et al., 1998) enabling them to be interfaced with

event-based sensors (Liu and Delbruck, 2010; Neftci et al., 2013;

O’Connor et al., 2013) for embedded applications, and to be

implemented in a very scalable fashion (Silver et al., 2007; Joshi

et al., 2010; Schemmel et al., 2010).

Currently, RBMs and the algorithms used to train them are

designed to operate efficiently on digital processors, using batch,

discrete-time, iterative updates based on exact arithmetic calcula-

tions. However, unlike digital processors, neuromorphic systems

compute through the continuous-time dynamics of their compo-

nents, which are typically Integrate & Fire (I&F) neurons (Indiveri

et al., 2011), rendering the transfer of such algorithms on such

platforms a non-trivial task. We propose here a method to con-

struct RBMs using I&F neuron models and to train them using

an online, event-driven adaptation of the Contrastive Divergence

(CD) algorithm.

We take inspiration from computational neuroscience to

identify an efficient neural mechanism for sampling from the

underlying probability distribution of the RBM. Neuroscientists

argue that brains deal with uncertainty in their environments

by encoding and combining probabilities optimally (Doya et al.,

2006), and that such computations are at the core of cogni-

tive function (Griffiths et al., 2010). While many mechanistic

theories of how the brain might achieve this exist, a recent neu-

ral sampling theory postulates that the spiking activity of the

neurons encodes samples of an underlying probability distribu-

tion (Fiser et al., 2010). The advantage for a neural substrate

in using such a strategy over the alternative one, in which

neurons encode probabilities, is that it requires exponentially
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fewer neurons. Furthermore, abstract model neurons consis-

tent with the behavior of biological neurons can implement

Markov Chain Monte Carlo (MCMC) sampling (Buesing et al.,

2011), and RBMs sampled in this way can be efficiently trained

using CD, with almost no loss in performance (Pedroni et al.,

2013). We identify the conditions under which a dynamical

system consisting of I&F neurons performs neural sampling.

These conditions are compatible with neuromorphic imple-

mentations of I&F neurons (Indiveri et al., 2011), suggest-

ing that they can achieve similar performance. The calibra-

tion procedure necessary for configuring the parameters of the

spiking neural network is based on firing rate measurements,

and so is easy to realize in software and in hardware plat-

forms.

In standard CD, weight updates are computed on the basis

of alternating, feed-forward propagation of activities (Hinton,

2002). In a neuromorphic implementation, this translates to

reprogramming the network connections and resetting its

state variables at every step of the training. As a consequence,

it requires two distinct dynamical systems: one for normal

operation (i.e., testing), the other for training, which is highly

impractical. To overcome this problem, we train the neural RBMs

using an online adaptation of CD. We exploit the recurrent

structure of the network to mimic the discrete “construction”

and “reconstruction” steps of CD in a spike-driven fashion, and

Spike Time Dependent Plasticity (STDP) to carry out the weight

updates. Each sample (spike) of each random variable (neuron)

causes synaptic weights to be updated. We show that, over longer

periods, these microscopic updates behave like a macroscopic

CD weight update. Compared to standard CD, no additional

connectivity programming overhead is required during the

training steps, and both testing and training take place in the

same dynamical system.

Because RBMs are generative models, they can act simulta-

neously as classifiers, content-addressable memories, and carry

out probabilistic inference. We demonstrate these features in a

MNIST hand-written digit task (LeCun et al., 1998), using an

RBM network consisting of one layer of 824 “visible” neurons

and one layer of 500 “hidden” neurons. The spiking neural net-

work was able to learn a generative model capable of recognition

performances with accuracies up to 91.9%, which is close to the

performance obtained using standard CD and Gibbs sampling,

93.6%.

2. MATERIALS AND METHODS

2.1. NEURAL SAMPLING WITH NOISY I&F NEURONS

We describe here conditions under which a dynamical system

composed of I&F neurons can perform neural sampling. It has

been proven that abstract neuron models consistent with the

behavior of biological spiking neurons can perform MCMC sam-

pling of a Boltzmann distribution (Buesing et al., 2011). Two

conditions are sufficient for this. First, the instantaneous firing

rate of the neuron verifies:

ρ(u(t), t − t′) =

{

0 if t − t′ < τr

r(u(t)) t − t′ ≥ τr

, (1)

with r(u(t)) proportional to exp(u(t)), where u(t) is the

membrane potential and τr is an absolute refractory period dur-

ing which the neuron cannot fire. ρ(u(t), t − t′) describes the

neuron’s instantaneous firing rate as a function of u(t) at time

t, given that the last spike occurred at t′. It can be shown that the

average firing rate of this neuron model for stationary u(t) is the

sigmoid function:

ρ(u) = (τr + exp(−u))−1. (2)

Second, the membrane potential of neuron i is equal to the linear

sum of its inputs:

ui(t) = bi +
N

∑

j = 1

wijzj(t),∀i = 1, . . . , N, (3)

where bi is a constant bias, and zj(t) represents the pre-synaptic

spike train produced by neuron j defined as being equal to 1 when

the pre-synaptic neuron spikes for a duration τr , and equal to zero

otherwise. The terms wijzj(t) are identified with the time course

of the Post–Synaptic Potential (PSP), i.e., the response of the

membrane potential to a pre-synaptic spike. The two conditions

above define a neuron model, to which we refer as the “abstract

neuron model.” Assuming the network states are binary vectors

[z1, . . . , zk], it can be shown that, after an initial transient, the

sequence of network states can be interpreted as MCMC samples

of the Boltzmann distribution:

p(z1, . . . , zk) =
1

Z
exp

(

− E(z1, . . . , zk)
)

, with

E(z1, . . . , zk) = −
1

2

∑

ij

Wijzizj −
∑

i

bizi,
(4)

where Z =
∑

z1,...,zk
exp

(

− E(z1, . . . , zk)
)

is a constant such that

p sums up to unity, and E(z1, . . . , zk) can be interpreted as an

energy function (Haykin, 1998).

An important fact of the abstract neuron model is that, accord-

ing to the dynamics of zj(t), the PSPs are “rectangular” and

non-additive since no two presynaptic spikes can occur faster than

the refractive period. The implementation of synapses producing

such PSPs on a large scale is very difficult to realize in hardware,

when compared to first-order linear filters that result in “alpha”-

shaped PSPs (Destexhe et al., 1998; Bartolozzi and Indiveri, 2007).

This is because, in the latter model, the synaptic dynamics are lin-

ear, such that a single hardware synapse can be used to generate

the same current that would be generated by an arbitrary num-

ber of synapses (see also next section). As a consequence, we will

use alpha-shaped PSPs instead of rectangular PSPs in our mod-

els. The use of the alpha PSP over the rectangular PSP is the major

source of degradation in sampling performance, as we will discuss

in section 2.2.

2.1.1. Stochastic I&F neurons

A neuron whose instantaneous firing rate is consistent with

Equation (1) can perform neural sampling. Equation (1) is a gen-

eralization of the Poisson process to the case when the firing prob-

ability depends on the time of the last spike (i.e., it is a renewal
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process), and so can be verified only if the neuron fires stochasti-

cally (Cox, 1962). Stochasticity in I&F neurons can be obtained

through several mechanisms, such as a noisy reset potential,

noisy firing threshold, or noise injection (Plesser and Gerstner,

2000). The first two mechanisms necessitate stochasticity in the

neuron’s parameters, and therefore may require specialized cir-

cuitry. But noise injection in the form of background Poisson

spike trains requires only synapse circuits, which are present in

many neuromorphic VLSI implementation of spiking neurons

(Bartolozzi and Indiveri, 2007; Indiveri et al., 2011). Furthermore,

Poisson spike trains can be generated self-consistently in balanced

excitatory-inhibitory networks (van Vreeswijk and Sompolinsky,

1996), or using finite-size effects and neural mismatch (Amit and

Brunel, 1997).

We show that the abstract neuron model in Equation (1) can

be realized in a simple dynamical system consisting of leaky I&F

neurons with noisy currents. The neuron’s membrane potential

below firing threshold θ is governed by the following differential

equation:

C
d

dt
ui = −gLui + Ii(t) + σξ(t), ui(t) ∈ (−∞, θ), (5)

where C is a membrane capacitance, ui is the membrane potential

of neuron i, gL is a leak conductance, σξ(t) is a white noise term of

amplitude σ (which can for example be generated by background

activity), Ii(t) its synaptic current and θ is the neuron’s firing

threshold. When the membrane potential reaches θ, an action

potential is elicited. After a spike is generated, the membrane

potential is clamped to the reset potential urst for a refractory

period τr .

In the case of the neural RBM, the currents Ii(t) depend on the

layer the neuron is situated in. For a neuron i in layer υ

Ii(t) = Id
i (t) + Iυ

i (t),

τsyn
d

dt
Iυ
i = −Iυ

i +
Nh
∑

j = 1

qhji
hj(t) + qbi

bυi
(t),

(6)

where Id
i (t) is a current representing the data (i.e., the external

input), Iυ is the feedback from the hidden layer activity and the

bias, and the q’s are the respective synaptic weights, and bυ(t) is

a Poisson spike train implementing the bias. Spike trains are rep-

resented by a sum of Dirac delta pulses centered on the respective

spike times:

bυi
(t) =

∑

k ∈ Spi

δ(t − tk), hj(t) =
∑

k ∈ Spj

δ(t − tk) (7)

where Spi and Spj are the set of the spike times of the bias neuron

bυi
and the hidden neuron hj, respectively, and δ(t) = 1 if t = 0

and 0 otherwise.

For a neuron j in layer h,

Ij(t) = Ih
j (t),

τsyn
d

dt
Ih
j = −Ih

j +
Nυ
∑

i = 1

qυij
υi(t) + qbj

bhj
(t),

(8)

where Ih is the feedback from the visible layer, and υ(t) and bh(t)

are Poisson spike trains of the visible neurons and the bias neu-

rons, defined similarly as in Equation (7). The dynamics of Ih and

Iυ correspond to a first-order linear filter, so each incoming spike

results in PSPs that rise and decay exponentially (i.e., alpha-PSP)

(Gerstner and Kistler, 2002).

Can this neuron verify the conditions required for neural sam-

pling? The membrane potential is already assumed to be equal to

the sum of the PSPs as required by neural sampling. So to answer

the above question we only need to verify whether Equation (1)

holds. Equation (5) is a Langevin equation which can be analyzed

using the Fokker–Planck equation (Gardiner, 2012). The solution

to this equation provides the neuron’s input/output response, i.e.,

its transfer curve (for a review, see Renart et al., 2003):

ρ(u0) =

(

τr + τm

√
π

∫

θ−u0
σV

urst−u0
σV

dx exp(x2)(1 + erf(x))

)−1

, (9)

where erf is the error function (the integral of the normal dis-

tribution), u0 = I
gL

is the stationary value of the membrane

potential when injected with a constant current I, τm = C
gL

is the

membrane time constant, urst is the reset voltage, and σ2
V (u) =

σ2/(gLC).

According to Equation (2), the condition for neural sampling

requires that the average firing rate of the neuron to be the sig-

moid function. Although the transfer curve of the noisy I&F

neuron Equation (9) is not identical to the sigmoid function, it

was previously shown that with an appropriate choice of param-

eters, the shape of this curve can be very similar to it (Merolla

et al., 2010). We observe that, for a given refractory period τr ,

the smaller the ratio θ− urst
σV

in Equation (5), the better the trans-

fer curve resembles a sigmoid function (Figure 1). With a small
θ− urst

σV
, the transfer function of a neuron can be fitted to

ν(I) =
1

τr

(

1 +
exp(−Iβ)

γτr

)−1

, (10)

where β and γ are the parameters to be fitted. The choice of

the neuron model described in Equation (5) is not critical for

neural sampling: A relationship that is qualitatively similar to

Equation (9) holds for neurons with a rigid (reflective) lower

boundary (Fusi and Mattia, 1999) which is common in VLSI

neurons, and for I&F neurons with conductance-based synapses

(Petrovici et al., 2013).

This result also shows that synaptic weights qυi
, qhj

, which have

the units of charge are related to the RBM weights Wij by a factor

β−1. To relate the neural activity to the Boltzmann distribution,

Equation (4), each neuron is associated to a binary random vari-

able which is assumed to take the value 1 for a duration τr after the
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FIGURE 1 | Transfer curve of a leaky I&F neuron for three different

parameter sets where u0 =
I

gL
, and 1

τr
= 250 [Hz] (dashed gray). In this

plot, σV is varied to produce different ratios θ− urst
σV

. The three plots above

shows that the fit with the sigmoid function (solid black) improves as the

ratio decreases.

neuron has spiked, and zero otherwise, similarly to Buesing et al.

(2011). With this encoding, the network state is characterized by

a binary vector having the same number of entries as the number

of neurons in the network. The relationship between this ran-

dom vector and the I&F neurons’ spiking activity is illustrated in

Figure 3. The membrane potential of the neuron (black) evolves

in a random fashion until it spikes, after which it is clamped to

urst for a duration τr (gray). While the neuron is in the refrac-

tory period, the random variable associated to it is assumed to

takes the value 1. This way, the state of the network can always

be associated with a binary vector. According to the theory, the

dynamics in the network guarantees that the binary vectors are

samples drawn from a Boltzmann distribution.

2.1.2. Calibration protocol

In order to transfer the parameters from the probability distribu-

tion Equation (4) to those of the I&F neurons, the parameters

γ, β in Equation (10) need to be fitted. An estimate of a neu-

ron’s transfer function can be obtained by computing its spike

rate when injected with different values of constant inputs I. The

refractory period τr is the inverse of the maximum firing rate

of the neuron, so it can be easily measured by measuring the

spike rate for very high input current I. Once τr is known, the

parameter estimation can be cast into a simple linear regression

problem by fitting log(ρ(i)−1 − τr) with βI + log(γ). Figure 2

shows the transfer curve when τr = 0 ms, which is approximately

exponential in agreement with Equation (1).

The shape of the transfer curse is strongly dependent on the

noise amplitude. In the absence of noise, the transfer curve is a

sharp threshold function, which softens as the amplitude of the

noise is increased (Figure 1). As a result, both parameters γ and

β are dependent on the variance of the input currents from other

neurons I(t). Since βq = w, the effect of the fluctuations on the

network is similar to scaling the synaptic weights and the biases

FIGURE 2 | Transfer function of I&F neurons driven by background

white noise Equation (5). We measure the firing rate of the neuron as a

function of a constant current injection to estimate ρ(u0), where for

constant Iinj, u0 = Iinj/gL. (Top) The transfer function of noisy I&F neurons

in the absence of refractory period [ρ(u) = r(u), circles]. We observe that ρ

is approximately exponential over a wide range of inputs, and therefore

compatible with neural sampling. Crosses show the transfer curve of

neurons implementing the abstract neuron Equation (1), exactly. (Bottom)

With an absolute refractory period the transfer function approximates the

sigmoid function. The firing rate saturates at [250]Hz due to the refractory

period chosen for the neuron.

which can be problematic. However, by selecting a large enough

noise amplitude σ and a slow enough input synapse time con-

stant, the fluctuations due to the background input are much

larger than the fluctuations due to the inputs. In this case, β and

γ remain approximately constant during the sampling.

Neural mismatch can cause β and γ to differ from neuron to

neuron. From Equation (10) and the linearity of the postsynaptic

currents I(t) in the weights, it is clear that this type of mismatch

can be compensated by scaling the synaptic weights and biases

accordingly. The calibration of the parameters γ and β quan-

titatively relate the spiking neural network’s parameters to the

RBM. In practice, this calibration step is only necessary for map-

ping pre-trained parameters of the RBM onto the spiking neural

network.

Although we estimated the parameters of software simulated

I&F neurons, parameter estimation based on firing rate measure-

ments were shown to be an accurate and reliable method for VLSI

I&F neurons as well (Neftci et al., 2012).

2.2. VALIDATION OF NEURAL SAMPLING USING I&F NEURONS

The I&F neuron verifies Equation (1) only approximately, and the

PSP model is different from the one of Equation (3). Therefore,
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the following two important questions naturally arise: how accu-

rately does the I&F neuron-based sampler outlined above sample

from a target Boltzmann distribution? How well does it perform

in comparison to an exact sampler, such as the Gibbs sampler? To

answer these questions we sample from several neural RBM con-

sisting of five visible and five hidden units for randomly drawn

weight and bias parameters. At these small dimensions, the proba-

bilities associated to all possible values of the random vector z can

be computed exactly. These probabilities are then compared to

FIGURE 3 | Neural Sampling in an RBM consisting of 10 stochastic I&F

neurons, with five neurons in each layer. Each neuron is associated to a

binary random variable which take values 1 during a refractory period τr

after the neuron has spiked (gray shadings). The variables are sampled at

1 kHz to produce binary vectors that correspond to samples of the joint

distribution p(z). In this figure, only the membrane potential and the

samples produced by the first five neurons are shown. The vectors inside

the brackets are example samples of the marginalized distribution

p(z1, z2, z3, z4, z5) produced at the time indicated by the vertical lines. In

the RBM, there are no recurrent connections within a layer.

those obtained through the histogram constructed with the sam-

pled events. To construct this histogram, each spike was extended

to form a box of length τr (as illustrated in Figure 3), the spiking

activity was sampled at 1 kHz, and the occurrences of all the pos-

sible 210 states of the random vector z were counted. We added 1

to the number of occurrences of each state to avoid zero probabil-

ities. The histogram obtained from a representative run is shown

in Figure 4 (left).

A common measure of similarity between two distributions p

and q is the KL divergence:

D(p||q) =
∑

i

pi log
pi

qi
.

If the distributions p and q are identical then D(p||q) = 0, other-

wise D(p||q) > 0. The right panel of Figure 4 shows D(p||Pexact)

as a function of sampling duration, for distributions p obtained

from three different samplers: the abstract neuron based sam-

pler with alpha PSPs (PNS,Abstract), the I&F neuron-based sampler

(PNS), and the Gibbs sampler (PGibbs).

In the case of the I&F neuron-based sampler, the average KL

divergence for 48 randomly drawn distributions after 1000 s of

sampling time was 0.059 ± 0.049. This result is not significantly

different if the abstract neuron model Equation (1) with alpha

PSPs is used (average KL divergence 0.10 ± 0.049), and in both

cases the KL divergence did not tend to zero as the number

of samples increased. The only difference in the latter neuron

model compared to the abstract neuron model of Buesing et al.

(2011), which tends to zero when sampling time tends to infin-

ity, is the PSP model. This indicates that the discrepancy is largely

due to the use of alpha-PSPs, rather than the approximation of

Equation (1) with I&F neurons.

FIGURE 4 | (Left) Example probability distribution obtained by neural

sampling of the RBM of Figure 3. The bars are marginal probabilities

computed by counting the events [00000], [00001], . . . , [11110], [11111],
respectively. PNS is the distribution obtained by neural sampling and P is the

exact probability distribution computed with Equation (4). (Right) The degree

to which the sampled distribution resembles the target distribution is

quantified by the KL divergence measured across 48 different distributions,

and the shadings correspond to its standard deviation. This plot also shows

the KL divergence of the target distribution sampled by Gibbs Sampling

(PGibbs), which is the common choice for RBMs. For comparison with the

neural sampler, we identified the duration of one Gibbs sampling iteration

with one refractory period τr = 4 ms. The plot shows that up to 104ms, the

two methods are comparable. After this, the KL divergence of the neural

sampler tends to a plateau due to the fact that neural sampling with our I&F

neural network is approximate. In both figures, PNS, Abstract refers to the

marginal probability distribution obtained by using the abstract neuron model

Equation (1). In this case, the KL divergence is not significantly different from

the one obtained with the I&F neuron model-based sampler.
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The standard sampling procedure used in RBMs is Gibbs

Sampling: the neurons in the visible layer are sampled simultane-

ously given the activities of the hidden neurons, then the hidden

neurons are sampled given the activities of the visible neurons.

This procedure is iterated a number of times. For comparison

with the neural sampler, the duration of one Gibbs sampling iter-

ation is identified with one refractory period τr = 4 ms. At this

scale, we observe that the speed of convergence of the neural sam-

pler is similar to that of the Gibbs sampler up to 104ms, after

which the neural sampler plateaus above the D(p||q) = 10−2 line.

Despite the approximations in the neuron model and the synapse

model, these results show that in RBMs of this size, the neural

sampler consisting of I&F neurons sample from a distribution

that has the same KL divergence as the distribution obtained after

104 iterations of Gibbs sampling, which is more than the typical

number of iterations used for MNIST hand-written digit tasks in

the literature (Hinton et al., 2006).

2.3. NEURAL ARCHITECTURE FOR LEARNING A MODEL OF MNIST

HAND-WRITTEN DIGITS

We test the performance of the neural RBM in a digit recognition

task. We use the MNIST database, whose data samples consist

of centered, gray-scale, 28 × 28-pixel images of hand-written

digits 0–9 (LeCun et al., 1998). The neural RBM’s network

architecture consisted of two layers, as illustrated in Figure 5.

The visible layer was partitioned into 784 sensory neurons (vd)

and 40 class label neurons (vc) for supervised learning. The

pixel values of the digits were discretized to two values, with

low intensity pixel values (p ≤ 0.5) mapped to 10−5 and high

intensity values (p > 0.5) mapped to 0.98. A neuron i in d

stimulated each neuron i in layer v, with synaptic currents fi such

that P(υi = 1) = ν(fi)τr = pi, where 0 ≤ pi ≤ 1 is the value of

pixel i. The value fi is calculated by inverting the transfer function

of the neuron: fi = ν−1(s) = log
(

s
γ − sγτr

)

β−1. Using this RBM,

classification is performed by choosing the most likely label given

the input, under the learned model. This equals to choosing the

FIGURE 5 | The RBM network consists of a visible and a hidden layer.

The visible layer is partitioned into 784 sensory neurons (vd) and 40 class

label neurons (vc) for supervised learning. During data presentation, the

activities in the visible layer are driven by a data layer d, consisting of a digit

and its label (1 neuron per label). In the RBM, the weight matrix between

the visible layer and the hidden layer is symmetric.

population of class neurons associated to the same label that has

the highest population firing rate.

To reconstruct a digit from a class label, the class neurons

belonging to a given digit are clamped to a high firing rate. For

testing the discrimination performance of an energy-based model

such as the RBM, it is common to compute the free-energy F(vc)

of the class units (Haykin, 1998), defined as:

exp(−F(vc)) =
∑

vd,h

exp(−E(vd, vc, h)), (11)

Table 1 | List of parameters used in the software simulations.a

νbias Mean firing rate of

bias Poisson spike

train

All figures 1000 Hz

σ Noise amplitude All figures, except Figure 1 3 · 10−11 A/s0.5

Figure 1 (left) 2 · 10−11 A/s0.5

Figure 1 (right) 3 · 10−10 A/s0.5

Figure 1 (bottom) 1 · 10−9 A/s0.5

β Exponential factor

(fit)

All figures 2.044 · 109 A−1

γ Baseline firing rate

(fit)

All figures 8808 Hz

τr Refractory period All figures 4 ms

τsyn Time constant of

recurrent, and bias

synapses

All figures 4 ms

τbr “Burn-in” time of the

neural sampling

All figures 10 ms

gL Leak conductance All figures 1 nS

urst Reset potential All figures 0 V

C Membrane

capacitance

All figures 10−12 F

θ Firing threshold All figures 100 mV

W RBM weight matrix

(∈ R
Nυ×Nh )

Figure 4 N(−0.75, 1.5)

bυ , bh RBM bias for layer υ

and h

Figure 4 N(−1.5, 0.5)

Nυ , Nh Number of visible

and hidden units

Figure 4 5, 5

in the RBM Figures 7, 8, 7 824, 500

Nc Number of class

label units

Figures 7, 8, 7 40

2T Epoch duration Figures 4, 7, 8 100 ms

Figure 9 300 ms

Tsim Simulation time Figure 2 5 s

Figure 4 1000 s

Figure 7 0.2 s

Figure 9 0.85 s

Figure 8 (testing) 1.0 s

Figure 8 (learning) 2000 s

τSTDP Learning time

window

Figure 7 4 ms

η Learning rate Standard CD 0.1 · 10−2

Event-driven CD 3.2 · 10−2

aSoftware simulation scripts are available online (https://github.com/

eneftci/eCD).
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and selecting vc such that the free-energy is minimized. The

spiking neural network is simulated using the BRIAN simula-

tor (Goodman and Brette, 2008). All the parameters used in the

simulations are provided in Table 1.

3. RESULTS

3.1. EVENT-DRIVEN CONTRASTIVE DIVERGENCE

A Restricted Boltzmann Machine (RBM) is a stochastic neural

network consisting of two symmetrically interconnected layers

composed of neuron-like units—a set of visible units v and a set

of hidden units h, but has no connections within a layer.

The training of RBMs commonly proceeds in two phases. At

first the states of the visible units are clamped to a given vec-

tor from the training set, then the states of the hidden units

are sampled. In a second “reconstruction” phase, the network is

allowed to run freely. Using the statistics collected during sam-

pling, the weights are updated in a way that they maximize

the likelihood of the data (Hinton, 2002). Collecting equilib-

rium statistics over the data distribution in the reconstruction

phase is often computationally prohibitive. The CD algorithm

has been proposed to mitigate this (Hinton, 2002; Hinton and

Salakhutdinov, 2006): the reconstruction of the visible units’

activity is achieved by sampling them conditioned on the values

of the hidden units (Figure 6). This procedure can be repeated

k times (the rule is then called CDk), but relatively good con-

vergence is obtained for the equilibrium distribution even for

one iteration. The CD learning rule is summarized as follows:

�wij = ǫ(〈υihj〉data − 〈υihj〉recon), (12)

where υi and hj are the activities in the visible and hidden lay-

ers, respectively. This rule can be interpreted as a difference

of Hebbian and anti-Hebbian learning rules between the visi-

ble and hidden neurons sampled in the data and reconstruc-

tion phases. In practice, when the data set is very large, weight

updates are calculated using a subset of data samples, or “mini-

batches.” The above rule can then be interpreted as a stochas-

tic gradient descent (Robbins and Monro, 1951). Although

the convergence properties of the CD rule are the subject of

continuing investigation, extensive software simulations show

that the rule often converges to very good solutions (Hinton,

2002).

The main result of this paper is an online variation of the CD

rule for implementation in neuromorphic hardware. By virtue

of neural sampling the spikes generated from the visible and

hidden units can be used to compute the statistics of the prob-

ability distributions online (further details on neural sampling

in the Materials and Methods section 2.1). Therefore a possi-

ble neural mechanism for implementing CD is to use synapses

whose weights are governed by synaptic plasticity. Because the

spikes cause the weight to update in an online, and asynchronous

fashion, we refer to this rule as event-driven CD.

The weight update in event-driven CD is a modulated, pair-

based STDP rule:

d

dt
qij = g(t) STDPij(υi(t), hj(t)) (13)

where g(t) ∈ R is a zero-mean global gating signal controlling

the data vs. reconstruction phase, qij is the weight of the synapse

and υi(t) and hj(t) refer to the spike trains of neurons υi and hj,

defined as in Equation (7).

As opposed to the standard CD rule, weights are updated after

every occurrence of a pre-synaptic and post-synaptic event. While

this online approach slightly differentiates it from standard CD, it

is integral to a spiking neuromorphic framework where the data

samples and weight updates cannot be stored. The weight update

is governed by a symmetric STDP rule with a symmetric temporal

window K(t) = K(−t),∀t:

STDPij(υi(t), hj(t)) = υi(t)Ahj
(t) + hj(t)Aυi

(t),

Ahj
(t) = A

∫ t

−∞
dsK(t − s)hj(s),

Aυi
(t) = A

∫ t

−∞
dsK(s − t)υi(s),

(14)

with A > 0 defining the magnitude of the weight updates. In

our implementation, updates are additive and weights can change

polarity.

3.1.1. Pairwise STDP with a global modulatory signal

approximates CD

The modulatory signal g(t) switches the behavior of the synapse

from LTP to LTD (i.e., Hebbian to Anti-Hebbian). The temporal

average of g(t) must vanish to balance LTP and LTD, and must

FIGURE 6 | The standard Contrastive Divergence (CD)k procedure,

comparedtoevent-drivenCD. (A) InstandardCD, learningproceeds iteratively

by sampling in “construction” and “reconstruction” phases (Hinton, 2002),

which is impractical in a continuous-time dynamical system. (B) We propose a

spiking neural sampling architecture that folds these updates on a continuous

time dimension through the recurrent activity of the network. The synaptic

weight update follows a STDP rule modulated by a zero mean signal g(t). This

signal switches the behavior of the synapse from Long-Term Potentiation (LTP)

to Long-Term Depression (LTD), and partitions the training into two phases

analogous to those of the original CD rule. The spikes cause microscopic

weight modifications, which on average behave as the macroscopic CD weight

update. For this reason, the learning rule is referred to as event-driven CD.
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vary on much slower time scales than the typical times scale of

the network dynamics, denoted τbr, so that the network samples

from its stationary distribution when the weights are updated.

The time constant τbr corresponds to a “burn-in” time of MCMC

sampling and depends on the overall network dynamics and can-

not be computed in the general case. However, it is reasonable

to assume τbr to be in the order of a few refractory periods of the

neurons (Buesing et al., 2011). In this work, we used the following

modulation function g(t):

g(t) =

⎧

⎪

⎨

⎪

⎩

1 if mod(t, 2T) ∈ (τbr, T)

−1 if mod(t, 2T) ∈ (T + τbr, 2T)

0 otherwise

, (15)

where mod is the modulo function and T is a time interval.

The data is presented during the time intervals (2iT, (2i + 1)T),

where i is a positive integer. With the g(t) defined above, no

weight update is undertaken during a fixed period τbr. This allows

us to neglect the transients after the stimulus is turned on and

off (respectively in the beginning of the data and reconstruction

phases). In this case and under further assumptions discussed

below, the event-driven CD rule can be directly compared with

standard CD as we now demonstrate. The average weight update

during (0, 2T) is:

〈

d

dt
qij

〉

(0,2T)

= Cij + Rij,

Cij =
T − τbr

2T
(〈υi(t)Ahj

(t)〉td
+ 〈hj(t)Aυi

(t)〉td
)

Rij = −
T − τbr

2T
(〈υi(t)Ahj

(t)〉tr + 〈hj(t)Aυi
(t)〉tr ),

(16)

where td = (τbr, T) and tr = (T + τbr, 2T) denote the intervals

during the positive and negative phases of g(t), and 〈·〉(a,b) =
1

b − a

∫ b
a dt·.

We write the first average in Cij as follows:

〈υi(t)Ahj
(t)〉td

= A
1

T − τbr

∫ T

τbr

dt

∫ t

−∞
dsK(t − s)υi(t)hj(s),

= A
1

T − τbr

∫ T

τbr

dt

∫ ∞

0
d�K(�)υi(t)hj(t − �),

= A

∫ ∞

0
d�K(�)〈υi(t)hj(t − �)〉td

.

(17)

If the spike times are uncorrelated the temporal averages become

a product of the average firing rates of a pair of visible and hidden

neurons (Gerstner and Kistler, 2002):

〈υi(t)hj(t − �)〉td
= 〈υi(t)〉td

〈hj(t − �)〉td
=: ῡ+

i h̄+
j .

If we choose a temporal window that is much smaller than T, and

assume the network activity is stationary in the interval (τbr, T),

we can write (up to a negligible error Kempter et al., 2001)

〈υi(t)Ahj
(t)〉td

= Aῡ+
i h̄+

j

∫ ∞

0
d�K(�). (18)

In the uncorrelated case, the second term in Cij contributes the

same amount, leading to:

Cij = ηῡ+
i h̄+

j .

with η := 2A T − τbr
2T

∫ ∞
0 d�K(�). Similar arguments apply to the

averages in the time interval tr :

Rij = 2A

∫ ∞

0
d�K(�)〈υi(t)hj(t − �)〉tr = ηῡ−

i h̄−
j .

with ῡ−
i h̄−

j
:= 〈υi(t)〉tr 〈hj(t − �)〉tr . The average update in

(0, 2T) then becomes:

〈

d

dt
qij

〉

(0,2T)

= η
(

ῡ+
i h̄+

j − ῡ−
i h̄−

j

)

. (19)

According to Equation (18), any symmetric temporal win-

dow that is much shorter than T can be used. For sim-

plicity, we choose an exponential temporal window K(�) =
exp(−|�/τSTDP|) with decay rate τSTDP ≪ T (Figure 6B). In this

case, η = 2A T−τbr
2T τSTDP.

The modulatory function g(t) partitions the training into

epochs of duration 2T. Each epoch consists of a LTP phase during

which the data is presented (construction), followed by a free-

running LTD phase (reconstruction). The weights are updated

asynchronously during the time interval in which the neural

sampling proceeds, and Equation (19) tells us that its average

resembles Equation (12). However, it is different in two ways:

the averages are taken over one data and reconstruction phase

rather than a mini-batch of data samples and their reconstruc-

tions; and more importantly, the synaptic weights are updated

during the data and the reconstruction phase, whereas in the CD

rule, updates are carried out at the end of the reconstruction

phase. In the derivation above the effect of the weight change on

the network during an epoch 2T was neglected for mathematical

simplicity. In the following, we verify that despite this approxima-

tion, the event-driven CD performs nearly as well as standard CD

in the context of a common benchmark task.

3.2. LEARNING A GENERATIVE MODEL OF HAND-WRITTEN DIGITS

We train the RBM to learn a generative model of the MNIST

handwritten digits using event-driven CD (see section 2.3 for

details). For training, 20,000 digits selected randomly (with

repetition) from a training set consisting of 10,000 digits were

presented in sequence, with an equal number of samples for each

digit.

The raster plots in Figure 7 show the spiking activity of each

layer before and after learning for epochs of duration 100 ms. The

top panel shows the population-averaged weight. After training,

the sum of the upwards and downward excursions of the average
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FIGURE 7 | The spiking neural network learns a generative model of the

MNIST dataset using the event-driven CD procedure. (A) Learning curve,

shown here up to 10, 000 samples. (B) Details of the training procedure,

before and after training (20,000 samples). During the first half of each 0.1 s

epoch, the visible layer v is driven by the sensory layer, and the gating

variable g is 1, meaning that the synapses undergo LTP. During the second

half of each epoch, the sensory stimulus is removed, and g is set to −1, so

the synapses undergo LTD. The top panels of both figures show the mean of

the entries of the weight matrix. The second panel shows the values of the

modulatory signal g(t). The third panel shows the synaptic currents of a

visible neuron, where Ih is caused by the feedback from the hidden and the

bias, and Id is the data. The timing of the clamping (Id ) and g differ due to an

interval τbr where no weight update is undertaken to avoid the transients

(see section 2). Before learning and during the reconstruction phase, the

activity of the visible layer is random. But as learning progresses, the activity

in the visible layer reflects the presented data in the reconstruction phase.

This is very well visible in the layer class label neurons vc , whose activity

persists after the sensory stimulus is removed. Although the firing rates of

the hidden layer neurons before training is high (average 113 Hz), this is only a

reflection of the initial conditions for the recurrent couplings W . In fact, at the

end of the training, the firing rates in both layers becomes much sparser

(average 9.31 Hz).

weight is much smaller than before training, because the learn-

ing is near convergence. The second panel shows the value of the

modulatory signal g(t). The third panel shows the input current

(Id) and the current caused by the recurrent couplings (Ih).

Two methods can be used to estimate the overall recognition

accuracy of the neural RBM. The first is to sample: the visible

layer is clamped to the digit only (i.e., υd), and the network is

run for 1s. The known label is then compared with the posi-

tion of the group of class neurons that fired at the highest rate.

The second method is to minimize free-energy: the neural RBMs

parameters are extracted, and for each data sample, the class label

with the lowest free-energy (see section 2) is compared with the

known label. In both cases, recognition was tested for 1000 data

samples that were not used during the training. The results are

summarized in Figure 8.

As a reference we provide the best performance achieved using

the standard CD and one unit per class label (Nc = 10) (Figure 8,

table row 1), 93.6%. By mapping the these parameters to the

neural sampler, the recognition accuracy reached 92.6%. The dis-

crepancy is expected since the neural sampler does not exactly

sample from the target Boltzmann distribution (see section 2.2).

When training a neural RBM of I&F neurons using event-

driven CD, the recognition result was 91.9% (Figure 8, table

row 2). The performance of this RBM obtained by minimizing its

free-energy was 90.8%. The learned parameters performed well

for classification using the free-energy calculation which suggests

that the network learned a model that is consistent with the

mathematical description of the RBM.

In an energy-based model like the RBM the free-energy min-

imization should give the upper bound on the discrimination

performance (Haykin, 1998). For this reason, the fact that the

recognition accuracy is higher when sampling as opposed to using

the free-energy method may appear puzzling. However, this is

possible because the neural RBM does not exactly sample from

the Boltzmann distribution, as explained in section 2.2. This

suggests that event-driven CD compensates for the discrepancy

between the distribution sampled by the neural RBM and the

Boltzmann distribution, by learning a model that is tailored to

the spiking neural network.

Excessively long training durations can be impractical for

real-time neuromorphic systems. Fortunately, the learning using

event-driven CD is fast: Compared to the off-line RBM train-

ing (250, 000 presentations, in mini-batches of 100 samples) the

event-driven CD training succeeded with a smaller number of

data presentations (20, 000), which corresponded to 2000 s of

simulated time. This suggests that the training durations are

achievable for real-time neuromorphic systems.

3.2.1. The choice of the number of class neurons Nc

Event-driven CD underperformed in the case of 1 neuron per

class label (Nc = 10), which is the common choice for standard

CD and Gibbs sampling. This is because a single neuron firing
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FIGURE 8 | To test recognition accuracy, the trained RBMs are sampled

using the I&F neuron-based sampler for up to 1 s. The classification is

read out by identifying the group of class label neurons that had the highest

activity. This experiment is run for RBM parameter sets obtained by standard

CD (black, CD) and event-driven CD (green, eCD). To test for robustness to

finite precision weights, the RBM was run with parameters obtained by

event-driven CD discretized to 8 and 5 bits. In all scenarios, the accuracy after

50 ms of sampling was above 80% and after 1 s the accuracies typically

reached their peak at around 92%. The dashed horizontal lines show the

recognition accuracy obtained by minimizing the free-energy (see text). The

fact that the eCD curve (solid green) surpasses its free-energy line suggests

that a model that is tailored to the I&F spiking neural network was learned.

at its maximum rate of 250 Hz cannot efficiently drive the rest of

the network without tending to induce spike-to-spike correlations

(e.g., synchrony), which is incompatible with the assumptions

made for sampling with I&F neurons and event-driven CD. As

a consequence, the generative properties of the neural RBM

degrade. This problem is avoided by using several neurons per

class label (in our case four neurons per class label) because the

synaptic weight can be much lower to achieve the same effect,

resulting in smaller spike-to-spike correlations.

3.2.2. Neural parameters with finite precision

In hardware systems, the parameters related to the weights and

biases cannot be set with floating-point precision, as can be done

in a digital computer. In current neuromorphic implementations

the synaptic weights can be configured at precisions of about

8 bits (Yu et al., 2012). We characterize the impact of finite-

precision synaptic weights on performance by discretizing the

weight and bias parameters to 8 bits and 5 bits. The set of possi-

ble weights were spaced uniformly in the interval (µ − 4.5σ,µ +
4.5σ), where µ, σ are the mean and the standard deviation of

the parameters across the network, respectively. The classifica-

tion performance of MNIST digits degraded gracefully. In the 8

bit case, it degrades only slightly to 91.6%, but in the case of 5

bits, it degrades more substantially to 89.4%. In both cases, the

RBM still retains its discriminative power, which is encouraging

for implementation in hardware neuromorphic systems.

3.3. GENERATIVE PROPERTIES OF THE RBM

We test the neural RBM as a generative model of the MNIST

dataset of handwritten digits, using parameters obtained by run-

ning the event-driven CD. The RBM’s generative property enables

it to classify and generate digits, as well as to infer digits by com-

bining partial evidence. These features are clearly illustrated in

the following experiment (Figure 9). First the digit 3 is presented

(i.e., layer υd is driven by layer d) and the correct class label in

vc activated. Second, the neurons associated to class label 5 are

clamped, and the network generated its learned version of the

digit. Third, the right-half part of a digit 8 is presented, and the

class neurons are stimulated such that only 3 or 6 are able to acti-

vate (the other class neurons are inhibited, indicated by the gray

shading). Because the stimulus is inconsistent with 6, the network

settled to 3 and reconstructed the left part of the digit.

The latter part of the experiment illustrates the integration of

information between several partially specified cues, which is of

interest for solving sensorimotor transformation or multi-modal

sensory cue integration problems (Deneve et al., 2001; Doya
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FIGURE 9 | The recurrent structure of the network allows it to classify,

reconstruct and infer from partial evidence. (A) Raster plot of an

experiment illustrating these features. Before time 0s, the neural RBM runs

freely, with no input. Due to the stochasticity in the network, the activity

wanders from attractor to attractor. At time 0s, the digit 3 is presented (i.e.,

layer υd is driven by d ), activating the correct class label in υc ; At time

t = 0.3 s, the class neurons associated to 5 are clamped to high activity and

the rest of the class label neurons are strongly inhibited, driving the network

to reconstruct its version of the digit in layer υd ; At time t = 0.6 s, the

right-half part of a digit 8 is presented, and the class neurons are stimulated

such that only 3 or 6 can activate (all others are strongly inhibited as indicated

by the gray shading). Because the stimulus is inconsistent with 6, the

network settles to a 3 and attempts to reconstruct it. The top figures show

the digits reconstructed in layer υd . (B) Digits 0–9, reconstructed in the same

manner. The columns correspond to clamping digits 0–9, and each is

different, independent run. (C) Population firing rate of the experiment

presented in (A). The network activity is typically at equilibrium after about

10τr = 40 ms (black bar).

et al., 2006; Corneil et al., 2012). This feature has been used for

auditory-visual sensory fusion in a spiking Deep Belief Network

(DBN) model (O’Connor et al., 2013). There, the authors trained

a DBN with visual and auditory data, which learned to asso-

ciate the two sensory modalities, very similarly to how class

labels and visual data are associated in our architecture. Their

network was able to resolve a similar ambiguity as in our exper-

iment in Figure 9, but using auditory inputs instead of a class

label.

During digit generation, the trained network had a tendency

to be globally bistable, whereby the layer υd completely deacti-

vated layer h. Since all the interactions between υd and υc take

place through the hidden layer, υc could not reconstruct the

digit. To avoid this, we added populations of I&F neurons that

were wired to layers υ and h, respectively. The parameters of

these neurons and their couplings were tuned such that each

layer was strongly excited when it’s average firing rate fell below

5 Hz.

4. DISCUSSION

Neuromorphic systems are promising alternatives for large-

scale implementations of RBMs and deep networks, but the

common procedure used to train such networks, Contrastive

Divergence (CD), involves iterative, discrete-time updates that do

not straightforwardly map on a neural substrate. We solve this

problem in the context of the RBM with a spiking neural network

model that uses the recurrent network dynamics to compute these

updates in a continuous-time fashion. We argue that the recurrent

activity coupled with STDP dynamics implements an event-

driven variant of CD. Event-driven CD enables the system to learn

on-line, while being able to carry out functionally relevant tasks

such as recognition, data generation and cue integration.

The CD algorithm can be used to learn the parameters of

probability distributions other than the Boltzmann distribution

(even those without any symmetry assumptions). Our choice for

the RBM, whose underlying probability distribution is a special

case of the Boltzmann distribution, is motivated by the following

facts: They are universal approximators of discrete distributions

(Le Roux and Bengio, 2008); the conditions under which a spik-

ing neural circuit can naturally perform MCMC sampling of a

Boltzmann distribution were previously studied (Merolla et al.,

2010; Buesing et al., 2011); and RBMs form the building blocks of

many deep learning models such as DBNs, which achieve state-

of-the-art performance in many machine learning tasks (Bengio,

2009). The ability to implement RBMs with spiking neurons and

train then using event-based CD paves the way toward on-line

training of DBNs of spiking neurons (Hinton et al., 2006).

We chose the MNIST handwritten digit task as a benchmark

for testing our model. When the RBM was trained with standard

CD, it could recognize up to 926 out of 1000 of out-of-training

samples. The MNIST handwritten digit recognition task was pre-

viously shown in a digital neuromorphic chip (Arthur et al.,

2012), which performed at 89% accuracy, and in a software sim-

ulated visual cortex model (Eliasmith et al., 2012). However,

both implementations were configured using weights trained off-

line. A recent article showed the mapping of off-line trained

DBNs onto spiking neural network (O’Connor et al., 2013). Their

results demonstrated hand-written digit recognition using neu-

romorphic event-based sensors as a source of input spikes. Their

performance reached up to 94.1% using leaky I&F neurons. The
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use of an additional layer explains to a large extent their bet-

ter performance compared to ours (91.9%). Our work extends

(O’Connor et al., 2013) with on-line training that is based on

synaptic plasticity, testing its robustness to finite weight preci-

sion, and providing an interpretation of spiking activity in terms

of neural sampling.

To achieve the computations necessary for sampling from the

RBM, we have used a neural sampling framework (Fiser et al.,

2010), where each spike is interpreted as a sample of an under-

lying probability distribution. Buesing et al. proved that abstract

neuron models consistent with the behavior of biological spik-

ing neurons can perform MCMC, and have applied it to a basic

learning task in a fully visible Boltzmann Machine. We extended

the neural sampling framework in three ways: First, we identified

the conditions under which a dynamical system consisting of I&F

neurons can perform neural sampling; Second, we verified that

the sampling of RBMs was robust to finite-precision parameters;

Third, we demonstrated learning in a Boltzmann Machine with

hidden units using STDP synapses.

In neural sampling, neurons behave stochastically. This behav-

ior can be achieved in I&F neurons using noisy input currents,

created by a Poisson spike train. Spike trains with Poisson-like

statistics can be generated with no additional source of noise, for

example by the following mechanisms: balanced excitatory and

inhibitory connections (van Vreeswijk and Sompolinsky, 1996),

finite-size effects in a large network, and neural mismatch (Amit

and Brunel, 1997). The latter mechanism is particularly appeal-

ing, because it benefits from fabrication mismatch and operating

noise inherent to neuromorphic implementations (Chicca and

Fusi, 2001).

Other groups have also proposed to use I&F neuron mod-

els for computing the Boltzmann distribution. (Merolla et al.,

2010) have shown that noisy I&F neurons’ activation function is

approximately a sigmoid as required by the Boltzmann machine,

and have devised a scheme whereby a global inhibitory rhythm

drives the network to generate samples of the Boltzmann distri-

bution. O’Connor et al. (2013) have demonstrated a deep belief

network of I&F neurons that was trained off-line, using standard

CD and tested it using the MNIST database. Independently and

simultaneously to this work, Petrovici et al. (2013) demonstrated

that conductance-based I&F neurons in a noisy environment are

compatible with neural sampling as described in Buesing et al.

(2011). Similarly, Petrovici et al. find that the choice of non-

rectangular PSPs and the approximations made by the I&F neu-

rons are not critical to the performance of the neural sampler. Our

work extends all of those above by providing an online, STDP-

based learning rule to train RBMs sampled using I&F neurons.

4.1. APPLICABILITY TO NEUROMORPHIC HARDWARE

Neuromorphic systems are sensible to fabrication mismatch

and operating noise. Fortunately, the mismatch in the synaptic

weights and the activation function parameters γ and β are not

an issue if the biases and the weights are learned, and the func-

tionality of the RBM is robust to small variations in the weights

caused by discretization. These two findings are encouraging for

neuromorphic implementations of RBMs. However, at least two

conceptual problems of the presented RBM architecture must be

solved in order to implement such systems on a larger scale. First,

the symmetry condition required by the RBM does not necessar-

ily hold. In a neuromorphic device, the symmetry condition is

impossible to guarantee if the synapse weights are stored locally

at each neuron. Sharing one synapse circuit per pair of neurons

can solve this problem. This may be impractical due to the very

large number of synapse circuits in the network, but may be

less problematic when using Resistive Random-Access Memorys

(RRAMs) (also called memristors) crossbar arrays to emulate

synapses (Kuzum et al., 2011; Cruz-Albrecht et al., 2013; Serrano-

Gotarredona et al., 2013).RRAM are a new class of nanoscale

devices whose current-voltage relationship depends on the his-

tory of other electrical quantities (Strukov et al., 2008), and so

act like programmable resistors. Because they can conduct cur-

rents in both directions, one RRAM circuit can be shared between

a pair of neurons. A second problem is the number of recur-

rent connections. Even our RBM of modest dimensions involved

almost two million synapses, which is impractical in terms of

bandwidth and weight storage. Even if a very high number of

weights are zero, the connections between each pair of neurons

must exist in order for a synapse to learn such weights. One pos-

sible solution is to impose sparse connectivity between the layers

(Murray and Kreutz-Delgado, 2007; Tang and Eliasmith, 2010)

and implement synaptic connectivity in a scalable hierarchical

address-event routing architecture (Joshi et al., 2010; Park et al.,

2012).

4.2. OUTLOOK: A CUSTOM LEARNING RULE

Our method combines I&F neurons that perform neural sam-

pling and the CD rule. Although we showed that this leads to a

functional model, we do not know whether event-driven CD is

optimal in any sense. This is partly due to the fact that CDk is an

approximate rule (Hinton, 2002), and it is still not entirely under-

stood why it performs so well, despite extensive work in studying

its convergence properties (Carreira-Perpinan and Hinton, 2005).

Furthermore, the distribution sampled by the I&F neuron does

not exactly correspond to the Boltzmann distribution, and the

average weight updates in event-driven CD differ from those of

standard CD, because in the latter they are carried out at the end

of the reconstruction step.

A very attractive alternative is to derive a custom synap-

tic plasticity rule that minimizes some functionally relevant

quantity (such as Kullback-Leibler divergence or Contrastive

Divergence), given the encoding of the information in the I&F

neuron (Deneve, 2008; Brea et al., 2013). A similar idea was

recently pursued in Brea et al. (2013), where the authors derived

a triplet-based synaptic learning rule that minimizes an upper

bound of the Kullback–Leibler divergence between the model

and the data distributions. Interestingly, their rule had a similar

global signal that modulates the learning rule, as in event-driven

CD, although the nature of this resemblance remains to be

explored. Such custom learning rules can be very beneficial in

guiding the design of on-chip plasticity in neuromorphic VLSI

and RRAM nanotechnologies, and will be the focus of future

research.
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