
Event-Driven Control as an Opportunity in the Multidisciplinary
Development of Embedded Controllers1

J.H. Sandee§, W.P.M.H. Heemels† and P.P.J. van den Bosch§

§Technische Universiteit Eindhoven
Dept. of Electrical Engineering, Control Systems Group

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Email: j.h.sandee@tue.nl, p.p.j.v.d.bosch@tue.nl

†Embedded Systems Institute, Email: maurice.heemels@esi.nl

Abstract— Severe requirements on embedded controllers
ask for new approaches that can effectively bridge the existing
gap between the disciplines Software and Control Engineering.
Event-driven control is presented as an opportunity to create
a negotiable environment for the sample frequency, control
performance and the usage of processing power. Simulations
show that event-driven control can reduce the average pro-
cessor load without influencing the control performance too
much. Some first ideas for analysis and synthesis techniques
look promising and future research will focus on the extension
of these techniques.

I. INTRODUCTION

Increasing numbers of processes utilize embedded con-
trollers nowadays. Many examples can be found in e.g. cars,
mobile phones or copying devices. The complexity of
these processes as well as the complexity of the controller
hard- and software is increasing fast, while time-to-market
has to decrease. To lower the cost price, multiple control
algorithms are often implemented on a single processing
unit.

An obvious result is the need for design methods for
control that take the requirements of the software imple-
mentation into account. On the other hand, the reverse
is also needed; design methods for software that also
deal with the control requirements. Although the need for
close cooperation between control engineers and software
engineers seems obvious, the gap between control theory
and computer science has only become larger over the
last couple of years. The main reason for this is that both
disciplines are developing new and more difficult methods
and theories fast. It is almost impossible to keep up with
each others state-of-the-art practice. This article describes
an event-driven controller design as an opportunity to re-
duce the gap between both disciplines.

Little research has been done on this multidisciplinary
problem. The need for such theories however, is addressed
in various articles (e.g. See [2] and [10] and the references
therein). In this context the term ‘implementation aware

1This work has been carried out as part of the Boderc project under the
responsibility of the Embedded Systems Institute. This project is partially
supported by the Netherlands Ministry of Economic Affairs under the
Senter TS program.

control’ is also well known [8]. The work in this paper
forms a contribution to this challenging field of research.

Control algorithms are based on many assumptions. In
practice, many of those assumptions cannot be satisfied
completely in software. For example, standard control al-
gorithms are based on a constant sample time for both
measurement and actuation. This eases the analysis a lot,
but it is often hard to implement in software, as it heavily
constrains the scheduling of tasks in software. A second
assumption is that delays are assumed to be constant and
known or even non-existing. When implementing a control
algorithm, all calculations take time, so e.g. a delay between
measurement and actuation will be present. This delay will
hardly ever be constant due to other tasks interrupting
the control algorithm or simply by a small change in the
required calculations, like e.g. activated saturation. This
problem can be overcome by introducing a constant delay
between measurement and actuation, e.g. by means of a
hardware buffer. A drawback is that this delay needs to be as
large as the biggest possible delay. Another problem where
software engineers often run into at the implementation
is that complex algorithms require too much resources,
like processing power. A direct result is that the allowed
sample time is limited and therefore not only dependent on
the bandwidth of the controlled system. This assumption
is often made by the control engineer, disregarding the
limitations of the implementation.

One of the possible solutions to take better care of the
described problems is event-driven control. In contradiction
to time-driven control, these methods are not based upon a
constant sample time. Already in 1962, the need for such
methods was addressed [4], but few research has been spent
in this subject since. Besides being able to vary the sample
time each sample, it also enables an easier way to deal with
(known) delays by using time-stamping [7]. The benefits of
an event-driven controller over a time-driven one are mainly
influenced by the way in which the events are generated.
One possible choice is to generate less events at times that
the process does not have to be controlled very accurately.
Another choice could be to shortly delay an event generation
when the processor load is very high. In this case, the

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

WeC18.6

1776

T
s

T
s

T
s

T
1

T
2

T
1

T
2

T
3

1

2

3

Fig. 1. 1 - synchronous, 2 - semi-synchronous, 3 - asynchronous.

control algorithm is directly coupled to the scheduler of
the operating system [3].

Event-driven controllers are becoming increasingly com-
monplace, particularly for distributed real-time sensing
and control. For example, for sensors in sensor networks,
TinyOS, an event-based operating system, is rapidly emerg-
ing as the operating system of choice. Characteristic of
applications running on an event-based operating system is
that state variables will typically be updated asynchronously
in time, e.g., when an event of interest is detected, of
because of delay in computation and/or communication.

This paper presents an event-driven controller as a means
to make a compromise between processor load and control
performance. Also some first promising ideas ideas for
analysis and synthesis techniques are presented.

The paper is outlined as follows: Section II gives a
classification needed to explain event-driven control. This
section is followed by the description of an event-driven
PID controller. In section IV results of various simulations
with this event-driven controller are described. Section V
describes some preliminary analysis techniques and finally,
the conclusions are given.

II. CLASSIFICATION OF REAL-TIME CONTROL

Before discussing how an event-driven controller should
be implemented and what could be gained with this type of
control algorithms, a classification of possible controllers
is given. Three classes are defined for the way in which
actions can occur in time. Considering a control algorithm,
these actions can be for instance taking measurements or
updating the actuator signal. The three classes are displayed
in figure 1.

These three classes, respectively called synchronous,
semi-synchronous and asynchronous, are defined as follows:

• Actions occur synchronous in time if the length of the
time interval in between each two successive actions
is the same.

• Actions occur semi-synchronous in time if there exists
a partitioning of the time scale into periods with equal
lengths, so that each period contains exactly one action.

• Actions occur asynchronous in time otherwise.
With the above given definitions it is now possible to

classify all possible control algorithms in the 3x3 matrix,
depicted in figure 2. In rows and columns, the different ways
of actuation and measurement are set out respectively. Two
classes in this figure are marked as ‘theory’. Most control

algorithms nowadays are still based on both measurement
and actuation occurring synchronous in time. However,
reality often lies in the semi-synchronous world, as dis-
cussed in the introduction. By making use of asynchronous
observers, control algorithms can deal with asynchronous
measurement, and therefore also semi-synchronous mea-
surement (see e.g. [9] and [5]). If a control theory combines
asynchronous measurement with asynchronous actuation,
this would handle all defined situations. Obviously, event-
driven control belongs to this specific class. When events
are e.g. generated according to the size of the measured
error, event generation will most probably not occur at a
constant rate. If these events trigger both measurement and
actuation, the algorithm is classified as being asynchronous
in both measurement and actuation. For this class, event
generation should be handled in hardware. When this is
however implemented in software, the measurements will
in most cases still occur synchronous in time. Due to
implementation limitations, it is also possible to end up
with semi-synchronous measurement in combination with
asynchronous control.

III. EVENT-DRIVEN PID CONTROLLER

The most common controller in industry is still the PID
(Proportional Integral Derivative) controller or a derived
version of it. For this reason this controller is taken as a
first example. This section describes the transformation of
the basic time-driven control algorithm into an event-driven
control strategy. In [1] a similar approach is presented but
in a different setting. Their controller has two alternating
sample frequencies, while the presence of noise is disre-
garded. Nevertheless [1] as well as this paper discuss the
subject of implementing event-driven controllers to reduce
processor utilization.

A standard transfer function for a continuous time PID
algorithm is (1).

C(s) = Kp + Ki/s + KdsL(s) (1)

with L(s), a low-pass filter to deal with high frequency
measurement noise. The transfer function of this filter with
a bandwidth ωd is given in (2).

Synchronous

measurement

Semi-

synchronous

measurement

Asynchronous

measurement

Synchronous

actuation

Semi-

synchronous

actuation

Asynchronous

actuation

Theory Reality

RealityReality Reality

Theory

Emerging

possibility

Emerging

possibility

Emerging

possibility

Fig. 2. Classification of control algorithms.

1777

L (s) =
ωd

s + ωd
(2)

To use this controller in a discrete-event environment,
the first step is to discretize the transfer function of the
controller. This can be done by means of approximation
formulas, e.g. Euler and bilinear transformation (Tustin). A
common choice for approximating the integral part is to
use Forward Euler. To approximate the derivative part in
combination with the filter L(s), the Tustin approximation
is used. This transformation maps the entire left half of
the s-plane into the unit circle in the z-plane, guaranteeing
preservation of stability. The resulting transfer function of
the PID controller in discrete time is given in (3).

C (z) = Kp + Ki
Ts

z − 1
+ Kd

2
Ts

z − 1
z + 1

L (z) (3)

with: L (z) =
ωdTs

2+ωdTs
z+

ωdTs
2+ωdTs

z+
ωdTs−2
ωdTs+2

The resulting transfer function shows a pole in z = -1 for
the derivative part and a zero in z = -1 for the filter. After
multiplication of the transfer functions, these are canceled
out. It is therefore more efficient to rewrite the transfer
function into formula (4), before implementing in software.
Less computations are needed at the cost of a little less
separation of functionality.

C (z) = Kp + Ki
Ts

z − 1
+ Kd

2ωd

2 + ωdTs

z − 1
z + ωdTs−2

ωdTs+2

(4)

Controller (4) is suitable as an event-driven controller,
with Ts as a varying parameter. Each time a control action
is requested, the actual sample time Ts is determined and
used. This requires accurate timing information from the
points in time at which measurements are taken and actuator
signals are updated. Many platforms on which the control
software is executed are already equipped with this feature,
called time-stamping.

The benefits of an event-driven controller over a time-
driven one are mainly influenced by the way in which
the events are generated. Many criteria can be chosen on
the bases of which an event is generated. One obvious
choice, which is used for the simulation presented in the
next section, is to make the event generation dependent
on the size of the tracking error. The larger the error, the
more often events are generated. A second option is to let
the operating system decide when the next control action
should be taken. This gives the scheduler of the operating
system more freedom to dynamically schedule the tasks. For
stability reasons however, this freedom is limited. If we are
able to make estimations of or measure process disturbances
and reference changes, we can compensate these variations
very fast by adjusting the sample time.

For the simulation presented in the next section, the
events are generated dependent on the error. An event is

Fig. 3. Depiction of criterium (5).

generated when both the measured error and the elapsed
time since the last control action satisfy the criterium in (5).
Ke and eT are positive numbers. Ts,min is the minimum
sample time. The present time and the time the last event
was generated are respectively called tp and tl. Ts is
calculated by subtracting tl from tp. With this method, the
sample time Ts decreases when the absolute value of the
measured error increases. This can also be seen in figure
3, which displays the calculated sample time versus the
error e(t). No event will be generated as long as tp − tl
versus e(tp) is below the depicted characteristic. When the
error is smaller than eT , no event will be generated as well.
Therefore, both conditions in (5) should be satisfied, before
a control action will be taken.

tp − tl >
0.5π · Ts,min

arctan (Ke · |e(tp)|) and |e(tp)| > eT (5)

The choice of parameters Ke and eT influences both the
number of control events and the controller performance.
The aim is to find values for Ke and eT for which the
required control performance is met, while using as less
control actions as possible. Parameter eT mainly influences
the maximum error and oscillatory behavior in the error. By
increasing eT the total number of generated events generally
decreases, but the maximum error increases and the oscil-
latory behavior occurs more often. This is because these
oscillations only occur when the error decreases within the
bounds |error| ≤ eT . If these bounds are tight, the error
reaches the bounds less often. The value of Ke influences
the sample time at points in time at which the error is larger
than eT . Increasing Ke decreases the sample time which
improves the control performance but also increases the
number of generated events. Decreasing Ke will worsen the
control performance which will lead to bigger oscillations
in the error. These oscillations can as well lead to more
generated events.

A (heuristic) algorithm to choose the right values for Ke

and eT is: First choose an appropriate eT , while keeping
the value for Ke relatively high, so that the maximum
error is within specification. Then decrease the value of
Ke so that the number of generated events is minimal,
while still satisfying the requirements of the maximum
error. As will be seen in the next section, the choice of
these values depends on the noise level. One of our future

1778

E
rr

o
r

0
Time

-e
T

e
T

x
x

x
x

t
l

tp

Fig. 4. Example of an error signal.

goals is to find systematic methodologies for tuning these
controller parameters. These methodologies will take into
account performance and stability criteria by means of
existing analysis methods from the field of hybrid systems
and sampled-data systems.

As was said before, each time an event is generated and
a control action is requested, the value for Ts needs to be
determined. This is done by subtracting the last stored time-
stamp (tl) at which an event was generated from the current
time (tp). A problem now arises at the first event at which
the second condition of (5) becomes true. See figure 4 for
an example. If time-stamps tl and tp and corresponding
samples would be used to calculate the contribution of the
integral term of the actuator signal at time tp, the result
would be larger than it should be. For this reason the integral
term is not updated at time tp but kept constant during the
period [tl, tp]. For the derivative term it also holds that the
obtained value when using Ts = tp − tl for calculating
the derivative term, does not give an accurate value. It
could therefore be considered to set the derivative term
to zero at time tp. However, in the situations where the
signs of the error signal are opposite (e.i. e(tl) · e(tp) < 0),
while entering and leaving the zone where |e(t)| ≤ eT ,
the reasoning is different. In this case making use of Ts =
tp − tl when calculating the derivative term, gives a better
prediction compared to skipping this contribution for one
sample. For this reason, the actuator signal calculated at
time tp consists of:

• the proportional term,
• the derivative term (including filter), calculated with

Ts = tp − tl,
• the integral term, which is the same as calculated at

tl.

IV. SIMULATIONS

The controller described in section III is used in simu-
lations to control the angular velocity of a DC-motor. A
simplified model of the motor is selected. The input of the
model is the motor voltage, the output is the speed of the
motor axis. The transfer function H(s) is given in (6). In
this function, two time constants can be distinguished: τ1

and τ2 chosen 1/3 [s] and 1/6 [s] respectively. The static
gain A of the motor is chosen to be 10 [rad/Vs].

H (s) =
A

(τ1s + 1) (τ2s + 1)
(6)

With loop-shaping, the gains of the continuous controller
are calculated, resulting in: Kp = 30, Ki = 40, Kd = 2. In

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

V
el

o
ci

ty
[r

ad
/s

]

time [s]
Fig. 5. Reference signal.

industry the sample frequency of the time-driven controller
is often chosen approximately 20 times the bandwidth of
the system. This bandwidth, defined as the zero-dB crossing
of the open loop amplification, is 57 Hz in the considered
example. The sample frequency is therefore chosen to be 1
kHz. To improve the performance of the controller, a feed
forward term was added that feeds-forward the set-point
speed multiplied by a gain of 1

A = 0.1. Furthermore, the
output of the controller is saturated at +10 and -10 Volt.
The bandwidth of the low-pass filter fd is chosen to be 200
Hz.

Various simulations have been carried out with the ref-
erence velocity shown in figure 5. In the first simulation,
the standard time-driven PID controller was used. This is
the same controller as described in section III, but the
variable Ts was chosen constant at 1 kHz. A time-driven
controller is a specific class of event-driven controllers with
events generated at a constant frequency. The result of this
simulation is shown in figure 6. This figure also presents
the results of a simulation with the event-driven controller,
with events generated as described in the previous section.

For comparison, the parameter eT of equation (5) is
chosen in such a way that the maximum error of the
event-driven simulation approximates the maximum error
obtained from the time-driven simulation. Ke is chosen
to minimize the amount of events needed to control the
system. The value of Ts,min is chosen the same as the
sample time of the time-driven controller. The values are:
eT = 5 · 10−4, Ke = 500, Ts,min = 0.001. As can be seen
from figure 6, the event-driven simulation does not control
the error to zero. In most industrial applications however,
there are only requirements given for the maximum value
of the error. Although, it should be noted that oscillations
in the error signal can cause inconvenient side affects in
certain applications.

The third plot in figure 6 shows the number of samples
that are needed for both control algorithms. The amount
of samples that are needed for the time-driven controller is
10,000 as it is running on a constant sample frequency of
1 kHz for 10 seconds. The number of samples needed for
the event-driven controller is reduced to about 1100, so a
reduction of 89%. This number depends on the chosen refer-
ence signal and the level of the noise, like e.g. measurement
noise. For the reference signal in this simulation, the chosen
way of generating interrupts is very beneficial, because the
controller does not have to perform many actions when the
velocity is constant and the noise is zero. The main reason
is that the system is open-loop stable.

1779

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4
x 10

−3

Time [s]

E
rr

or
 [r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4
x 10

−3

Time [s]

E
rr

or
 [r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000

Time [s]

sa

m
pl

es

Event−driven PID

Time−driven PID
Event−driven PID

Time−driven PID

Fig. 6. Simulation results of time-driven and event-driven simulation.

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

Time [s]

E
rr

or
 [r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4
x 10

−3

Time [s]

E
rr

or
 [r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

Time [s]

sa

m
pl

es

Time−driven PID

Event−driven PID

Time−driven PID
Event−driven PID

Fig. 7. Simulation results of time-driven and event-driven simulation.

Figure 7 shows the same simulation as figure 6, but here
the sample time of the time-driven controller is chosen
equal to the resulting average sample time of the event-
driven controller. Compared to the event-driven controller,
the time-driven controller performs a lot worse. The size of
the error increased with a factor of approximately 100.

In the next simulations uniformly distributed noise is
added to the output of the process, with a maximum value
of 3% of the measured velocity. To obtain the best results
with the event-driven controller, the value of eT needs to be
increased to make sure it will not be triggered continuously
by the noise. After this, Ke has to be optimized as well.
The new values are: eT = 7 · 10−3, Ke = 100. The results
of the simulations with measurement noise included are
depicted in figure 8. To demonstrate the benefits of the
event-driven controller, the parameters are optimized for the
number of generated events. A slightly worse performance
of the event-driven controller compared to the time-driven
controller is to be accepted here. With these values it is still
possible to control the system with less than 1700 events
(83% reduction) during this simulation as can be seen in
the third graph of figure 8.

The event generator (5) can be implemented in both
hardware or software. When implemented in software, a
time-driven sampler needs to measure the error at a constant
frequency. The choice of the anti-aliasing filter (imple-
mented in hardware) is straightforward, depending on the

0 1 2 3 4 5 6 7 8 9 10
−0.01

−0.005

0

0.005

0.01

Time [s]

E
rr

or
 [r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10
−0.02

−0.01

0

0.01

0.02

Time [s]

E
rr

or
 [r

ad
/s

]

0 1 2 3 4 5 6 7 8 9 10
0

5000

10000

Time [s]

sa

m
pl

es

Time−driven PID

Event−driven PID

Time−driven PID
Event−driven PID

Fig. 8. Simulation results with measurement noise added.

sample frequency of the sampler. An open question is how
to choose the anti-aliasing filter for filtering the input signal
for the controller when the event generation is handled
in hardware. When the event generator is implemented in
software, the fact that these additional calculations require
time and introduce unknown delays, needs to be considered.
In the presented example these delays are neglected as their
influence is expected to be of minor importance. Further
simulations and experiments have to validate this statement.

V. SOME PRELIMINARY ANALYSIS TECHNIQUES

We will present in this section some preliminary ideas
for analysis of a simplified event-driven control scheme.
The way to do this is to consider a continuous-time plant
like (6) in state-space description

ẋ(t) = Ax(t) + Bu(t) (7)

and to consider a discrete-time controller (+zero-order hold)
with a fixed sample time Ts = Ts,min as a state-feedback

u(t) = Fx(kTs) for t ∈ [kTs, (k + 1)Ts) (8)

The sample time Ts is the lower bound in (5) and the
matrix F is tuned for this particular sample time, so that
the system behaves according to the requirements. We study
the “stabilization problem” of controlling the system’s state
towards a region close to the origin and keep it there, as
we cannot expect asymptotic stability. A term that is used
in this context is ultimate boundedness (see e.g. [6]).

The scheme (5) is simplified by removing the first
condition in (5). The condition |e(tp)| > eT in (5) will
be replaced by x(t) �∈ B, where B ⊂ R is an open
set containing the origin. Mathematically the simplified
switching rule can be represented as

u(t) = Fx(t), if (9a)

• x(t) �∈ B and t − tl = Ts or
• x(t) �∈ B and for all ε > 0 there exists x(τ) ∈ B for

all τ ∈ [t − ε, t],
u(t) = Fx(tl), otherwise , (9b)

where tl denotes as before the time instant at which the last
control update was performed.

1780

Loosely speaking, this means that if the system’s state
x(t) is evolving outside B the synchronous sampled-data
system, defined by

ẋ(t) = Ax(t) + Bu(t)
u(t) = Fx(kTs)for t ∈ [kTs, (k + 1)Ts)

(10)

is active. When x(t) is evolving inside B the control values
are not updated and kept constant until the boundary of B
is hit at which the control value is updated again (i.e. (10)
is directly switched on again). Hence, one could say that
inside B no control updates happen, while outside B (10)
is active. Note that control updates are not synchronous for
the system (7)-(9). The duration that the state of the system
remains inside B causes asynchronicity, but Ts is a fixed
sample time outside B.

We call the system (7)-(9) ultimately bounded to the set
Ω, if for each x0 ∈ R

n there exists a T > 0 such that the
state trajectory x of (7)-(9) with initial condition x(0) =
x0 satisfies x(t) ∈ Ω for all t > T . The ultimate bound
can be used to see if the accuracy specifications for the
controller are met. We present a Lyapunov-like approach to
the estimation of the ultimate bound and a way to see how
the ultimate bound depends on the choice of B.

Theorem 5.1: Consider the system (7)-(9) with B an
open set containing the origin. Let V : R

n → [0,∞) be
a continuously differentiable function that satisfies

1) V (x) > 0 for all x �= 0 and V (0) = 0 (positive
definite)

2) There exists ε > 0 such that d
dtV (x(t+)) =

limτ↓t
d
dtV (x(τ)) < −εV (x(t)) at points x(t) /∈ B

along trajectories of the synchronous sampled-data
system (10).

3) V (x) → ∞, when ‖x‖ → ∞ (radial unboundedness).
Let α∗ := supx∈B V (x). Then the system (7)-(9) is ulti-
mately bounded to the set Ωα∗ := {x ∈ R

n | V (x) ≤ α∗}.
Proof: Using standard Lyapunov arguments it can be

shown that from each initial state x(0) = x0, we reach
the set B. Indeed, since V (x(t)) ≤ e−εtV (x0) as long as
x(t) �∈ B, it is clear that (at least) the boundary of B will be
reached in finite time. Hence, the set B ⊆ Ωα∗ is reached
in finite time. Since Ωα∗ is a positive invariant set due to
statement 2) in the theorem, the results follows.

Note that the standard Lyapunov conditions hold only
outside B and that it has to satisfy these properties for
the synchronous sampled-data system (10) and not for
the event-driven controlled system (7)-(9). Studying these
functions and constructing these (for linear time-invariant
systems quadratic Lyapunov-like functions might be used)
are typical issues for future research. Next we have a
theorem that shows how the set B has to be constructed
to guarantee certain ultimate bounds on the state of the
system.

Theorem 5.2: Consider the system (7)-(9) with B an
open set containing the origin. Let V : R

n → [0,∞)
be a function that satisfies the properties of theorem 5.1.
Moreover, suppose there exists a ρ such that for all β > 0

and all x, V (βx) = βρV (x) (This replaces the radial
unboundedness condition). If we replace B by λB for some
λ > 1 in (9), then the statement of theorem 5.1 holds for
Ωα∗ replaced by Ωλρα∗ = λΩα∗ .

Proof: Since supx∈λB V (x) = λρα∗, where α∗ is as
in Theorem 5.1, the result follows.

This theorem gives a means to tune the ultimate bound
on the state and can be used to design the event driven
controller. Indeed, if we have a Lyapunov-like function V
outside B, then scaling B with a constant λ > 1 leads to a
“stabilization error” that is λ times larger.

VI. CONCLUSIONS

This article presents an event-driven controller as an
opportunity to reduce the gap there is between control
theory and computer science. Event-driven control creates
a negotiable environment to make a compromise between
processor load and control performance. This can make the
implementation of control algorithms on processor boards
more flexible. Moreover, a possibility has been created for
control engineers to deal with implementation difficulties,
like e.g. unforeseen delays, by means of time stamping.

If the criterium on which events are generated is chosen
in the right way, event-driven control can reduce the average
processor load. The reason for this is that in many controlled
systems, a high actuation frequency is only needed on
limited points in time. In the example explained in section
IV, the average sample frequency was reduced with 89%
in the situation without noise. When noise was added, a
reduction of the sample frequency of 83% was obtained.

This paper discussed and showed the potential of event-
driven control. However, more validation and analysis is
needed to substantiate these first findings. The first ideas for
analysis and synthesis techniques look promising and future
research will focus on the extension of these techniques.

REFERENCES

[1] Årzén, Karl-Erik (1999). A simple event-based PID controller. In:
Preprints 14th World Congress of IFAC. Beijing, P.R. China.

[2] Årzén, Karl-Erik, Anton Cervin and Dan Henriksson (2003).
Resource-constrained embedded control systems: Possibilities and
research issues. In: Proceedings of CERTS’03 – Co-design of Em-
bedded Real-Time Systems Workshop. Porto, Portugal.

[3] Cervin, Anton (2003). Integrated Control and Real-Time Scheduling.
PhD thesis. Department of Automatic Control, Lund Institute of
Technology, Sweden.

[4] Doff, R. C., M. C. Fatten and C.A. Phillips (1962). Adaptive sampling
frequency for sampled-data control systems. In: IRE Transactions on
Automatic Control. Vol. AC-7. pp. 38–47.

[5] Grewal, Mohinder S. and Angus P. Andrews (1993). Kalman filter-
ing: theory and practice. Englewood Cliffs: Prentice Hall.

[6] H.K. Khalil (2002). Nonlinear Systems. Second edition, Prentice
Hall, chapter 5.

[7] Lincoln, Bo (2002). Jitter compensation in digital control systems.
In: Proceedings of the 2002 American Control Conference.

[8] Network of Excellence. HYbrid CONtrol. [online] http://www.ist-
hycon.org.

[9] Phillips, A.M., and Tomizuka, M. (1995). Multirate estimation and
control under time-varying data sampling with applications to infor-
mation storage devices. In: Proceedings of the 1995 American control
conference. Vol. 6. pp. 4151–4155.

[10] Sanz, Ricardo and Karl-Erik Årzén (2003). Trends in software and
control. IEEE Control Systems Magazine 23(3), 12–15.

1781

