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Abstract

Hybrid Petri nets represent a powerful modeling formalism that of-

fers the possibility of integrating in a natural way continuous and discrete

dynamics in a single net model. Usual control approaches for hybrid

nets can be divided into discrete-time and continuous-time approaches.

Continuous-time approaches are usually more precise but can be com-

putationally prohibitive. Discrete-time approaches are less complex but

can entail mode-mismatch errors due to fixed time discretization. This

work proposes an optimization-based event-driven control approach that

applies on continuous time models and where the control actions change

when discrete events occur. Such an approach is computationally feasible

for systems of interest in practice and avoids mode-mismatch errors. In or-

der to handle modelling errors and exogenous disturbances, the proposed

approach is implemented in a closed-loop strategy based on event-driven

model predictive control.
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1 Introduction

Petri nets represent a widely spread formalism for modeling discrete event sys-
tems [28,31]. Similarly to other formalisms for discrete systems, Petri nets suffer
from the well-known state explosion problem, i.e., the number of states increases
exponentially with respect to the size of the system.

An effective approach to avoid the state explosion problem is to approximate
the discrete variables that reach large values by continuous variables. Such vari-
ables typically correspond to raw parts, produced items, capacity of buffers, etc.
On the other hand, other variables, such as shared resources or processing ma-
chines, might maintain small values for any potential system evolution. Hence,
they should be kept as discrete. The above considerations lead to hybrid Petri
nets [10], a modeling formalism in which the Petri net structure is the same as
in a classical Petri net. In hybrid nets, the amount of tokens in the subset of
continuous places and the firings of the subset of continuous transitions are real
numbers, while the amount of tokens in the subset of discrete places and the
firings of the subset of discrete transitions are integer numbers as in classical
Petri nets.

As in timed discrete Petri nets, several semantics can be associated to the
firing of continuous transitions in timed hybrid Petri nets. In this paper, we
will consider finite-server semantics. Under this semantics the firing rate of
a continuous transition remains constant as long as no place gets empty [2].
When a place gets empty, the firing rate changes and remains constant again
until another place gets empty. In this way, the continuous-time evolution of
the marking of a continuous Petri net is piecewise-linear.

The autonomous behavior of a hybrid Petri net can be modified by introduc-
ing control actions on the net transitions. By using a common interpretation
where a continuous transition is seen as a valve through which a liquid flows, the
control action on the transition determines how much such valve is open. On the
other hand, control actions on discrete transitions can delay their firing instant.
The introduction of control actions allows one to define control problems in the
framework of hybrid Petri nets.

In this paper we propose a framework for optimization-based control of timed
hybrid Petri nets, based on their piecewise linear trajectories. The task of solv-
ing control problems for continuous-time piecewise-linear systems is, in general,
a challenging problem [21, 32]. A common approach to overcome this difficulty
is to consider a discrete-time representation of the system [27]. However, time
discretization leads to mode mismatch errors [12], mode changes that occur
during the intersampling, and hence are lost or delayed in the discrete-time rep-
resentation, leading to possibly large differences between the discrete-time and
continuous-time trajectories. Clearly, the smaller the time step, the smaller the
effects of the mode mismatch are. Unfortunately, in the case of finite horizon
optimal control, reducing the sampling period usually increases the complexity
of the problem to solve [5, 12].

The framework proposed in this paper is event-driven, and hence, by con-
sidering mode switches as included in the events, mode-mismatch is avoided.
In such an approach, the control input is parametrized by a piecewise constant
function where the time-duration of the different step is not assumed constant.
As a consequence, the control signal is given by tuples (v(k), q(k), σ(k)) defining
the integral of the control signal during the application period for continuous
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transitions, the application period, and the discrete transitions to be fired at the
beginning of period, respectively. A tuple is produced when an event occurs,
i.e., for a hybrid Petri net, when a place gets empty, when a discrete transition
fires or when a discrete transition becomes enabled or disabled. Given that the
marking evolution is piecewise-linear, the full system trajectory is defined by
the sequence of tuples. Preliminary results of this method for optimal control of
continuous Petri nets were proposed in [22]. This paper improves such prelimi-
nary results by considering hybrid Petri nets, and further extending the optimal
control framework to a model predictive one, in order to provide a closed-loop
strategy that corrects external disturbances.

Model predictive control (MPC) [8, 24] is an optimization based receding
horizon closed-loop control strategy, where at each control cycle a (constrained)
finite horizon optimal control problem is solved, and only the first part of the
computed optimal input profile is applied to the system. However, differently
from open-loop optimal control, when fresh information on the system state
becomes available, by measurements or estimatoion, the optimal sequence is
recomputed. In this way, feedback is taken into account and MPC results to be
a closed-loop control strategy.

Due to the improved performance achieved by using optimization algorithms,
to the capability of handling multiple inputs, and to the possibility of enforcing
constraints, model predictive control has found several applications, for instance
in process industry [29], automotive (e.g., [14, 15]), aerospace (e.g., [19]), and
supply chains (e.g., [7]). A previous application of model predictive control to
a particular class of discrete-event systems is found in [11].

Several approaches to control continuous Petri nets exist in the literature.
In [33] an algorithm to track control of Petri nets without joins is suggested. The
work in [2] develops a method based on a linear programming problem to ob-
tain optimal modes of operation for hybrid Petri nets and also proposes efficient
techniques for sensitivity analysis on this kind of nets. Classical discrete-time
model predictive control has been applied to continuous Petri nets under infinite
server semantics in [16,25]. Here, the focus is on finite server semantics for which
classical model predictive control requires time discretization that may lead to
mode mismatch errors when places of the net become empty during the inter-
sampling. As such, the sampling period must be kept small enough to minimize
the problems due to such errors, which however increases the computational
complexity of the MPC controller. With respect to previous approaches, the
present paper provides improvements in the class of models considered -hybrid
Petri nets instead of continuous Petri nets- and on the controller properties,
since the event-driven MPC does not require time-discretization nor oversam-
pling to avoid mode mismatch problems. In particular, our approach extends the
work in [2] by embedding both continuous and discrete transitions in the same
set of equations using an event-driven formulation, and by proposing a MPC
framework based on this formulation. The use of MPC framework allows for
closed-loop control, and hence disturbance rejection, by repeated optimization
in a receding horizon strategy [4].

The rest of the paper is organized as follows. Section 2 introduces hybrid
Petri nets. A technique to express the behavior of hybrid Petri nets in an event-
driven fashion is discussed in Section 3. Section 4 presents two methods for the
event-driven control of continuous Petri nets. A finite horizon open-loop optimal
control problem is introduced first, then used to implement a model predictive

3



control strategy. Two case studies are shown in section 5. The conclusions are
summarized in section 6.

Notation: R, (R0+, R+) is the set of (nonnegative, positive) real numbers
and N is the set of natural numbers. For a set S, |S| denotes the cardinality
of S. Inequalities between vectors are intended componentwise and when a
number c is used in the place of a vector, it indicates a vector where all the
components have value c. The transpose of a matrix A is denoted as A′. For a
time-dependent vector x, x[i](k) denotes the value of component i at step k, and
x(k) denotes the whole vector at step k. The step (k) will be omitted if clear
from the context. For a vector µ ∈ Rn, µ(h|τ) is the h-steps ahead predicted
value starting from time τ . Since this paper discusses event-driven control, the
steps start at the occurrence of events and time duration of the steps is not
constant.

2 Hybrid Petri nets

This section introduces the basic concepts related to hybrid Petri nets. In the
following we assume the reader is familiar with the basic concepts of Petri nets
(PNs), see [28, 31] for an extensive overview.

2.1 Untimed hybrid Petri nets

In contrast to conventional (i.e., discrete) PNs, the arc weights of hybrid PNs
are real-valued.

Definition 1 (HPN) A Hybrid Petri Net (HPN) is a tupleN = 〈P, T, Pre, Post〉
where:

• P is a set of |P | places, and T is a set of |T | transitions.

• Pre : P×T → R0+ and Post : P × T → R0+ are the pre- and post- incidence
functions that specify the arc weights.

• P = Pc ∪ Pd, Pc ∩ Pd = ∅, and T = Tc ∪ Td, Tc ∩ Td = ∅.

The set of places P is partitioned into a set of discrete places, Pd, and a
set of continuous places, Pc. Similarly, the set of transitions T is partitioned
into a set of discrete transitions, Td, and a set of continuous transitions, Tc.
Discrete places are graphically represented as circles and continuous places as
double circles, and similarly discrete transitions are represented as rectangles
and continuous transitions as double rectangles, see for instance the network in
Figure 3.

The main difference between HPNs and discrete PNs is in the way the tran-
sitions are fired. In discrete PNs the transitions are fired a natural number of
times. In HPNs the discrete transitions are also fired a natural number of times,
but the continuous transitions can be fired a real number of times which leads
to real markings in continuous places.

In order to ensure the integrality of the marking of discrete places, two
conditions are required:

a) Pre[p, t] ∈ N and Post[p, t] ∈ N for every p ∈ Pd and every t ∈ Td;
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b) Pre[p, t] = Post[p, t] for every p ∈ Pd and every t ∈ Tc.

The incidence matrix of the net is C = Post− Pre, C ∈ R|P |×|T | and the
state of the net is the marking m ∈ R0+

|Pc| ×N|Pd|, which evolves dynamically.
The marking can be partitioned into its real and natural components, m =
[m′

c m
′
d]

′, mc ∈ R0+
|Pc|, md ∈ N|Pd|, the marking of continuous places and

discrete places, respectively. The preset and postset of a node ξ ∈ P ∪ T are
denoted as •ξ and ξ•.

Definition 2 (HPN system) A Hybrid Petri Net System is a tuple 〈N ,m0〉
where:

• N is a HPN.

• m0 : P → R0+ assigns to each place p, an initial marking m0[p]. For
every p ∈ Pd, it is required that m0[p] ∈ N.

Definition 3 (Enabling degree) Let 〈N ,m0〉 be a HPN system. At marking

m, the enabling degree of a transition t ∈ Td is enab(t,m) = min
p∈

•t

⌊
m[p]

Pre[p, t]

⌋
,

and the enabling degree of a transition t ∈ Tc is enab(t,m) = min
p∈

•t

m[p]

Pre[p, t]
.

Definition 4 (Firing) Let 〈N ,m0〉 be a HPN system. A transition t ∈ T
can be fired in any amount α such that 0 ≤ α ≤ enab(t,m), where α ∈ N if
t ∈ Td, α ∈ R if t ∈ Tc. The firing of t in a certain amount α leads to a new
marking m′ = m+α ·C[P, t], where C[P, t] is the column of the incidence matrix
corresponding to transition t.

Hence, as in discrete PN systems, the state (or fundamental) equation m =
m0+C ·σ summarizes the marking evolution where σ is the firing count vector.
Similarly to continuous Petri nets, in HPNs the marking of a continuous place
can be seen as an amount of fluid being stored, and the firing of a continuous
transition can be considered as a flow of this fluid going from a set of places
(input places) to another set of places (output places).

As in classical PNs, vectors Y ≥ 0, Y · C = 0 (X ≥ 0, C · X = 0) repre-
sent P-semiflows or conservative components (T-semiflows or consistent compo-
nents). A net N is conservative (consistent) if there exists Y > 0 such that
Y ·C = 0 (X > 0 such that C ·X = 0). A net N is structurally bounded if there
exists Y > 0 such that Y · C ≤ 0 (notice that this condition can be checked in
polynomial time).

2.2 Timed hybrid Petri nets

For the timing interpretation of continuous transitions a first order (or deter-
ministic) approximation of the discrete case [30] is used, hence assuming that
the delays associated to the firing of the transitions are approximated by their
mean values. As a result, the marking evolution with respect to time τ is

m(τ) = m(0) + C · σ(τ). (1)
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where σ(τ) is the firing count vector at time τ . The instantaneous flow f ∈ R0+

of a continuous transition t ∈ Tc is defined as the derivative of its firing count
vector with respect to time, i.e., f = σ̇.

Different semantics have been defined for the firing of continuous transitions,
the most commonly used being infinite server (also called variable speed) [30]
and finite server (also called constant speed) [10] semantics. In this paper, finite
server semantics is considered. Under finite server semantics, every continuous
transition, t ∈ Tc, of the timed system is associated with a real parameter
λ[t] > 0 that is the maximum flow allowed by t, i.e., f [t] ≤ λ[t].

As for continuous transitions, different time interpretations can be adopted
for the firing of discrete transitions. Here, single server semantics for discrete
transitions is considered and a deterministic delay ϑ[t] ∈ R+ is associated to
each transition t ∈ Td. An enabled discrete transition t can fire if it has been
enabled for at least ϑ[t] time units. No resolution policy for the conflicting
transitions is specified letting the exact firing time to be determined by the
controller which aims to optimize a given objective function. Notice that the
firing of a discrete transition might disable other transitions in conflict.

Definition 5 (THPN system) A Timed Hybrid Petri Net System (THPN
system) is a tuple 〈N ,m0, λ, ϑ〉 where:

• 〈N ,m0〉 is a HPN system.

• λ : Tc → R+ defines the maximum flow allowed by each continuous tran-
sition.

• ϑ : Td → R+ defines the time delay of each discrete transition.

Intuitively, if a continuous transition is seen as a valve through which a fluid
passes, λ can be seen as the maximum flow admitted by the valve. In contrast
to [2], we do not impose a lower bound for the flow of the transitions, thus,
0 ≤ f [t] ≤ λ[t].

In THPN two types of enabling for continuous transitions are considered [2].

Definition 6 (Enabling of continuous transitions) Let 〈N ,m0, λ〉 be a THPN
system and t ∈ Tc. Let m be a marking such that m[p] ≥ Pre[p, t] for every
p ∈ •t ∩ Pd.

• t is strongly enabled at m if m[p] > 0 for every p ∈ •t ∩ Pc.

• t is weakly enabled at m if there exists p ∈ •t ∩ Pc such that m[p] = 0.

A continuous transition is not enabled if there exists p ∈ •t ∩ Pd such that
m[p] < Pre[p, t]. Notice that in contrast to an untimed HPN, in a THPN a
continuous transition having an empty input continuous place may be weakly
enabled and can fire. This happens when such an input place receives some
input flow that is instantaneously consumed by the transition.

The flow of a transition depends on its enabling state.

Definition 7 (Flow) Let 〈N ,m0, λ〉 be a THPN system and t ∈ Tc, then:

• If t is strongly enabled then it has maximum flow, i.e., f [t] = λ[t].

• If t is not enabled then it has no flow, i.e., f [t] = 0.
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• The flow of the weakly enabled transitions must ensure that m[p] ≥ 0, for
all p ∈ Pc.

The computation of an admissible flow f is non-trivial when several empty
places appear. In [1], an iterative algorithm is suggested to compute one ad-
missible flow f . In this paper, f is computed similarly to [2] where the set of
admissible flows is characterized by a set of linear inequalities. Similarly to the
firing of discrete transition, the flow of continuous transitions will be determined
by the controller.

Let us consider two of the events that can happen during the evolution of a
THPN: a) A discrete transition is fired; b) A continuous place becomes empty.
Between two consecutive of such events no discrete transition is fired and no
continuous place becomes empty. Hence, according to Definition 7, between such
events the flow of continuous transitions f keeps constant and consequently the
trajectory of the marking of the continuous places is linear. The occurrence of
an event can modify the value of f which will keep constant until a new event
occurs. This way, the overall trajectory of the marking of the continuous places
is piecewise linear.

Example 1 Consider the system in Figure 1. The only input place of t1 is
marked, hence t1 is strongly enabled and f [t1] = λ[t1] = 2. Given that t2 is
always strongly enabled, the evolution ofm[p1] is given by ṁ = λ[t2]−λ[t1] = −1.
At time 1, p1 becomes empty, i.e., an event occurs, and t1 becomes weakly
enabled. Now, the maximum flow admitted by t1 is 1, since a greater flow
would cause m[p1] to be negative. Being f [t1] = 1, p1 remains empty. Now,
p1 can be seen as a tube instead of a deposit and no more events occur. For
arbitrary values of λ[t1] and λ[t2], when p1 is empty the flow of t1 is defined as
f [t1] = min(λ[t1], λ[t2]).

t1

t2

p1

λ[t1] = 2

λ[t2] = 1

1.0

1.0

Figure 1: Transition t1 becomes weakly enabled at τ = 1.

2.3 Control actions

Control actions can be introduced in THPNs in order to modify the autonomous
evolution. In THPNs the control affects the transitions.

A discrete transition t ∈ Td is controllable when its firing time is a decision
variable that can be selected by an appropriate control strategy. In order to
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ensure that the task modeled by the transition is finished, the firing is not allow
to happen before ϑ[t] time units have elapsed from the enabling of t.

A continuous transition t ∈ Tc is controllable when its flow f is a decision
variable u[t] such that

0 ≤ u[t] ≤ λ[t], (2)

where u ∈ Rm is the vector of controls. An action u[t] on the transition t can
be seen as if the hypothetical valve associated to t was opened by the amount
u[t]. In this paper it is assumed that all transitions (discrete and continuous)
are controllable. If t is strongly enabled, (2) is the only constraint that u[t] must
satisfy. However, if t is weakly enabled, u[t] must be such that the nonnegativity
of the marking is ensured.

Example 2 In order to show how input actions modify the evolution of a sys-
tem, we apply the input actions u[t1] = 1.5 and u[t2] = 1 to the system in
Figure 1. After two time units p1 becomes empty. Hence, the maximum flow
allowed by t1 is the input flow coming to p1, that is 1, i.e., u[t1] must satisfy
0 ≤ u[t1] ≤ 1. Let u[t1] = 0.5, and consequently p1 will start to fill at a rate of
0.5 tokens per time unit.

3 Event-driven representation

This section describes how THPNs can be expressed as a particular class of
Mixed Logical Dynamical systems where each step represents the marking evo-
lution between two events of the THPN. Section 3.1 introduces the event-driven
Mixed Logical Dynamical (eMLD) systems, and Section 3.2 shows how the
THPN is transformed into an eMLD.

3.1 Event-driven mixed logical dynamical systems

Mixed Logical Dynamical (MLD) systems [6] are computationally oriented rep-
resentations of discrete-time hybrid systems. MLDs consist of a set of linear
equalities and inequalities involving both real and Boolean ({0, 1}) variables.
An MLD system is described by the relations

x(k + 1) = Ax(k) + B1u(k) +B2δ(k) +B3z(k) +B4 (3a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) +D4 (3b)

E1u(k) + E5x(k) ≤ E2δ(k) + E3z(k) + E4, (3c)

where x = [x′c x
′
d]

′ ∈ Rnr × {0, 1}nb is a vector of continuous and binary states,
u = [u′c u

′
d]

′ ∈ R
mr × {0, 1}mb are the inputs, y = [y′c y

′
d]

′ ∈ R
pr × {0, 1}pb are

the outputs, δ ∈ {0, 1}rb, z ∈ Rrr represent auxiliary binary and continuous
variables, respectively, and A, C, Bi, Di, i = 1, . . . , 4, Ei, i = 1, . . . , 5 are
matrices of suitable dimensions. Given the current state x(k) and input u(k),
the evolution of (3a)-(3c) is determined by solving (3c) for δ(k) and z(k), then
updating x(k + 1) and y(k) from (3a) and (3b). It is assumed that the system
(3a)-(3c) is well-posed [6], which means that for any value of x(k), u(k) within
the range of interest, δ(k), z(k) are uniquely determined by (3c).
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In [13] the authors have proposed an event-driven MLD model (eMLD),

χ(k + 1) = χ(k) +B1µ(k) +B2δ(k) +B3z(k) +B4 (4a)

y(k) = Cχ(k) +D1u(k) +D2δ(k) +D3z(k) +D4 (4b)

E1µ(k) + E5x(k) ≤ E2δ(k) + E3z(k) + E4, (4c)

where χ(k) = [x(k)′ τ(k)]′, q ∈ R0+, µ(k) = [v(k)′ ud(k)
′ q(k)]′. In the

eMLD (4), the counter k represents the number of events, the additional state
variable τ(k) is the total time elapsed when the kth event occurs, q(k) is the
time between the kth and the (k + 1)th events, and v(k) is the integral of the
continuous control input between the kth and the (k + 1)th events, where it is
assumed piecewise constant, i.e., v(k) = q(k)uc(t(k)

+). As discussed in [13],
in the eMLD system an event occurs either when the value of δ changes, due
to (4c), or when the input µ is changed.

In what follows we show how to transform THPNs in eMLD form.

3.2 Transforming THPNs to event-driven MLDs

3.2.1 Statements as linear inequalities

Consider the THPN in Figure 1. According to the defined semantics, the
continuous-time marking evolution is described by

if m[p1] > 0 then ṁ[p1] = −1

else ṁ[p1] = 0
(5)

Clearly, if the initial marking of p1 is m0[p1] = 1, after 1 time unit p1 gets
empty. Such an evolution can be described appropriately by a discrete-time
model only if the duration of the sampling period h ∈ R satisfies h · k = 1, for
some k ∈ N. If this is not the case, the marking of p1 will become at some
point negative, and the evolution will block. This phenomenon is named mode-
mismatch error, where the exact instant of the mode switch is lost, because
it occurs in the intersampling. Mode-mismatch is present in most discrete-
time models of hybrid systems [5], and it can be alleviated by imposing a very
small sampling period h (oversampling), which however results in unnecessary
computations in the control algorithm.

Indeed, mode mismatch is not present if a continuous time model of the
system is used. However, for continuous time models, the input is an infinite-
dimensional decision variable, hence computational tools which require finite
dimensional decision variables, such as mathematical programming, cannot be
used. To overcome the mode-mismatch while retaining finite dimensionality
of the input, an event-driven approach, instead of a discrete-time one, shall
be used. In an event-driven approach the system evolves at events, and the
time separation of the events is not constant, but modelled as a variable, e.g.,
component q(k) of µ(k) in (4). By including mode switches in the set of events,
the mode-mismatch error is removed.

For the marking evolution of the system in Figure 1 we obtain

if m[p1](k) > 0 then m[p1](k + 1) = m[p1](k)− 1 · q(k)

else m[p1](k + 1) = 0.
(6)
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Such a conditional statement can be easily included in an eMLD system (4).
To construct the eMLD representation of a THPN, we write the evolution of
the system between events k and k+1. Recall that the time between these two
events (denoted by q(k)) is not constant. The possible events at k + 1 are:

1. A marked continuous place p ∈ Pc at k becomes empty at k + 1. In this
case, it is necessary to recompute the firing flow of continuous transitions
to ensure the positiveness of m[p];

2. A discrete transition t ∈ Td that has been enabled during a time period
greater than or equal to ϑ[t] is fired;

3. A discrete transition changes its enabling status, i.e., it becomes enabled
or disabled. In this case, its associated clock should be started or disabled.

After q(k) time units, at least one of the previous events must happen. Now,
we define the set of constraints of the eMLD representation of a THPN. The
first constraint is the state equation corresponding to the continuous places

mc(k + 1) = mc(k) + C · v(k) ≥ 0. (7)

Notice that we used a variable v(k) = q(k)·u(k) in order to linearize the state
equation. Knowing q(k) and v(k), the control action of continuous transitions
is immediately obtained. The constraints on the control action (2) are also
translated to the new parametrization of the control actions by including

0 ≤ v(k) ≤ q(k) · λ, (8)

in the set of constraints. The constraint that all markings must be nonnegative
is included in (7). Obviously, the flow of discrete transition is null and this can
be done adding the following constraints

vj(k) = 0, ∀tj ∈ Td. (9)

Finally, if a continuous transition tj has a discrete input place pi and mi(k)
is lower than the weight of the arc (pi, tj), the flow of tj must be null.

if mi(k) < Pre[pi, tj ] then vj(k) = 0 (∀tj ∈ Tc, and ∀pi ∈ •tj , pi ∈ Pd).
(10)

Next we model the three possible events of the THPN.

3.2.2 A continuous place gets empty

In order to identify the fact that a continuous place pi ∈ Pc that was marked
at k and gets empty at k + 1, we use a boolean variable βi defined as

mi(k) > 0 and mi(k + 1) = 0 ⇐⇒ βi(k) = 1. (11)

Later, we will make use of this boolean variables to force the occurrence of
at least one event at the end of each time period.
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3.2.3 Firing of a discrete transition

To manage the firing of discrete transitions we will use a vector d(k) ∈ R
|Td|
≥0

to keep track of the time elapsed from the enabling of discrete transitions.
Obviously, d(0) = 0. If a transition ti ∈ Td becomes enabled at τ , it cannot
fire before τ + ϑ[ti]. We define a boolean variable γi such that γi(k) = 0 if
di(k) < ϑ[ti]

if di(k) < ϑi then γ[ti](k) = 0. (12)

Therefore, if γi = 0, then ti ∈ Td will not fire. On the other hand, if
di(k) ≥ ϑ[ti] we do not assign any value to γi, being a decision variable. In this
last case, if γi is assigned to 1, the corresponding discrete transition will fire.
The firing of discrete transitions is described by

m(k + 1) = m(k) + C · γ(k) ≥ 0, (13)

where γ(k) is the vector having as elements the values of γi(k) for discrete
transition and zero components for continuous ones. Since the firing of a discrete
transition should occur instantaneously, i.e., this firing does not consume time,
we introduce the constraint

if γ′ · 1 ≥ 1 then q(k) = 0. (14)

3.2.4 Updating the clocks of discrete transitions

In order to capture the enabling status of a discrete transition ti, let us define
αi(k) such that αi(k) = 1 if ti(k) ∈ Td is enabled and αi(k) = 0 otherwise. This
is can be easily achieved by

m(k) ≥ Pre[·, ti] ⇐⇒ αi(k) = 1. (15)

If a transition is enabled during the time interval from k to k + 1 then its
clock is increased by q(k). Otherwise, it is set to zero. This is modeled by

if αi(k) = 1 and αi(k + 1) = 1 then di(k + 1) = di(k) + q(k)

else di(k + 1) = 0.
(16)

Let us define a boolean variable µi such that µi(k) = 1 if ti(k) ∈ Td changes
its enabling status from k to k + 1

(
(αi(k) = 0 and αi(k + 1) = 1) or (αi(k) = 1 and αi(k + 1) = 0

)

⇐⇒ µi(k) = 1.
(17)

Consequently, in order to ensure that at least one of these three events occurs
at k the following constraint is introduced

∑

i

βi(k) +
∑

i

γi(k) +
∑

i

µi(k) ≥ 1. (18)
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4 Event-driven control of THPNs

In this section, we show how optimization-based control can be applied to TH-
PNs via their eMLDs formulation, and how feedback can be accounted for by
a model predictive control strategy. We first propose a set of cost functions
and constraints that can be used to formulate open-loop finite horizon optimal
control problems for the THPN, which can be solved by standard Mixed Integer
Linear Programming (MILP) algorithms. Similarly to formulations of optimal
control problems of discrete-time systems that explicitly specify the final time
instant of the period over which the optimization is carried out is, we will explic-
itly specify the number of events, N , over which the optimization is performed.
Notice that in the proposed event-driven framework, the actual time period
elapsed till the i − th event takes place depends on the duration of each time
interval which is not constant. Given that such durations are variables of the
optimization problem, many different constraints can be set on them. Moreover,
as it is shown next, the event-driven approach allows to formulate minimum-
time control problems. At the end of the section, we show how the optimal
control problem can be used as the base for a receding horizon control strategy,
hence implementing an event-driven model predictive control algorithm for the
THPN.

4.1 Event-driven optimal control

The advantages of formulating the THPN as an eMLD system (4) is that the
dynamics are expressed by mixed-integer equalities and inequalities. As a con-
sequence, the dynamics equations can be included into the mixed integer opti-
mization problem

min
µ̄(t)

J(µ̄(t), χ̄(t)) (19a)

s.t. χ(k + 1|t) = Aχ(k|τ) +B1v(k) +B2δ(k|τ) +B3z(k|τ) +B5(19b)

E2δ(k|τ) + E3z(k|τ) ≤ E1µ(k|τ) + E4χ(k|τ) + E5 (19c)

H2δ(k|τ) +H3z(k|τ) ≤ H1µ(k|τ) +H4χ(k|τ) +H5 (19d)

χ(0|t) = χ(t), k = 1, . . . , N (19e)

where J in (19a) is the cost function, µ̄(t) = {µ(k|τ)}Nk=0 are the decision
variables, χ̄ = {χ̄(k|τ)}Nk=0 is the eMLD state trajectory, (19b) and (19c) define
the dynamics, (19d) models additional constraints, and (19e) defines the initial
state used for prediction. Note that once the initial state is fixed by (19e) the
trajectory χ̄(t) and the value of the auxiliary variables is assigned because of
the wellposedness of the eMLD.

The decision vector µ̄(t) contains the continuous command integral, the cor-
responding duration, and the discrete command. From the first ones and the
second one, the flow commands can be easily obtained as u(h|t) = v(h|t)/q(h|t),
with application interval (τ(h|t), τ(h|t) + q(h|t)).

Since the constraints in (19) are linear with integer and real variables, by
choosing the cost function (19a) to be linear, the resulting problem is a mixed
integer linear programming (MILP) problem. Thus, the complexity of solving
a MILP is exponential in the number of boolean variables. However, efficient
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algorithms and software exists (see references [9, 20, 23, 26]) that allow the ap-
plication of MILP even to large scale real industrial systems modeled by Petri
nets [18]. Modern MILP software are capable of solving problems with thou-
sands of variables in few tents or hundreds of seconds. Thus, although not
suitable for systems with fast dynamics (millisecond range), MILP seems suit-
able for systems with dynamics in the medium to slow range (seconds, minutes).
In particular, in the proposed approach, at each step, there exists (i) one boolean
variable per continuous place (variables β in (11) to identify that a continuous
place gets empty), (ii) three boolean variables per discrete transition (variables
γ in (12) that determines if the transition fires; variables α in (15) to capture
the enabling status; and variables µ in (17) showing that the enabling status
has changed). Therefore, the number of boolean variables is N · (|Pc|+ 3 · |Td|).
Notice that in order to store the marking of discrete places it is not necessary to
restrict the variables to integer values in the MILP because integer values will
be automatically forced by the integer firings. Finally, the computational com-
plexity can be reduced by introducing specific cuts in the optimization problem,
which may reduce the overall performance in favor of faster calculation.

Figure 2 sketches the steps that have been followed to obtain an MILP
problem from the initial THPN. If (19a) is chosen to be a quadratic function,
the resulting problem will be a mixed-integer quadratic problem, which is still
solvable, even though computationally more complex [13].

Mixed Integer

Petri net

Mixed Logical

Dynamical model

MODEL
OPTIMAL CONTROL

PROBLEM

Control actions

Horizon

Cost function

Linear Programming

problem

Timed Hybrid

Figure 2: Obtaining an MILP problem from a THPN.

The cost function (19a) and the additional constraints (19d) are used to
define the objectives of the optimization problem, as shown next.

4.1.1 Final target marking

In order to enforce the marking to reach a desired target marking m̃ after N
events, a terminal constraint can be added

m(N) = m̃. (20)

The terminal constraint (20) can be softened to preserve feasibility of optimiza-
tion problem (19), hence adding to J in (19a) the term

F
(
m(N), τ(N)

)
= ρ ‖m(N)− m̃‖∞, (21)

where ρ is a large weight. A more general case is to consider a desired marking
range, for instance a polyhedral set expressed by the constraints MNm(n) ≤
MN , MN ∈ Rq×|P |, MN ∈ Rq.
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4.1.2 Cost function

For THPN control, the general form of the cost function is

J(χ̄(t), µ̄(t)) = F
(
m(N |t), τ(N |t)

)
+

N−1∑

k=0

L
(
m(k|τ), τ(k|τ), µ(k|τ)

)
. (22)

hence composed of a terminal cost F and a stage cost L, usually in the form

L(m, τ, µ) , ‖m− m̃‖Q1

p + ‖τ − τ̃‖Q2

p + ‖v − ṽ‖R1

p + ‖q − q̃‖R2

p (23a)

F (m, τ) , ‖m− m̃‖QN

p + ‖τ − τ̃‖Qτ

p , p ∈ {1,∞}. (23b)

where “˜” denotes a given reference for the corresponding vector. The fol-
lowing subsections show some of the possible control goals in an event-driven
framework. The use of 1,∞-norms allows to formulate (22) as a linear function,
through auxiliary variables and linear constraints [3].

A case of particular interest is minimum-time control, where the minimum
time to reach a certain marking is sought. Thus, together with terminal con-
straint (20) the stage cost and terminal cost are respectively set to

L(m(k), τ(k), µ(k)) = q(k), F
(
m(N), τ(N)

)
= 0. (24)

A different criterion to reach the desired marking m̃ is minimum-effort,
which minimizes the intensity of the command input u(τ), hence letting the
THPNs evolve as close as possible to its autonomous behavior. By using
the ℓ1-norm of the input signal, we obtain J(m, τ, q, v) =

∫ τN

0 ‖u(τ)‖dt =
∑N−1

k=0

∫ τ(k+1)

τ(k) ‖u(τ)‖1dτ . Since u is constant in each period [τ(k), τ(k + 1)),

L
(
m(k|τ), τ(k|τ), µ(k|τ)

)
= ‖v(k|τ)‖1, F

(
m(N |t), τ(N |t)

)
= 0. (25)

A slightly different cost function from (22) can be used to represent the
minimum-displacement criterion. This criterion looks for the trajectory that
minimizes the largest deviation from a desired continuous state trajectory m̃(·),
that we assume piecewise linear and continuous (a special case is m̃(·) ≡ m̃)

J(χ̄(t), µ̄(t)) = max
τ∈[τ(0),τ(N)]

‖m(τ) − m̃(τ)‖∞. (26)

Proposition 1 Let mc(τ), ∀τ ∈ [τ0, τN ], be the trajectory of continuous states
of a THPN system, τ0 < τ1 < . . . < τN be the event instants, assume that m̃(τ)
is linear over each [τi, τi+1), i = 0, . . . , N−1 and continuous over [τ0, τN ]. Then

max
τ∈[τ0,τN ]

‖m(τ)− m̃(τ)‖∞ = max
k=0,...,τN

{‖m(k|τ)− m̃(k|τ)‖∞}. (27)

Proof: The marking trajectories of a THPN are continuous, so ‖m(·)−m̃(·)‖∞
is continuous, being the composition of continuous functions (‖·‖∞, m(·), m̃(·)),
and therefore the maximum over [t0, tN ] is well defined. Moreover, function
‖m(·) − m̃(·)‖∞ is a convex function of time τ on [τ(k), τ(k + 1)], being the
composition of a convex function (the infinity norm) with linear functions (the
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state trajectory of the THPN and m̃ between two consecutive switches). Thus,
it attains its maximum either at τ(k) or at τ(k + 1). Hence,

max
τ∈[τ(0),τ(N)]

‖m(τ)− m̃(τ)‖∞

= max
0≤k≤N−1

{
max

τ∈[τ(k),τ(k+1)]
‖m(t)− m̃(t)‖∞

}

= max
0≤k≤N−1

{max{‖m(τ(k))− m̃(τ(k))‖∞, ‖m(τ(k + 1))− m̃(τ(k + 1))‖∞}}

= max
0≤k≤N

{‖m(τ(k))− m̃(τ(k))‖∞} = max
k=0,...,τN

{‖m(k|τ)− m̃(k|τ)‖∞}

✷

Note that cost function (27) still leads to a mixed-integer linear formulation
of problem (19).
Remark: The cost function (24) searches for the minimum time trajectory from
the initial marking to the desired marking using at most N events. Note in
fact that the time to reach the desired marking is not a multiple of a sampling
period (as it is for discrete time control) and that “fake” events, i.e., events
with 0 time separation under which the state does not change, can be generated
is less than N events are needed. The search for the optimal N makes the
problem nonlinear, but it can be dealt with by iterative schemes similarly as in
the discrete time case [17]. However, the possibility of “fake” events simplifies
the search, as for large N the optimal solution is readily found.

4.2 Event-driven model predictive control

Problem (19) is a finite horizon open-loop optimal control problem, which com-
putes the control profile u(r), r ∈ [τ, τ + τ(N |τ)], such that the constraints
are satisfied and the cost is minimized. However, the control profile proceeds
only for a finite number of events, where more events can be considered only at
the price of an increased computational burden for solving (19). Furthermore,
disturbances that occur during the execution of the control profile and possible
modelling errors are not accounted for. Thus, a receding horizon feedback strat-
egy is more advisable for cases where disturbances are possible. For this reason
we incorporate the optimal control problem (19) in an event-driven closed-loop
strategy based on Model Predictive Control (MPC) [8, 24].

The event-driven Model Predictive Control (eMPC) strategy operates as
follows:

1. LetN be the event horizon; at a generic time τ set χ(τ) = [m(τ)′ ψ(τ)′ τ ′]′.

2. Solve problem (19), to obtain the sequence of optimal controls µ∗(χ(τ)) =
[µ∗(0|τ), . . . , µ∗(N − 1|τ)].

3. Compute the input levels profile ū∗c(χ(τ)) = [u∗c(0|τ), . . . , u
∗
c(N − 1|τ)] =[

v∗(0|τ)
q∗(0|τ) , . . . ,

v∗(N−1|τ)
q∗(N−1|τ)

]
,

4. Apply u(ξ) = [u∗c(0|τ)
′ u∗d(0|τ)

′]′ for ξ ∈ [τ, τ + q∗(0|τ)].

5. Set τ = τ + q∗(0|τ), measure the new value of χ(τ) and go to Step 2.
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The actual state m(τ + q(0|τ)) at the end of each control action may be
different from the predicted one m(1|τ) because of external disturbances and
modelling errors. In fact, also the time instant at which the optimization prob-
lem is repeated may be different from the scheduled instant τ + q(0|τ). By
the closed-loop nature of the eMPC approach, the current state (and time)
are measured or estimated again and a new updated optimal input sequence is
computed.

For the nominal case, i.e., the trajectory is not perturbed by external dis-
turbances, the reachability of a desired target marking can be proven.

Proposition 2 Consider the event-driven MPC scheme applied to a THPN
where the cost function is the minimum-time criterion (24), and where the ter-
minal constraint (20) is applied on the desired target marking m̃. If the problem
is feasible at time τ0 with finite cost, then it is recursively feasible and the desired
marking is reached in finite time, i.e., m(τ) = m̃ for τ <∞.

Proof: The result follows from the convergence of the eMLD scheme proved
in [13]. Since at time τ0 problem (19) is feasible with finite cost, due to terminal
constraint and minimum-time criterion, the command sequence µ∗(τ0) brings
the marking to the target in finite time J∗(τ0). A time τ1 = τ0+ q

∗(0|τ0), a new
optimization problem is solved, where the sequence [µ∗(1|τ0), . . . , µ(N |τ0), µ(N |τ1)]
where µ(N |τ1) = [0 0 0]′ is feasible, and brings the marking to the target in
time J(τ1) = J∗(τ0) − q∗(0|τ0). Hence, J∗(τ1) ≤ J∗(τ0) − q∗(0|τ0), and by

recursive application, J∗(τk) +
∑k−1

i=0 q
∗(0|τ0) ≤ J∗(τ0), which means that the

time computed at the first step it is always a lower bound for the time to reach
the marking. Since J∗(τ0) <∞ the time to reach the marking is finite. ✷

Similar reachability results can be proved for the other criteria, where how-
ever the target may be reached only asymptotically in time, because convergence
time is not explicitly accounted for in the cost function.

5 Case studies

This section presents two manufacturing systems modeled by hybrid Petri nets
to which an event-driven MPC approach has been applied. The first system is
a multiclass machine, the second one is a production network.

5.1 Multiclass machine

The hybrid Petri net in Figure 3 models a production system consisting of two
lines and a single machine that processes the items in both lines. The first
(second) line is modeled by transitions t1, t2 (t3, t4), and places p1, p3 (p2, p4),
and has a capacity of c1 (c2) items. The input flows of the first and second lines
are given by the flows of t1 and t3, respectively. Places p1 and p2 are the buffers
to store the incoming parts from t1 and t3 before being processed. The output
flow of the first (second) class is represented by t2 (t4). The processing machine
is modeled by transitions t5, t6, t7, t8 and places p5, p6, p7, p8. Since the number
of items in the lines is expected to be high, the places and transitions for the
lines are continuous. On the other hand, since only one machine is available,
the subnet that models the machine is discrete.
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Figure 3: Two production lines and a multiclass machine.

Let the capacity of the buffers be c1 = 30, c2 = 25, and λ[t1] = 1.5, λ[t2] = 2,
λ[t3] = 1, λ[t4] = 3. It is assumed that the processing machine needs 2 time
units to change from one line to the other. During such 2 time units, none of
the lines is processed. This is modeled by a deterministic delay of 2 units in
transitions t6 and t8, i.e., ϑ[t6] = ϑ[t8] = 2, and by immediate transitions t5 and
t7, i.e., ϑ[t5] = ϑ[t7] = 0. Let the initial marking of the system be m0[p1] = 5,
m0[p2] = 15 and m0[p7] = 1. The marking of the remaining places is uniquely
defined by these, since the invariants m[p1] + m[p3] = c1, m[p2] +m[p4] = c2
and m[p5] +m[p6] +m[p7] +m[p8] = 1 must hold.

It is required to compute a control law that maximizes the number of items
produced over a given time interval. This is equivalent to maximizing the sum of
the integral flows, v, of transitions t2 and t4. Hence, the cost function associated
in (22) is defined by

F (m(N |τ), τ(N |τ)) = 0, L
(
m(k|τ), t(k|τ), µ(k|τ)

)
= −(v[t2](k|τ)+v[t4](k|τ)).

(28)
Table 1 summarizes the obtained results for the described control problem

for different prediction horizons N . Recall that the prediction horizon refers
here to number of events. The control actions have been obtained by applying
the event-driven MPC approach during a maximum time of 200 time units, i.e.,
the constraint τ(N |τ0) ≤ 200 has been added to (19d). In order to highlight
the different performances of event-driven and standard MPC approaches, the
same Table 1 also reports the control results obtained by standard MPC. The
sampling time for standard MPC must guarantee that the time duration of the
deterministic transitions t6 and t8 is 2, i.e., 2 must be a multiple of the sampling
period. Notice that, the shorter the time period, the higher the performance
that the standard MPC can achieve. This is because during the sampling period
discrete transitions cannot be fired. For the sake of efficiency, the sampling
period has been set to 2.

In Table 1, column N is the prediction horizon, column v[t2] + v[t4] is the
average sum of flows, i.e., the sum of integral flows v[t2] and v[t4] per time
unit, and CPU Time is the computational cost in seconds. All the experiments
in this paper have been performed in Matlab 7.6.0.324(R2008a) environment
running on a MacOS with 2.4 GHz Intel Core Duo and 4GB of RAM. It can
be seen that for short prediction horizons, the event-driven performs better and
its computational cost is lower. This is due to the fact that the time elapsed
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between events is variable and events happen only when necessary. On the other
hand, although for very long prediction horizons, the event-driven approach
still performs better, but its computational cost is higher than the one of the
standard approach. The reason for this is that the resulting MILP for the
event driven control contains more variables, e.g., the time elapsed between
events, and therefore it scales worse than the MILP for standard MPC control.
However, Table 1 shows that there is basically no need to go beyond N = 6,
when eMPC still outperforms standard MPC also in terms of CPU time.

Event-driven MPC Standard MPC

N v[t2] + v[t4] CPU Time v[t2] + v[t4] CPU Time
1 1.070 0.172 1.055 1.449
2 1.090 0.218 1.040 1.881
3 1.361 0.295 1.025 2.779
4 1.538 0.506 1.015 4.203
5 1.850 1.076 0.995 7.602
6 2.012 4.649 1.550 12.927
7 1.853 8.145 1.545 27.851
8 2.041 32.444 1.520 37.290
9 2.007 153.87 1.530 88.106
10 2.033 247.38 1.525 152.86

Table 1: Results of event-driven and standard MPC for different prediction
horizons.

For the particular case of N = 8, the time evolution of the system under
event-driven MPC control is shown in Figure 4. The state of the machine is
shown by the line associated to machine: when the value is 2, the machine is
processing line 1, i.e., m[p5] = 1, when the value is 0, it is processing line 2,
i.e., m[p7] = 1, when the value is 1, it is swapping from one line to the other,
i.e., either m[p6] = 1 or m[p8] = 1. It can be observed that the machine starts
swapping as soon as one of the buffers becomes empty, i.e., for this particular
set of parameters, the maximum production is obtained when the production of
both lines is alternated. Note that, as expected for an event-driven formulation,
a step only takes place when an event happens, and thus, in general, the duration
of the steps is variable.

Let us now assume that input flows are subject to external uncontrollable
and unknown disturbances that can modify the flow up to 10%. More precisely,
this means that once the control action u[t1](u[t3]) is computed for a given
interval, it is modified as u[t1] + γ · u[t1](u[t3] + γ · u[t3]), where γ is random
variable with continuous uniform distribution in the interval [−0.1, .1], before
being applied to the system. Obviously, if the resulting value would produce
negative markings it is truncated appropriately. Table 2 shows the performances
and CPU time for both eMPC and standard MPC for several prediction horizons
N . The same disturbances have been used in all cases. Similarly to the previous
example without disturbances, it can be seen that, in general, eMPC performs
better, but requires more CPU time as N gets higher.

Figure 5 shows the resulting trajectory of the system under event-driven
MPC control with N = 8. The proposed eMPC strategy reacts to these pertur-
bations by recomputing its control actions at each step.At the first step (around
time instant 12), the marking of place p1 is not as high as it would be if no per-
turbation existed. This is why in order to maximize the items produced over the
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Figure 4: Time trajectory of the controlled system in Figure 3 without distur-
bances.

Event-driven MPC Standard MPC

N v[t2] + v[t4] CPU Time v[t2] + v[t4] CPU Time
1 1.0333 0.158 1.0312 1.434
2 1.0588 0.205 1.0168 1.905
3 1.3563 0.293 1.0013 2.595
4 1.5145 0.563 0.9909 4.289
5 1.8075 1.379 1.4456 7.620
6 1.8483 3.857 1.4462 13.035
7 1.8972 10.577 1.5467 23.138
8 1.9962 32.679 1.5516 39.037
9 2.0515 179.00 1.5360 69.932
10 2.0189 323.35 1.5325 142.72

Table 2: Results of event-driven and standard MPC with disturbances for dif-
ferent prediction horizons.

specified period of time, the controller decides not to swap the machine to line
1 in order to let buffer of line 1 fill completely. It can be seen, that although the
trajectory of the disturbed controlled system is slightly different to the nominal
one (Figure 4), the controller manages to fill and empty buffers appropriately
in order to maximize the performance.

5.2 Production network

In this section we consider the production network system described in [2]. The
model of the system consists of continuous places and transitions representing
buffers and flows of items, and two discrete places and transitions modeling a
single machine, see Figure 6. In contrast to the model in [2] and in order to
model the system more realistically, the net in Figure 6 includes complementary
places for every buffer, so that the system is structurally bounded, and models
the existing machine with a discrete subnet. In this model we assume that the
time spent by the machine to swap from one line to the other is negligible, i.e.,
ϑ[t7] = ϑ[t8] = 0.

Let the capacity of the buffers be c1 = 8, c2 = 6, c3 = 4, c4 = 8, c5 = 6,
the upper bound of the transitions flows be λ[t1] = 0.5, λ[t2] = 1.5, λ[t3] = 0.6,
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Figure 5: Time trajectory of the controlled system in Figure 3 with disturbances
in flows of t1 and t3 (b).
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Figure 6: A production network modeled as a THPN.

λ[t4] = 1, λ[t5] = 0.8, λ[t6] = 1.5, and α = 0.1, β = 0.4. Assume that the
initial marking of the system is m0[p1] = 1, m0[p2] = 3, m0[p3] = 5, m0[p4] = 2,
m0[p5] = 4 and m0[p6] = 1.

We first search for the minimum time control sequence to reach the target
marking m[p1] = 3, m[p2] = 6, m[p3] = 4, m[p4] = 5, m[p5] = 5, while no
target marking is specified for the machine. After adding the constraint for the
desired target marking (20), the objective function of the control problem is set
to minimum time criterion

F (m(N |τ), τ(N |τ)) = 0, L
(
m(k|τ), t(k|τ), µ(k|τ)

)
= q(k|τ), (29)
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where we have set N = 3.
Figure 7(a) shows the time evolution of the system under the obtained con-

trol actions. The value associated to the label ’machine’ indicates in which place
the machine is located: if the value is 1 then the token is in p6, if the value is 0
then the token is p7. The target marking is reached at the second step. During
the first interval of time, which lasts 8.1 time units, the machine is processing
the items in buffer p1, and in the second time interval it is processing the items
in buffer p4. The CPU time to compute the control actions was 0.045 seconds.
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Figure 7: Time trajectory of the controlled system in Figure 6 to reach a target
marking (a); to maximize the number of items produced by t4 (b).

We want to maximize the number of items produced during the first 250 time

units. The objective function associated to such control problem is L
(
m(k|τ), t(k|τ), µ(k|τ)

)
=

−v[t4](k). The trajectory of the system under the computed control actions for
a prediction horizon of 3 steps is shown in Figure 7(b). It can be observed that
after the first step a repetitive pattern develops in order minimize the objective
function. In this case, the computation time was 0.621 seconds.
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6 Conclusions

In this paper we have introduced an event-driven scheme for controlling timed
hybrid Petri nets with the aim of maintaining the performance of continuous-
time approaches and the computability of discrete-time ones. While the control
action is finitely parametrized as in discrete-time models, hence allowing the
application of optimization-based control algorithms, by selecting the events
to include mode switches and constraints activation, the event-driven strategy
enforces constraints and mode switches continuously in time, hence avoiding
intersampling constraint violation and mode-mismatch errors.

By representing the hybrid Petri net in the proposed event-driven formalism,
we have proposed a finite horizon open-loop optimal control problem that, using
different control objectives, optimizes the dynamic behavior of the net. The
problem has been used as the base of an event-driven model predictive control
strategy that is a closed-loop control strategy and hence able to counteract the
effect of external disturbances.

We have evaluated the behavior of the proposed algorithms on two examples
obtained from the literature. One of the main issues to be investigated in the
future is the consideration of other firing semantics, e.g, infinite server, both in
discrete and continuous transitions.
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