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Universidad Autónoma de Madrid

Esther.Guerra Sanchez@ii.uam.es, Juan.Lara@ii.uam.es

Abstract. In this work we introduce event-driven grammars, a kind of graph

grammars that are especially suited for visual modelling environments generated

by meta-modelling. Rules in these grammars may be triggered by user actions

(such as creating, editing or connecting elements) and in its turn may trigger

other user-interface events. Its combination with (non-monotonic) triple graph

grammars allows constructing and checking the consistency of the abstract syntax

graph while the user is building the concrete syntax model. As an example of

these concepts, we show the definition of a modelling environment for UML

sequence diagrams, together with event-driven grammars for the construction of

the abstract syntax representation and consistency checking.

Keywords: Graph Grammars, Meta-Modelling, Visual Languages, Consistency,

UML.

1 Introduction

Traditionally, visual modelling tools have been generated from descriptions of the Vi-

sual Language (VL) given either in the form of a graph grammar [2] or as a meta-

model [6]. In the former approach, one has to construct either a creation or a parsing

grammar. The first kind of grammar gives rise to syntax directed environments, where

each rule represents a possible user action (the user selects the rule to be applied). The

second kind of grammars (for parsing) tries to reduce the model into an initial symbol

in order to verify its correctness, and results in more free editing environments. Both

kinds of grammars are indeed encodings of a procedure to check the validity of a model.

In the meta-modelling approach, the VL is defined by building a meta-model. This

is a kind of type graph with multiplicities and other – possibly textual – constraints.

Most of the times, the concrete syntax is given by assigning graphical appearances to

both classes and relationships in the meta-model [6]. For example, in the AToM 3 tool,

this is done by means of a special attribute that both classes and relationships have. In

this approach the relationship between concrete (the appearances) and abstract syntax

(the meta-model concepts) is one-to-one. The meta-modelling environment has to check

that the model built by the user is a correct instance of the meta-model. This is done

by finding a typing morphism between model and meta-model, and by checking the



defined constraints on the model. In any case, whereas the graph-grammar approach is

more procedural, the meta-modelling approach is more declarative.

In this paper we present a novel approach that combines the meta-modelling and

the graph grammar approaches for VLs definition. To overcome the restriction of a

one-to-one mapping between abstract and concrete syntaxes, we define separate meta-

models for both kind of syntaxes. In a general case, both kinds of models can be very

different. For example, in the definition of UML class diagrams [12], the meta-model

defines concepts Association and AssociationEnd which are graphically represented to-

gether as a single line. In general, one can have abstract syntax concepts which are not

represented at all, represented with a number of concrete syntax elements, and finally,

concrete syntax elements without an abstract syntax representation are also possible. To

maintain the correspondence between abstract and concrete syntax elements, we create

a correspondence meta-model whose nodes have pairs of morphisms to elements of the

concrete and abstract meta-models.

The concrete syntax part works in the same way as in the pure meta-modelling

approach, but we define (non-monotonic) triple graph grammar rules [11] to build the

abstract syntax model, and check the consistency of both kinds of models. The novelty

is that we explicitly represent the user interface events in the concrete syntax part of the

rules (creating, editing, connecting, moving, etc.) Events can be attached to the concrete

syntax elements to which they are directed. In this way, rules may be triggered by user

events, so we can use graph grammar rules in a free editing system. Additionally, we

take advantage in the rules of the inheritance structure defined in the meta-model, and

allow the definition of abstract (triple) rules [3]. These have abstract nodes (instances

of abstract classes in the meta-model) in the LHS or RHS. These rules are equivalent to

a number of concrete rules obtained from the valid substitutions of the abstract nodes

by concrete ones (instances of the derived classes in the meta-model). We extend this

concept to allow refinement of relationships.

As a proof-of-concept, we present a non-trivial example, in which we define the

concrete and abstract syntax of sequence diagrams, define a grammar to maintain the

consistency of both syntaxes, and define additional rules to check the consistency of the

sequence diagram against existing class diagrams.

2 Meta-modelling in AToM3

AToM3 [6] is a meta-modelling tool that was developed in collaboration with Hans

Vangheluwe from McGill University. The tool allows the definition of VLs by means of

meta-modelling and model manipulation by means of graph transformation rules. The

meta-modelling architecture is linear, and a strict meta-modelling approach is followed,

where each element of the meta-modelling level n is an instance of exactly one element

of the level n + 1 [1].

Figure 1 shows an example with three meta-modelling levels. The upper part shows

a meta-metamodel for UML class diagrams, very similar to a subset of the core pack-

age of the UML 1.5 standard specification. The main difference is that Associations can

also be refined, and that the types of attributes are specific AToM3 types. Some of the

concepts in this meta-metamodel are Power types [10], whose instances at the lower
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Fig. 1. Meta-modelling levels in AToM3

meta-level inherit from a common class. This is the case of Class, Association and

AssociationEnd, whose instances inherit from ASGNode and ASGConnection. Classes

ATOM3AppearanceIcon, ATOM3AppearanceSegment and ATOM3AppearanceLink are

special types, which provide the graphical appearance of classes, association ends and



associations. They are also Power types, as their instances inherit from abstract classes

Entity, LinkSegments and Link. The user can define the visual appearance of these in-

stances with a graphical editor. Instances of ATOM3AppearanceIcon are icon-like, and

they may include primitive forms such as circles, lines, text and show attribute values

of the object associated with the instance through relationship Appearance. Instances

of ATOM3AppearanceLink are similar to the previous one, but are associated with two

ATOM3AppearanceSegment instances, which represent the incoming and outgoing seg-

ments to the link (which is itself drawn in the centre). Finally, the ATOM3Attribute class

implements a special kind of attribute type, which is an instance of itself. In this way

one can have arbitrary meta-modelling layers.

The second level in Figure 1 shows a part of the meta-model defined in Figure 4

(the lower part), but using an abstract syntax form (instead of the common graphical

appearance of UML class diagrams that we have used in the upper meta-metamodel)

where we indicate the elements of the upper meta-level from which they are instances.

Only two classes are shown, ActivationBox and Object, together with the attributes for

defining their appearances. In AToM3, by default, the name of the appearance associated

with a class or association begins with “Graph ” followed by the name of the class or

association (that is, the name attribute defined in ModelElement is filled automatically).

In the case of an AssociationEnd instance, it is similar, but followed by an “S” or “T”,

depending if the end is source or target.

Finally, the lowest meta-level shows to the left (using an abstract syntax nota-

tion) a simple sequence diagram model. To the right, the same model is shown, using

a visual representation, taking the graphical appearances designed for Graph Object,

Graph ActivationBox, Graph LifeLine, Graph LifeLineS and Graph LifeLineT. Note

how the graphical forms are in a one-to-one correspondence with the non-graphical

elements (Object1, LL1, LLS1, LLT1 and ABox1). The non-graphical elements can be

seen as the abstract syntax and the graphical ones as the concrete syntax. Nonetheless,

as stated in the introduction, the one-to-one relationship is very restrictive. Therefore

we propose building two separate meta-models, one for the concrete syntax represen-

tation (whose concepts are the graphical elements that the user draws on the screen)

and another one for the abstract syntax. Both of them are related using a correspon-

dence graph. The user builds the concrete syntax model, and a (triple, event-driven)

graph grammar builds and checks the consistency of the abstract syntax model. These

concepts are introduced in the following section.

3 Non-monotonic, Abstract Triple Graph Grammars

Triple Graph Grammars were introduced by Schürr [11] as a means to specify trans-

lators of data structures, check consistency, or propagate small changes of one data

structure as incremental updates into another one. Triple graph grammar rules model

the transformations of three separate graphs: source, target and correspondence graphs.

The latter has morphisms from each node into source and target nodes. These concepts

can be defined as follows(taken from [11]) 1 :

1 For space limitations, we have skipped all proofs referred to the constructions we introduce.



Definition 1 (Graph Triple) Let CONC, ABST and LINK be three graphs and

gs : LINK → CONC, gt : LINK → ABST be two morphisms. The resulting graph

triple is denoted as: CONC
gs
←− LINK

gt
−→ ABST .

Morphisms gs and gt represent m-to-n relationships between CONC and ABST

graphs via LINK in the following way: x ∈ CONC is related to y ∈ ABST ⇐⇒
∃z ∈ LINK | x = gs(z) and y = gt(z).

In [11] triple graph grammars were defined following the single pushout [7] (SPO)

approach and were restricted to be monotonic (its LHS must be included in its RHS).

In this way, only two morphisms were needed from the RHS of the LINK graph to the

RHS of the CONC and ABST graphs. Morphisms in LHS are defined thus as a re-

striction of the morphisms in RHS. Here we use the double pushout approach [7] (DPO)

with negative application conditions (NAC) in rules and do not take the restriction of

monotonicity. Hence, we have to define two morphisms from both LHS and RHS of the

correspondence graph rule to the LHS and RHS of the CONC and ABST graphs.

Definition 2 (Triple Rule) Let sp = (SL
sl
←− SK

sr
−→ SR), cp = (CL

cl
←− CK

cr
−→

CR) and tp = (TL
tl

←− TK
tr
−→ TR) be three rules. NAC = {(NS

nl
←− NC

nr
−→

NT, n)} is a set of tuples where the first component is a graph triple and n is a triple

(nS : SL → NS, nC : CL → NC, nT : TL → NT ) of injective graph morphisms.

Furthermore, let ls : CL → SL, rs : CR → SR, lt : CL → TL and rt : CR → TR

be four graph morphisms, such that they coincide in the elements of CK as follows:

∀k1 ∈ CK, ∃k2 ∈ SK, ls(cl(k1)) = sl(k2)∧ rs(cr(k1)) = sr(k2)
2 (and analogously

for the elements of TK). The resulting triple rule (see Figure 2)is defined as follows:

p = (sp
ls,rs
←− cp

lt,rt
−→ tp, NAC).

NSi SL

nSi�� SK
sl�� sr �� SR

NCi

nl

��

nr

��

CL

nCi��

ls

��

lt

��

CK
cl�� cr ��

��

��

CR

rs

��

rt

��
NTi TL

nTi�� TK
tl�� tr �� TR

Fig. 2. A triple rule.

Figure 3 shows an example of two triple rules (where the dashed arrows depict

morphisms ls, rs, lt and rt) with NACs, where only the additional elements to LHS

and their context have been depicted. NACs have the usual meaning, if a match is found

in the triple graph (which commutes with the LHS match and n), the rule cannot be

applied. The kernel parts SK , CK and TK of the rules are not explicitly shown, but

2 which is equivalent to ∃cs : CK → SK such that ls ◦ cl = sl ◦ cs



their elements have the same numbers in LHS and RHS. This is the notation that we

use throughout the paper. For our purposes, we need to extend the previous definition

of triple grammars to include attributes. This can be done in the way shown in [11].

Fig. 3. An Example with two Triple Rules

For the approach to be useful in meta-modelling environments, graphs must be con-

sistent with a meta-model. We model this by defining typing morphisms between graphs

and type graphs. We use the concept of type graph with inheritance 3 as defined in [3]:

Definition 3 (Type Graph with Inheritance, taken from [3]) A type graph with inheri-

tance is a triple (TG, I, A) of graphs TG and I sharing the same set of nodes N , and

a set A ⊆ N , called abstract nodes. For each node n in I the inheritance clan is defined

by clanI(n) = {n′ ∈ N | ∃ path n′
∗

−→ n in I} where path of length 0 is included, i.e.

n ∈ clanI(n).

For the typing of a graph triple, we have to define meta-models for the CONC,

ABST and LINK graphs. Additionally, as LINK has morphisms to CONC and

ABST , we have to include information about the valid morphisms in the meta-model

for the LINK graph. Thus, we define a meta-model triple in the following way:

Definition 4 (Meta-model triple) A meta-model triple is a triple of type graphs with

inheritance, together with two morphisms (cs and ct) between nodes of one of the type

graphs to the other two: MMT = ((TGCONC , ICONC , ACONC), (TGLINK , ILINK

, ALINK), (TGABST , IABST , AABST ), cs, ct) where cs : TGLINK → TGCONC and

ct : TGLINK → TGABST

Figure 4 shows an example meta-model triple, which in the upper part (abstract syn-

tax) depicts a slight variation of the UML 1.5 standard meta-model proposed by OMG

for sequence diagrams. We have collapsed the triples (TG, I, A) into a unique graph,

3 In the following, we indistinctly use the terms “type graph” and “meta-model”, although the

latter may include additional constraints.



where the I graph is shown with hollow edges (following the usual UML notation) and

the elements in A are shown in italics.

The lower meta-model in the figure declares the concrete appearance concepts and

their relationships. The elements in this meta-model are in direct relationship with the

graphical forms that will be used for graphical representation. As Figure 1 showed,

we allow the refinement of relationships, and this is shown with the usual notation for

inheritance, but applied to relationships (arrows in the diagram). This is just a notation

convenience, because each relationship (arrow) shown in Figure 4 is indeed an instance

of class Association in the upper meta-model in Figure 1. In this way, the inheritance

concept developed in [3] is immediately applicable to refinement of relationships.

The correspondence meta-model formalizes the kind of morphisms that are allowed

from nodes of types CorrespondenceMessage and CorrespondenceObject. As it is de-

fined, the declared morphism types in cs and ct are not “inherited” through I LINK in

the correspondence graph meta-model.

Fig. 4. An Example Meta-model triple

Triple rules must be provided with typing morphisms to the meta-model triple. As

in [3] we use the notion of clan morphism from graphs to type graphs with inheritance.

Definition 5 (Clan Morphism, taken from [3]) Given a type graph with inheritance

(TG, I, A) and graph G, type′ : G → TG is a clan-morphism, if for all e ∈ GE

type′N ◦ sG(e) ∈ clanI(sTG ◦ type′E(e)) and similar for tG



We can define typed graph triples in a similar way as typed rules were defined in [3],

but constraints regarding the morphisms of the correspondence graph should also be

given. Additionally, we can define abstract triple rules by allowing the appearance of

abstract nodes in LHS of each rule. If an abstract node appears in the RHS, then it must

also appear in the LHS. An abstract rule is equivalent to a number of concrete rules

where each abstract node is replaced by any concrete node in its inheritance clan. For

the application of this concept here, first note that an abstract triple rule is equivalent to

the combination of all its concrete subrules. Additionally, some of these combinations

may be not valid, because of invalid morphisms between the resulting concrete rules of

the correspondence graph and the source and target graphs.

Definition 6 (Typed Graph Triple) A graph triple typed by a meta-model triple MMT =
((TGCONC , ICONC , ACONC), (TGLINK , ILINK , ALINK), (TGABST , IABST ,

AABST ), cs, ct) is depicted by TRIGMMT = (CONC
gs
←− LINK

gt
−→ ABST,

typeC , typeL, typeA) where the last three components are typing clan morphisms from

CONC, LINK and ABST to the first three components of MMT in which the fol-

lowing conditions hold: ∀l ∈ LINK typeC(gs(l)) ∈ clanICONC (cs(typeL(l))) and

typeA(gt(l)) ∈ clanIABST (ct(typeL(l)))
If the image of any element of the triple graph belongs to some of the A sets, the

typing is called abstract, otherwise it is called concrete.

Definition 7 (Abstract Triple Rule) A triple rule typed by a meta-model triple MMT

(defined as before) is depicted by TRIPMMT = (sp
ls,rs
←− cp

lt,rt
−→ tp, NAC, typesp,

typecp, typetp) where typesp is a triple of clan morphisms (typeL
sp, typeK

sp and typeR
sp)

from SL, SK and SR (sp = (SL
sl
←− SK

sr
−→ SR)) to TGs (and similar for

typecp and typetp). Additionally, NACs are also typed as follows: NAC = {(NS
nl
←−

NC
nr
−→ NT, n, typeN)} is a set of tuples where the first two components are defined

as in definition 2 and typeN is a triple of clan morphisms (typeN
S , typeN

C , typeN
T ) from

the graph triple to TGs, TGc and TGt, which forms a typed graph triple with the first

component (see definition 6).

The following conditions hold for sp:

– typeL
sp ◦ sl = typeK

sp = typeR
sp ◦ sr (typing of preserved elements do not change).

– typeR
sp,N (R′

sp,N ) ∩ As = ∅, where R′

sp,N := SRN − srN (SKN) (new nodes in

RHS are not abstract)

– typeN
S ◦nS ≤ typeL

sp for all (N, n, typeN) ∈ NAC (where ≤is the type refinement

relationship [3]) (typing for NACs is finer than the corresponding elements in LHS)

And analogously for cp and tp. As in previous definition, ∀n ∈ CL, typeL
sp(ls(n)) ∈

clanICONC (cs(typeL
cp(n)))andtypeL

tp(lt(n)) ∈ clanIABST (ct(typeL
cp(n))) (and anal-

ogously for CK and CR)

Once we have defined the basic concepts regarding graph rules, next section presents

event-driven grammars, which we use in combination with abstract triple rules in order

to build the abstract syntax model associated with the concrete syntax. They are also

useful for consistency checking, as we will see in section 5.



4 Event-Driven Grammars

In this section, we present event-driven grammars, as a means to formalize some of

the user actions and their consequences when using a visual modelling tool. We have

defined event-driven grammars to model the effects of editor operations in AToM 3 [6],

although other tools could also be modelled. The actions a user can perform in AToM 3

are creating, editing and deleting an entity or a connection, and connecting and discon-

necting two entities. All these events occur at the concrete syntax level.

The main idea of event-driven grammars is to make explicit these events in the

models. Note how this is very different from the syntax directed approach, where graph

grammar rules are defined for VL generation. In these environments the user chooses

the rule to be applied. In our approach, the VLs are generated by means of meta-

modelling, and the user builds the model as in regular environments generated by meta-

modelling (free-hand editing). The events that the user generates may trigger the exe-

cution of some rules. In our approach, rules are triple rules and are used to build the

abstract syntax model and to perform consistency checkings.

We have defined a set of rules (called event-generator rules, depicted as evt in Fig-

ure 5) that models the generation of events by the user. Another set of rules (called

action rules, depicted as sys-act in Figure 5) models the actual action triggered by the

event (creating, deleting entities, etc.), and finally, an additional set of rules (called con-

sume rules, depicted as del in Figure 5) models the consumption of the events once the

action has been performed. The VL designer can define his own rules to be executed af-

ter an event and before the execution of the action rules (depicted as pre in Figure 5), or

after the action rules and before the consume rules (depicted as post in Figure 5)). These

rules model pre- and post- actions respectively. In the pre-actions, rules can delete the

produced events, if certain conditions are met. This is a means to specify pre-conditions

for the event to take place. Additionally, in the post-actions, rules can delete the event

and undo its actions, which is similar to a post-condition. The working scheme of an

event-driven grammar is shown in Figure 5. All the sets of rules, (except the ones in evt,

which just produce a user event) are executed as long as possible.

Mi
evt �� Mevt

pre∗ �� Mevt−pre

sys−act∗ �� Mact

post∗�� Mact−post
del∗ �� Mf

Fig. 5. Application of an event driven grammar with user-defined rules.

In the example presented in this paper, models (M i, Mevt, Mevt−pre, Mact,

Mact−post and Mf in Figure 5) are indeed typed graph triples. In this way, the set of

rules evt, sys − act and del are applied to the CONC graph, which represents the

concrete syntax. In the example, rules in pre and post are abstract triple rules, used to

propagate the changes due to the user-generated events to the abstract syntax model

(ABST graph).

Figure 6 shows the AToM3 base classes for the concrete syntax. As stated before,

all concrete syntax symbols inherit either from Entity (if it is an icon-like entity) or

from Link (if it is an arrow-like entity). Both Entity and Link inherit from VisualObject,



which has information about the object’s location (x and y) and about if it is being

dragged (selected). Links are connected to Entities via Segments; these can go either

from Entities to Links (e2l) or the other way around (l2e).

msg: String

AToM3Event

DropEvent

LinkEntity

DisconnectEvent ConnectEvent

LinkEvent

which: {Source, Target}

CreateEvent

type: String

x: Integer

y: Integer

EditEvent

DeleteEvent

DragEvent

UserEvent
MoveEvent

ErrorEvent

y: Integer

x: Integer
0..*0..1

receives

VisualObject

selected: Boolean=false

0..*

LinkSegment

direction: {e2l, l2e}

connections

1 1

0..*
segments

x: Integer

y: Integertype: String

Fig. 6. AToM3 base classes for concrete syntax objects and user events.

Some of the classes in Figure 6 model the events that can be generated by the user.

All the events can be associated to a VisualObject. Some events have additional infor-

mation, such as CreateEvent, which contains the type of the VisualObject to be created,

and its position. The MoveEvent contains the position where the object has been moved.

When connecting two Entities, two ConnectEvent objects are generated, one associated

to the source and other one associated to the target. ErrorEvent signals an error asso-

ciated with a certain object, AToM3 presents the text of the error and highlights the

associated object. Finally, the UserEvent class can be used to define new events.

type=getType(n(1))

DropEvent

Drop

LHS 1 RHS 1

selected=true

VisualObject

selected=true

VisualObject EntityEntity

ConnectEvent

which=Source

Entity

1

ConnectEvent
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EntityCreateEvent
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1 2 RHS 2
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RHS

DragEvent

RHS 1

selected=false

VisualObject

Drag
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VisualObjectLHS

Create(oType: String;
xp, yp: Integer)

Delete

LHS

VisualObject

1

RHS

1

VisualObject

DeleteEvent

Fig. 7. Some of the event-generator rules.



Figure 7 shows some of the event-generator rules (depicted as evt in Figure 5),

which model the generation of events by the user. The Create rule is triggered when the

user clicks on the button to create a certain entity, and then on the canvas. The type of the

object to be created is given by the button that the user clicks, and the x and y coordinates

by the position of the cursor in the canvas. In AToM 3, a button is created for each non-

abstract class in the meta-model. The Delete rule is triggered when the user deletes an

object. The type of the object to be deleted is obtained by calling the getType function on

node number one. This is a function which is available in Python (the implementation

language of AToM3) and returns the actual type of an object. Finally, the Connect rule

is invoked when the user connects two Entities. In AToM3 this is performed by clicking

in the connect button and then on the source and the target entities. AToM 3 infers (with

the meta-model information) the type of the subclass of Link that must be created in

between. If several choices exist, then the user selects one of them. The type is then

passed as a parameter of the rule, and the corresponding creation event is generated.
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Fig. 8. Some of the action rules.

Figure 8 shows some of the rules that model the actual execution of the events

(depicted as sys-act in Figure 5). The first rule models the actual creation of an instance

(subclass of ASGNode, see Figure 1), together with its associated visual representation

(whose type name is the same as the non-visual instance, but starting by “Graph ” and

is a subclass of Link). The three following rules model the execution of a delete event.

In the first case (DeleteUnConnectedObject rule), the object has no connections. In the



second case (DeleteConnectedEntity rule), the icon-like object has connections, so a

delete event is sent to the connected link, and the segment is erased. The third case

(DeleteConnectedLink rule) models the deletion of a link (the “centre” of an arrow-

like graphical form), which also deletes the associated segment. Please note that all the

rules are executed as long as possible (see Figure 5). The Move rule simply modifies

the position attributes of the object. Finally, the Connect rule models the connection

of a link to two entities. Note, that rule Connect in Figure 7 generates a CreateEvent

for the link, so rule Create in Figure 8 is executed first. The rule creates the link with

the correct type. Next, rule Connect in Figure 8 can be applied, as classes Entity and

Link are the base classes for all graphical objects. Note how the appropriate types for

the segments in between links and entities are obtained (from the AToM 3 API) through

function TypeOf which searches the information in the meta-model. Finally, a last set

of rules (not shown in the paper) models the deletion of the events.

5 Example: Sequence Diagrams

As an example of the techniques explained before, we have built an environment to de-

fine UML sequence diagrams. By means of meta-modelling we define the abstract and

concrete syntax of this kind of diagrams, as well as the correspondence relation between

their elements (see meta-model triple in Figure 4). Starting from this triple meta-model,

AToM3 generates a tool where the user can build models according to that syntax. The

user creates the diagrams at the concrete syntax level, therefore some automatic mech-

anism to generate the abstract syntax of the diagrams and support its mutual coherence

has to be provided. With this aim we have built a set of event-driven rules triggered by

user actions. Additionally, another set of triple rules check the consistency between the

sequence diagram and existing class diagrams. Both set of rules are presented in the

following subsections.

5.1 Abstract and Concrete Syntax of Sequence Diagrams

These rules manage the creation, edition and deletion of Objects, the creation, edition

and deletion of Messages, and the creation and deletion of object Life Lines. The graph-

ical actions that do not change the diagram abstract syntax (like creating an Activation

Box) do not need the definition of extra event rules apart from the ones provided by

AToM3 (see Figures 7 and 8).

Rules for the creation, edition and deletion of Objects are the simplest of the set.

These rules create, edit and delete Objects at the abstract syntax level (once the user

generates the corresponding event at the concrete level). Objects at the abstract syntax

are related to the concrete syntax Objects (which received the user event) through an

element in the correspondence graph. Rules for creating objects (both post- actions, see

Figure 5) are shown in figure 3. The rule on the left creates the object at the abstract

syntax level, while the rule on the right connects (at the abstract syntax level) the object

with its corresponding class. If the rule on the right cannot be applied, it means that the

object class has not been created in any class diagram. This inconsistency is tolerated

at this moment (we do not want to put many constraints in the way the user builds the



different diagrams), but we have created a grammar to check and signal inconsistencies,

including this one. The grammar is explained in the next subsection and can be executed

at any moment in the modelling phase. For the deletion of an object (rules not shown in

the paper), we ensure that it has no incoming or outgoing connection. This is done by

a pre- condition rule (not shown in this paper) that erases the delete event on an object

and presents a message if it has some connection.

The creation of a message is equivalent to connecting two elements belonging to

the concrete syntax (ConcreteElement, see Figure 4) by means of a relationship of type

AbsMessage. Obviously users cannot instantiate neither abstract entities nor abstract re-

lationships, but only concrete ones. Therefore, at the user level the action to create mes-

sages includes three concrete cases: the connection of two Activation Boxes by means

of a Message relation, the connection from an Activation Box to an Object by means

of a createMessage relationship, and the connection from a Start Point to an Activation

Box by means of a startMessage relation. The event rules for managing these three con-

crete cases are very similar except for the entities and relationships participating in the

action. That is, we should have a first rule to create a Message relationship if its source

and target are activation boxes; a second identical rule except for the relationship type

(createMessage) and the target of the relationship (Object); and a third similar rule ex-

cept for the relationship type (StartMessage) and source (Start Point). Since the three

rules have the same structure, we use an abstract rule to reduce the grammar size. In

Figure 9 we show the abstract rule compressing the first and third concrete rules men-

tioned above. We have used abstraction in many other rules, which highly reduces the

total amount of rules. The rule in Figure 9 generates the abstract syntax of a new mes-

sage created by the user, establishing a morphism between the concrete syntax of the

new message (graphical appearance) and its respective abstract syntax. In this particu-

lar case the message concrete syntax is related to more than one abstract syntax entity:

three abstract syntax entities (one Message, one Stimulus and one Action)) are graphi-

cally represented using a single symbol on the concrete syntax. On the other hand, the

same event rule has to process the relationship between the newly created message and

the rest of the model. In this way the successor, predecessor and activator messages of

the created one have to be computed, as well as the objects sending and receiving the

message. Additionally, we have to check if the new message activates in its turn another

block of messages. We have broken down the creation event in a set of 6 user-defined

events, each performing one step in the process. Thus the number of rules is reduced

and the processing is easier.

Other rules (not shown in the paper) calculate the predecessor of a message. This

is the previous one in the same processing block (the activation boxes corresponding

with a method execution), or none if the message is the first one in the block. A total of

16 rules have been defined to manage the creation and edition of objects and messages.

Some other rules, similar to the previous ones, manage the creation and deletion of Life

Lines. The processing of the event (creation or deletion) triggers the execution of other

user-defined events, simpler to process. Most of these events are the same as the ones

generated by rule in Figure 9, therefore reutilization of rules has been possible. Due to

space limitation, we do not show all the rules, which are 39 in total.



Fig. 9. Abstract rule for Creating Messages and createMessages.

5.2 Consistency Checking

Triple rules can be used not only to maintain coherence between concrete and abstract

syntax, but also to check consistency between different types of diagrams. The present

work is part of a more general project with the aim to formalize the dynamic semantics

of UML [8] by means of transformations into semantic domains (up to now Petri nets).

Before translation, consistency checkings should be performed between the defined

diagram (in this case a sequence diagram) and existing ones, such as class diagrams.

Note how, while the user builds a sequence diagram, the previous rules add abstract

syntax elements to a unique abstract syntax model. In this way, one has a unique abstract

syntax model and possibly many concrete syntax models, one for each defined diagram

(of any kind).

Using simple triple rules, we can perform consistency checkings between the se-

quence diagram and an existing abstract syntax model, generated by previously defined

diagrams. For example, we may want to check that the class of the objects used in a

sequence diagram has been defined in some of the existing class diagrams; if an ob-

ject invokes a method of another object, the method should have been defined in its

class, and there should be a navigable relationship between both object classes (see

Figure 10), and that the invoked method is visible from the calling class.

We define consistency triple rules in such a way that their LHSs are conditions

that are sought in the defined diagram (sequence diagrams in our case), possibly in the

concrete and abstract parts. NACs are typically conditions to be sought in the existing

abstract model with which we want to check consistency. If the rule is applied the rule’s

RHS sends an event of type ErrorEvent to some of the objects matched by the LHS.

6 Related Work

At a first glance, the present work may resemble the syntax directed approach for the

definition of a VL. In this approach one defines a rule for each possible editing action,



Fig. 10. One of the Rules for Consistency Checking.

and the user builds the model by selecting the rules to be applied. Our approach is quite

different, in the sense that we use a meta-model for the definition of the VL. The meta-

model (which may include some constraints) provides all the information needed for the

generation of the VL. The user builds the model by interacting with the user interface.

In our approach we explicitly represent these events in the rules. Rules are triggered by

the events, but the user may not be aware of this fact. In the examples, we have shown

the combination of event-driven grammars with triple grammars to build the abstract

syntax model and to perform consistency checks.

In the approach of [4], a restricted form of Statecharts was defined using a pure

graph grammar approach (no meta-models). For this purpose, they used a low level

(LLG, concrete syntax) and a high level (HLG, abstract syntax) representation. To ver-

ify the correctness, the LLG has to be transformed into an HLG (using a regular graph

grammar), and a parsing grammar has to be defined for the latter. Other parsing ap-

proach based on constraint multiset grammars is the one of CIDER [9].

Other approaches for the definition of the VLs of the different UML diagrams, usu-

ally concentrate either on the concrete or the abstract syntax, but not on both. For ex-

ample, in [5], graph transformation units are used to translate from sequence diagrams

into collaboration diagrams. Note how, both kind of diagrams share the same abstract

syntax, so in our case, a translation is not necessary, but we have to define triple rules

to build the abstract syntax from the concrete one.

7 Conclusions

In this paper we have presented event-driven grammars in which user interface events

are made explicit, and system actions in response to these events are modelled as graph

grammar rules. Their combination with abstract triple rules and meta-modelling is an

expressive means to describe the relationships between concrete and abstract syntax

models (formally defined through meta-models). Rules can model pre- and post- con-

ditions and actions for events to take place. Furthermore, we can use the information in

the meta-models to define abstract rules, which are equivalent to a number of concrete

ones, where nodes are replaced by each element in its inheritance clan. In this work, we



have extended (in a straightforward way) the original work in [3] to allow refinement

of relationships.

The applicability of these concepts has been shown by an example, in which we

have defined a meta-model triple for the abstract and concrete syntax of sequence dia-

grams (according to the UML 1.5 specification). Additionally, we have presented some

rules to check the consistency of sequence diagrams models with an existing abstract

syntax model, generated by the previous definition of other diagrams.

Regarding future work, we want to derive validation techniques for triple, event-

driven grammars. We also plan to use triple graph grammars to describe heuristics for

the creation of UML diagrams. For example, if the user creates an object in a sequence

diagram which belongs to a non-existing class, one option is to raise a consistency

warning. Other possibility is to automatically derive the concrete syntax of a class dia-

gram with the information of the abstract syntax (classes, methods, etc.) generated by

the sequence diagram.
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11. Schürr, A. 1994. Specification of Graph Translators with Triple Graph Grammars. In LNCS

903, pp.: 151-163. Springer.
12. UML specification at the OMG’s home page: http://www.omg.org/UML.




