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Abstract This article investigates the adaptive neural network fixed-time
tracking control for a class of strict-feedback nonlinear systems with prescribed
performance demands, in which radial basis function neural network (RBFNN)
is utilized to approximate the unknown items. First, an improved fractional-
order dynamic surface control (FODSC) technique is incorporated to address
the issue of the iterative derivation, where a fractional-order filter is adopted
to improve the filter performance. What’s more, the error compensation signal
is established to remove the impact of filter error. Furthermore, a fixed-time
adaptive event-triggered controller is constructed to reduce the communication
burden, where the Zeno-behavior can also be excluded. Stability results prove
that the designed controller not only guarantees all the signals of the closed-
loop systems (CLS) are practically fixed-time bounded, but also the tracking
error can be regulated to a predefined boundary. Finally, the feasibility and
superiority of the designed control algorithm are verified by two simulation
examples.

Keywords Event-triggered mechanism · fixed-time control · prescribed
performance · fractional-order dynamic surface control · radial basis function
neural network

1 Introduction

Adaptive backstepping control has been paid considerable attention dur-
ing the past decades [1–3], where it is assumed that the nonlinear terms are
known or bounded. However, the fact is that there are mostly unknown nonlin-
ear functions in real circumstances. To this end, the fuzzy logic systems (FLSs)
or the neural networks (NN) have been universally adopted to approximate the
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unknown nonlinear items [4–6]. Nevertheless, the issue of “explosion of com-
plexity”, which is generated by the iterative differentiation of virtual control
signal can not be avoided. Consequently, the dynamic surface control (DSC)
approach [7] was employed, where a first-order filter was incorporated into each
stage within the backstepping design framework. Simultaneously, the adaptive
NN control method was further combined with DSC to eradicate the effect of
uncertain nonlinearities in [8,9], but the filter error between the virtual control
function and filter output is not fully considered. To tackle the above problems,
a command filtered backstepping controller has been put forward in [10,11] via
constructing the error compensation signals. Since then, an adaptive command
filter quantized control method is developed for parametric nonlinear systems
in [12]. In [13], on account of the command filtered backstepping controller, an
adaptive neural control has emerged for nonlinear systems. In [14], command
filtered-based adaptive controller is studied for nonlinear time-delay systems.
It is worth emphasizing that the above-proposed controller based on com-
mand filtered backstepping control scheme only achieves asymptotic stability.
However, in the case of practical applications, the requirement of finite-time
convergence needs to be satisfied.

It is noteworthy that the finite-time control method guarantees the tracking
errors converge quickly to the equilibrium point. Therefore, an increasing num-
ber of finite-time backstepping control methods have been presented gradual-
ly, see typically [15–17]. For example, command filter-based finite-time control
framework was established for nonlinear systems in [15]. In [17], event-driven-
based adaptive finite-time control design was studied for uncertain nonlinear
systems against event-trigger error. However, among the aforesaid problem,
the settling time is closely associated with the initial values, which becomes u-
navailable when the initial values are far from the equilibrium point. Thus, the
fixed-time stability problem was first proposed in [18], which forecasted set-
tling time is independent of the initial conditions. In [19], an adaptive practical
fixed-time tracking algorithm was explored for strict-feedback nonlinear sys-
tems. Furthermore, [20] introduced a fixed-time adaptive control for uncertain
nonlinear systems.

Besides, many attempts have been devoted to coping with the control issue
of nonlinear systems with performance constraints, since some requirements of
performance behavior that convergence rate, maximum overshoot, and anti-
interference capability arise in many engineering. For instance, [21] proposed
the prescribed performance control strategy to conquer the performance con-
straints for the multiple-input multiple-output (MIMO) nonlinear systems.
In [22], the adaptive fuzzy control method is developed for nonlinear system-
s with non-triangular structure. As an improvement, an adaptive finite-time
control is settled out for stochastic feedback nonlinear systems in [23]. Then a
natural question arises that the above results for nonlinear control problems
without taking the network resource into account.

The control signal generated by the time-triggered control strategy [24,25]
will be splashed into the system at each sample time, whether it is demanded
or not. Therefore, it may waste a large number of network resources. To tackle



Title Suppressed Due to Excessive Length 3

this problem, an approach named event-triggered control mechanism is used to
replace the time-triggered. Recently, [26] has proposed an event-based sliding
mode control scheme for active vehicle syspension systems. What’s more, [27]
has designed an event-triggered controller for nonlinear systems with full s-
tate constraints. In [28], by utilizing the event-triggered and prescribed per-
formance, a robust adaptive finite-time control is addressed for the nonlinear
system. However, to the best of our knowledge, the event-based adaptive pre-
scribed performance fixed-time tracking control issue for the nonlinear system
has not yet been fully studied in the framework of the FODSC.

Aiming at the above observations and discussions, in this work, we present
an event-based adaptive NN fixed-time tracking control scheme for a class
of strict-feedback nonlinear systems with prescribed performance demand by
using an improved FODSC technique. The main contributions of this work are
as follows:

1. By introducing a modified error compensation mechanism, we investi-
gate an event-based adaptive fixed-time NN control method for strict-feedback
nonlinear systems with prescribed performance demands, where the tracking
error convergence toward prescribed range in the fixed-time interval. Addi-
tionally, the communication burden and filter errors are effectively decreased
simultaneously.

2. Different from the existing integer-order (IO) filter results in [13,14,29],
the main advantage of our proposed FODSC strategy is that “the explosion of
complexity” problems is not only considerably circumvented, but also the filter
performance is effectively enhanced. Consequently, it may be more generally
suitable for practical engineering.

3. Based on the approximation abilities of neural networks (NN), a fixed-
time adaptive controller is established in this paper. Theoretical results prove
that all the states of the CLS are practically fixed-time bounded, the system
output can track the given reference signal, and settling time is not dependent
on the initial values. As a result, the proposed controller provides a more
efficient solution for solving practical tracking control problems than [30–32].

2 Problem Formulation

2.1 System Description

Consider the following uncertain nonlinear system: ẋi = xi+1 + fi (x̄i) ,
ẋn = u+ fn (x) ,
y = x1,

(1)

where x̄i = [x1, . . . , xi]
T ∈ Ri, i = 1, . . . , n−1 and x = x̄n = [x1, ..., xn]

T ∈ Rn
is the state vector, y ∈ R is the output of the system, fi (x̄i) : Ri → R, i =
1, ..., n, are unknown continuous functions, u ∈ R is the control input.
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Assumption 1. The target signal yd and its first-order derivative ẏd are
bounded satisfying |yd| ≤ y0, |ẏd| ≤ y0.

To simplify the fixed-time control design, some critical assumptions, defi-
nitions, and mechanical lemmas are listed.
Definition 1 [32] The nonlinear system is considered in the following form

ẋ(t) = f(t, x), x(0) = x0,

where x ∈ Rn represents the state vector and f(·) denotes the function with
f(0, 0) = 0. Assuming that there is a settling time Ts(Ψ, x0) and a constant Ψ
satisfying ‖x(t)‖ < Ψ . For ∀t ≥ Ts(Ψ, x0), ẋ(t) = f(t, x) is practically finite-
time stable.
Definition 2 [18] Assume system ẋ(t) = f(t, x) is finite-time stable. If there
exists a constant Tmax > 0 satisfying Ts(Ψ, x0) ≤ Tmax, ẋ(t) = f(t, x) is
described as practically fixed-time stable, which is independent of the initial
variables.
Definition 3 [33] The Riemann-Liouville fractional derivative of order q of a
continuous function h(t) is described as

Dqh(t) =
dn

dtn

[
1

H(n− q)

∫ t

t0

h(o)

(t− o)q+1−n do

]
,

where n denotes an integer and satisfies n− 1 < q < n.
Lemma 1 [18] Consider V (x) as a positive definite function satisfying the
inequality as follows

V̇ (x) ≤ −
(
φ1 V (x)

α
+φ2 V (x)

β
)I

+ρ,

where φ1, φ2, α, β and I are the positive numbers with 0 < αI < 1, 1 < βI <∞
and ρ > 0. Then, the origin x = 0 of the system is practically fixed-time stable.
Furthermore, the following inequality{

lim
t→Tl

x

∣∣∣∣∣V (x) ≤ min

{
φ1
− 1
α

(
ρ

1−$I

) 1
αI

, φ2
− 1
β

(
ρ

1−$I

) 1
βI

}}
,

is applied to indicate the boundary set of the system which has 0 < ω ≤ 1.
The settling time is approximated by

Tl ≤
1

φI
1 ω

I (1− αI)
+

1

φI
2 ω

I (βI− 1)
.

Remark 1 Similar to [34], to facilitate the derivation, the corresponding pa-
rameters are chosen as follows: α = 3

4 , β = 2, I = 1.

Lemma 2 [35] For a sufficient large constant m, unknown function F (z) over
a compact set Ωz ⊂ Rm can be approximated by the following radial basis
function neural network (RBFNN) satisfying

F (z) = W ∗TS(z) + δ (z) ,
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where W ∗ represents an optimal weight vector satisfying

W ∗ = arg min
W∈Rm

{
sup
z∈Ωz

|F (z)−WTS(z)|
}
,

where δ (z) represents an approximation error with |δ (z)| ≤ ε and ∀ε > 0,

W = [W1, . . . ,Wm]
T ∈ Rm represents the weight vector with m is the

number of RBFNN nodes; S(z) = [s1(z), . . . , sm(z)]
T

is the basis function
vector satisfying

si(z) = exp

[
− (z − ci)T (z − ci)

b2i

]
,

where ci = [ci1, ci2, . . . , cik]
T

(i = 1, . . . ,m) denotes the center of the receptive
field, and bi > 0 denotes the width of the basis function.
Lemma 3 [36] For any real variables x1, y2 and any real numbers k1, k2, B,
there holds

|x1|k1 |y2|k2 ≤
k1

k1 + k2
B|x1|k1+k2 +

k2

k1 + k2
B

−k1
k2 |y2|k1+k2 .

Lemma 4 [37] For 0 < p < 1,Hi ∈ R, i = 1, ..., n, , one has

(|H1|+ · · ·+ |Hn|)p ≤ |H1|p + · · ·+ |Hn|p .

Lemma 5 [38] For ζi ∈ R, i = 1, ..., N , then(
N∑
i=1

|ζi|

)ι
≤

N∑
i=1

|ζi|ι, 0 < ι ≤ 1,

N1−ι

(
N∑
i=1

|ζi|

)ι
≤

N∑
i=1

|ζi|ι, ι > 1.

2.2 Event-Triggered Mechanism

In this section, based on relative-threshold event-triggered control scheme
is designed as below [39]:

v = −(1 + τ)

(
αn tanh(

ςn αn
ρ

) + µ1 tanh(
ςn µ1

ρ
)

)
, (2)

u(t) = v(tk), ∀t ∈ [tk, tk+1), (3)

tk+1 = inf {t ∈ R ||P| ≥ τ |u|+ µ2 } , (4)

where ςn, αn will be designed later, the event-triggered error P = v − u, 0 <
τ < 1, ρ > 0, µ1 > 0 and µ2 > 0 satisfying µ1 >

µ2

1−τ . tk represents input
update time. Note that, for the time t ∈ [tk, tk+1), u views as a constant v(tk).
When (4) is activated, the instant is denoted as tk+1 and control signals u(tk+1)
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can be utilized in the system. Thus, we can find the parameters satisfying

`1, `2, the following equation holds

v = (1 + `1 τ)u+ `2 µ2, (5)

where |`1| ≤ 1 and |`2| ≤ 1. Therefore, one has

u =
v − `2 µ2

1 + `1 τ
. (6)

2.3 Prescribed Performance

The tracking error j1 in this article is constrained to the following ranges

Ωj1 = {j1 ∈ R| − σ < j1 < σ} , (7)

where σ denotes desired performance function and the tracking error is de-
picted as j1 = y − yd. σ can be defined as

σ =

{
(σ̄0 − aκt)

1
a + σT0

, 0 ≤ t ≤ T0,
σT0

,
(8)

where a = E1

E2
∈ (0, 1) with E1 and E2 are specified as positive odd integers.

The convergence rate, the ultimate limits of performance function and the
convergence time are described as a, σT0 > 0 and T0 > 0, which need to be
preset. When the above three parameters and initial state σ0 are confirmed,
the rest of the parameters σ̄0, κ can be settled such that all the parameters

must comply with T0 = σ̄0

aκ and σ̄
1
a
0 +σT0

= σ (0).
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Fig. 1: The flow diagram of FODSC-based fixed-time controller.

Control objective: this work aims to construct a fixed-time adaptive
control scheme such that the output signal y can track given reference signal
yd; all the signals in the CLS are practically fixed-time bounded; the tracking
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error j1 can strictly converge to an arbitrary predefined boundary in a fixed-
time period. What’s more, the Zeno phenomenon is avoided. The flow diagram
of the designed algorithm is displayed in Fig. 1.

3 Main results

In this section, an event-triggered adaptive NN fixed-time control method
will be presented by integrating with a modified FODSC approach.

3.1 State Transformation

To facilitate controller design, the following coordinate transformation is
introduced [42]

m1 = tan

(
π j1
2σ

)
, j1 (0) < σ (0) , (9)

from (9) that

j1 =
2

π
σ arctan (m1) . (10)

Taking the derivative of j1 gives

j̇1 =
2

π
σ̇ arctan (m1) +

2

π
σ

ṁ1

1 +m2
1

= x2 + f1 (x1)− ẏd, (11)

then, (11) can be expressed as

ṁ1 = d1 x2 + d1 f1 (x1)− d1 ẏd−
2

π
σ̇ d1 arctan (m1) . (12)

where d1 =
π(1+m2

1)
2σ > 0.

Remark 2 The purpose of introducing the state transformation (9) is to con-
vert the restrained error j1 to an unrestrained state m1. Then, it can be
speculated from (9) that the boundedness of m1 implies that −σ < j1 < σ.
Furthermore, m1 → 0 ⇒ j1 → 0. Therefore, the next assignment is to assure
the boundedness and the convergence of m1.
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3.2 FODSC-Based Fixed-time Controller

To facilitate controller design, the corresponding coordinate transforma-
tions are defined as below:{

z1 = m1,
zi = xi−α∗i , i = 2, ..., n,

(13)

in which α∗i denotes the output of the following FO filter with the virtual
control signal αi as the input:

βiD
qα∗i+α

∗
i = αi, αi (0) = α∗i (0) , (14)

where Dq represents the fractional operator with 0 < q < 1 and βi > 0 is a
time constant.

Remark 3 Due to the data memory and hereditary characteristics of fractional
calculus, it has been acquired that FO control improves the degree of freedom
for achieving higher control accuracy as opposed to IO [40, 41]. Thus, we at-
tempt to develop a FODSC-based adaptive fixed-time method for the system
(1) in this paper. Different from the most of existing results [13, 14, 29], the
proposed FO filter not only avoids the computational complexity caused by the
traditional backstepping algorithm but also incorporates the FO characteristic
into the filter design.

The compensation error ςi is defined as follow:

ςi = zi− ηi, i = 1, ..., n. (15)

To compensate for the filter error between the virtual control signal and
the filter output, the compensation system ηi is designed as

η̇1 = −k11η
1
2
1 − k12η

3
1 + d1 (α∗2 − α2) + d1η2,

η̇i = −ki1η
1
2
i − ki2η3

i − di−1ηi−1 + diηi+1 + di
(
α∗i+1 − αi+1

)
,

η̇n = −kn1η
1
2
n − kn2η

3
n − dn−1ηn−1,

(16)

with ηi (0) = 0, dl = 1 (l = 2, ..., n) , ki1> 0, ki2 > 0 are design parameters.
Step 1. From (12)-(13) and calculating the first-order derivative of z1, one has

ż1 = d1 z2 + d1 (α∗2−α2) + d1 α2 + d1 f1 (x1)

− d1 ẏd−
2

π
d1 σ̇ arctan (m1) . (17)

To overcome the influences of errors α∗2 − α2, the compensating signal η2

is introduced as follows:

η̇1 = −k11η
1
2
1 − k12η

3
1 + d1η2 + d1 (α∗2 − α2) , (18)

with η1 (0) = 0. Combining (15) with (17) and (18) holds

ς̇1 =d1ς2 + d1α2 + k11η
1
2
1 + d1f1 (x1)− d1ẏd
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− 2

π
d1σ̇ arctan (m1) + k12η

3
1 . (19)

Now, choose a Lyapunov function candidate as:

V1 =
1

2
ς21 +

1

2c̄1
Θ̃2

1, (20)

where Θ̃ = Θ − Θ̂ represents the estimation error of the unknown parameter,
the time differentiation of V1 satisfies

V̇1 =d1ς1 (ς2 + α2 + f1 (x1)− 2

π
σ̇ arctan (m1)

+
k11

d1
η

1
2
1 +

k12

d1
η3

1 − ẏd)−
1

c̄1
Θ̃1

˙̂
Θ1. (21)

Then, the packaged function is set as Λ1 = f1 (x1).
In view of Lemma 2, a RBFNN W ∗T1 S1(z) is applied to approximate the

unknown term Λ1. For ∀ ε1 > 0, one has

Λ1 = W ∗T1 S1(z) + δ1 (z) ,

where |δ1 (z)| < ε1 represents the approximation error.

Furthermore, in accordance with Lemma 3 and Θi = max
1≤i≤n

{
‖W ∗i ‖

2
}

, it

can be acquired

ς1d1W
∗T
1 S1(z) ≤ 1

2a11
Θ1 ‖S1‖2d2

1ς
2
1 +

a11

2
, (22)

ς1 d1 δ1 (z) ≤ 1

2 a12
d

2
1 ς

2
1 +

a12

2
ε2

1. (23)

By plugging (22)-(23) into (21), results in

V̇1 ≤ς1d1ς2 + ς1d1 (α2 +
d1

2a11
Θ1‖S1‖2ς1 +

k11

d1
η

1
2
1

+
1

2a12
d1ς1 −

2

π
σ̇ arctan (m1) +

k12

d1
η3

1 −ẏd)

+
1

2

(
a11 + a12ε

2
1

)
− 1

c̄1
Θ̃1

˙̂
Θ1. (24)

To fulfill the control objective, a fixed-time virtual control signal α2 and

the adaptive laws
˙̂
Θ1 are designed as

α2 =− d1

2a11
Θ̂1 ‖S1‖2ς1 −

k11

d1
z

1
2
1 −

k12

d1
z3

1 −
1

2a12
d1ς1

+
2

π
σ̇ arctan (m1) + ẏd, (25)

˙̂
Θ1 =

d2
1c̄1

2a11
‖S1‖2ς21 − r̄1Θ̂1 −

ξ1
c̄1
Θ̂3

1. (26)
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Substituting (25)-(26) into (24) yields

V̇ 1 ≤ d1 ς1 ς2− k11

(
ς21
) 3

4 − k12

(
ς21
)2

+
r̄1

c̄1
Θ̂1Θ̃1 +

ξ1
c̄21
Θ̃1Θ̂

3
1 + χ1, (27)

where χ1 = 1
2

(
a11 + a12ε

2
1

)
.

Moreover, it is assumed that αk (3 ≤ k ≤ n) can be represented as follows

V̇k−1 ≤−
k−1∑
l=1

kl1
(
ς2l
) 3

4 −
k−1∑
l=1

kl2
(
ς2l
)2

+

k−1∑
l=1

r̄l
c̄l
Θ̃lΘ̂l

+

k−1∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l + χk−1 +ςk−1 dk−1 ςk. (28)

Step k. By (1) and (13), it can be deduced that

żk = zk+1 +α∗k+1−αk+1 +αk+1 +fk (xk)− α̇∗k . (29)

It follows from (15) and (16) that

ς̇k = zk+1 + αk+1 + fk (xk)− α̇∗k + kk1η
1
2

k + kk2η
3
k + ηk−1 − ηk+1. (30)

Consider Lyapunov function Vk = Vk−1 + 1
2 ς

2
k + 1

2c̄k
Θ̃2
k and calculating its

time derivative, it can be obtained that

V̇ k ≤ ςk
(
αk+1 + fk (xk)− α̇∗k + kk1 η

1
2

k + kk2 η
3
k + ηk−1

)
+ ςk ςk+1−

1

c̄k
Θ̃k

˙̂
Θk + V̇ k−1 . (31)

By using RBFNN to approximate the nonlinear term Λk = fk (xk) −
α̇∗k + ςk−1, one has W ∗Tk Sk (z) + δk (z), where |δk (z)| ≤ εk is the approxi-
mation error, for any given εk > 0.

In light of Lemma 3, it can be expressed as

ςkW
∗T
k S1(z) ≤ 1

2ak1
Θk‖Sk‖2ς2k +

ak1

2
, (32)

ςkδk (z) ≤ 1

2ak2
ς2k +

ak2

2
ε2
k. (33)

Thus, (31) can be further written as

V̇k ≤−
k−1∑
l=1

kl1
(
ς2l
) 3

4 −
k−1∑
l=1

kl2
(
ς2l
)2

+

k−1∑
l=1

r̄l
c̄l
Θ̃lΘ̂l +

k−1∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l

+ ςk

(
αk+1 + kk1η

1
2

k + kk2η
3
k +

1

2 ak2

ςk +ηk−1

)
+ χk−1

− 1

c̄k
Θ̃k

˙̂
Θk + ςkςk+1 +

1

2ak1
Θk ‖Sk‖2ς2k +

1

2

(
ak1 + ak2ε

2
k

)
. (34)
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Design the virtual controller αk+1 and the adaptive laws
˙̂
Θk as follows:

αk+1 = − 1

2ak1
ςkΘ̂k‖Sk‖2 − kk1(zk)

1
2 − kk2(zk)

3 − 1

2ak2
ςk − ηk−1, (35)

˙̂
Θk =

c̄k
2ak1

‖Sk‖2ς2k − r̄kΘ̂k −
ξk
c̄k
Θ̂3
k. (36)

Then, (34) can be represented as

V̇ k ≤−
k∑
l=1

kl1
(
ς2l
) 3

4 −
k∑
l=1

kl2
(
ς2l
)2

+

k∑
l=1

r̄l
c̄l
Θ̂lΘ̃l

+

k∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l + χk + ςk ςk+1, (37)

where χk = χk−1 + 1
2

(
ak1 + ak2 ε

2
k

)
.

Step n. As is the same case of step k, one has

żn = ẋn − α̇∗n = u+ fn(x)− α̇∗n, (38)

the corresponding compensating signal ηn is introduced:

η̇n = −kn1η
1
2
n − kn2η

3
n − dn−1ηn−1, (39)

with ηn (0) = 0. From (38)-(39), one has

ς̇n = u+ fn(x)− α̇∗n + kn1η
1
2
n + kn2η

3
n + dn−1ηn−1. (40)

Construct a Lyapunov function candidate as follows:

Vn =
1

2
ς2n +

1

2c̄n
Θ̃2
n + Vn−1, (41)

its derivative is given as

V̇n ≤ςn
(
u+ fn(x)− α∗n + kn1η

1
2
n + kn2η

3
n + dn−1ηn−1

)
−
n−1∑
l=1

kl1
(
ς2l
) 3

4 −
n−1∑
l=1

kl2
(
ς2l
)2

+

n−1∑
l=1

r̄l
c̄l
Θ̂lΘ̃l

+

n−1∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l + χn−1 −

1

c̄n
Θ̃n

˙̂
Θn + dn−1ςn−1ςn. (42)

By setting Λn = fn(x)−α̇∗n+dn−1ςn−1. For any given εn > 0, this unknown
function Λn is able to be imitated as

Λn = W ∗Tn Sn (z) + δn (z) ,
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where |δn (z)| ≤ εn is the approximation error. Furthermore, one has

ςnW
∗T
n Sn (z) ≤ 1

2an1
Θ‖Sn‖2ς2n +

an1

2
, (43)

ςnδn (z) ≤ 1

2an2
ς2n +

an2

2
ε2
n. (44)

By substituting (43)-(44) into (42), one has

V̇n ≤−
n−1∑
l=1

kl1
(
ς2l
) 3

4 −
n−1∑
l=1

kl2
(
ς2l
)2

+

n−1∑
l=1

r̄l
c̄l
Θ̂lΘ̃l +

n−1∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l

− 1

c̄n
Θ̃n

˙̂
Θn + ςn

(
u+

1

2an2
ςn + kn1η

1
2
n + kn2η

3
n + dn−1ηn−1

)
+

1

2an1
Θn ‖Sn‖2ς2n + χn−1 +

1

2

(
an1 + an2ε

2
n

)
. (45)

Before constructing the event-triggered actual controller, the virtual con-

trol signal αn and the adaptive laws
˙̂
Θn are designed as follows:

αn = − 1

2an1
ςnΘ̂n‖Sn‖2 − kn1(zn)

1
2 − kn2(zn)

3 − 1

2an2
ςn − dn−1ηn−1, (46)

˙̂
Θn =

c̄n
2an1

‖Sn‖2ς2n − r̄nΘ̂n −
ξn
c̄n
Θ̂3
n. (47)

In the interval times [tk, tk+1), and from (3), it can be obtained that
|v − u| < τ |u|+ µ2. Considering (6) and (45)-(47), yields

V̇n ≤−
n∑
l=1

kl1
(
ς2l
) 3

4 −
n∑
l=1

kl2
(
ς2l
)2 − ςn αn− ςn `2 µ2

1 + `1 τ

− 1 + τ

1 + `1 τ

(
ςn αn tanh(

ςn αn
ρ

) + ςn µ1 tanh(
ςn µ1

ρ
)

)
+

n∑
l=1

r̄l
c̄l
Θ̂lΘ̃l +

n∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l + χn−1 +

1

2

(
an1 + an2ε

2
n

)
. (48)

Due to 0 < 1 + `1 τ < 1 + τ and − ςn `2 µ2

1+`1 τ
≤
∣∣∣ ςn µ2

1−τ

∣∣∣ ≤ |ςn µ1|, the inequality

(48) can be rewritten as

V̇n ≤−
n∑
l=1

kl1
(
ς2l
) 3

4 −
n∑
l=1

kl2
(
ς2l
)2

+ |ςn αn|+ |ςn µ1|

− ςn αn tanh(
ςn αn
ρ

)− ςn µ1 tanh(
ςn µ1

ρ
) +

n∑
l=1

r̄l
c̄l
Θ̂lΘ̃l

+

n∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l + χn−1 +

1

2

(
an1 + an2ε

2
n

)
. (49)
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Additionally, if ψ ∈ R and q > 0, the hyperbolic tangent function satisfies

0 ≤ |ψ| − ψ tanh
(
ψ
q̄

)
≤ 0.2785q̄, one obtains

V̇n ≤ +

n∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l −

n∑
l=1

kl2
(
ς2l
)2

+

n∑
l=1

r̄l
c̄l
Θ̂lΘ̃l −

n∑
l=1

kl1
(
ς2l
) 3

4 + χn, (50)

where χn = χn−1 + 1
2

(
an1 + an2ε

2
n

)
+ 0.557q̄.

By defining
(

1
2

) 3
4 ϑ̄1= min {k11, ..., kn1} ,

(
1
2

)2
ϑ̄2= min

{k12, ..., kn2} and utilizing Lemma 4 and Lemma 5, (50) can be confirmed
the following form

−
n∑
l=1

kl1
(
ς2l
) 3

4 ≤ −ϑ̄1

n∑
l=1

(
ς2l
2

) 3
4

≤ −ϑ̄1

(
n∑
l=1

ς2l
2

) 3
4

, (51)

−
n∑
l=1

kl2
(
ς2l
)2 ≤ −ϑ̄2

n∑
l=1

(
ς2l
2

)2

≤ − ϑ̄2

n

(
n∑
l=1

ς2l
2

)2

. (52)

In the light of Θ̃l Θ̂l ≤ − Θ̃
2
l

2 + Θ
2
l

2 , one has

n∑
l=1

r̄l
c̄l
Θ̂lΘ̃l ≤ −

n∑
l=1

r̄lΘ̃
2
l

2c̄l
+

n∑
l=1

r̄lΘ
2
l

2c̄l
. (53)

Thus, substituting (51), (52) and (53) into (50), one can obtain

V̇ n ≤− ϑ̄1

(
n∑
l=1

ς2l
2

) 3
4

−

(
n∑
l=1

r̄lΘ̃
2
l

2c̄l

) 3
4

− ϑ̄2

n

(
n∑
l=1

ς2l
2

)2

+

(
n∑
l=1

r̄lΘ̃
2
l

2c̄l

) 3
4

−
n∑
l=1

r̄lΘ̃
2
l

2c̄l
+

n∑
l=1

r̄lΘ
2
l

2c̄l
+

k∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l + χn . (54)

By utilizing Lemma 3 and making x1 = 1, y2 =
n∑
l=1

r̄lΘ̃
2
l

2c̄l
, k1 = 1 − τ, k2 =

τ,B = e(τ/(1−τ))Inτ , it can be acquired(
n∑
l=1

r̄lΘ̃
2
l

2c̄l

)τ
≤ M (τ) +

n∑
l=1

r̄lΘ̃
2
l

2c̄l
, (55)

where M (τ) = (1− τ) τ
τ

1−τ . Set τ to 3
4 , (55) turn out that(

n∑
l=1

r̄lΘ̃
2
l

2c̄l

) 3
4

≤ M (τ) +

n∑
l=1

r̄lΘ̃
2
l

2c̄l
, (56)

where τ1 = M
(

3
4

)
= 0.11 > 0.
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By substituting (56) into (54), it can be described as

V̇n ≤ −ϑ̄1

(
n∑
l=1

ς2l
2

) 3
4

−

(
n∑
l=1

r̄lΘ̃
2
l

2c̄l

) 3
4
ϑ̄2

n

(
n∑
l=1

ς2l
2

)2

+

n∑
l=1

ξl
c̄2l
Θ̃lΘ̂

3
l + ℵ, (57)

where ℵ =
n∑
l=1

r̄lΘ
2
l

2c̄l
+ χn + τ1.

Based on Θ̃l Θ̂
3

l = Θ̃l

(
Θ3
l −3Θ2

l Θ̃l +3Θl Θ̃
2

l − Θ̃
3

l

)
, (57) can be obtained

V̇n ≤− ϑ̄1

(
n∑
l=1

ς2l
2

) 3
4

−

(
n∑
l=1

r̄lΘ̃
2
l

2c̄l

) 3
4

− ϑ̄2

n

(
n∑
l=1

ς2l
2

)2

+

n∑
l=1

3ξl
c̄2l
Θ̃3
lΘl

−
n∑
l=1

3ξl
c̄2l
Θ̃2
lΘ

2
l +

n∑
l=1

ξl
c̄2l
Θ̃lΘ

3
l −

n∑
l=1

ξl
c̄2l
Θ̃4
l + ℵ. (58)

By utilizing Young’s inequality, it can be express as

n∑
l=1

3ξl
c̄2l
Θ̃3
lΘl ≤

n∑
l=1

9ξlν
3
4

4c̄2l
Θ̃4
l +

n∑
l=1

3ξl
4ν4c̄2l

Θ4
l , (59)

n∑
l=1

ξl
c̄2l
Θ̃lΘ

3
l ≤

n∑
l=1

3ξl
c̄2l
Θ̃2
lΘ

2
l +

n∑
l=1

ξl
12c̄2l

Θ4
l . (60)

By substituting (59)-(60) into (58), yields

V̇n ≤− ϑ̄1

(
n∑
l=1

ς2l
2

) 3
4

−

(
n∑
l=1

r̄lΘ̃
2
l

2c̄l

) 3
4

− ϑ̄2

n

(
n∑
l=1

ς2l
2

)2

−
n∑
l=1

(
4ξl − 9ξlν

3
4

)( Θ̃2
l

2c̄l

)2

+ ℵ̄, (61)

where ℵ̄ =
n∑
l=1

ξl
12c̄2l

Θ4
l +

n∑
l=1

3ξl
4ν4c̄2l

Θ4
l + ℵ.

Thereby, (61) can be rewritten as

V̇n ≤− ϑ̄1

(
n∑
l=1

ς2l
2

) 3
4

− ϑ̂1

(
n∑
l=1

Θ̃2
l

2c̄l

) 3
4

− ϑ̄2

n

(
n∑
l=1

ς2l
2

)2

− ϑ̂2

n

(
n∑
l=1

Θ̃2
l

2c̄l

)2

+ ℵ̄, (62)

where ϑ̂1 = min {r̄l} and ϑ̂2 = min{4ξl − 9ξlν
3
4 }.
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By defining ϑ1 = min
{
ϑ̄1, ϑ̂1

}
, ϑ2 = min

{
ϑ̄2

n ,
ϑ̂2

n

}
, (62) can be shown as

V̇n ≤− ϑ1


(

n∑
l=1

Θ̃2
l

2c̄l

) 3
4

+

(
n∑
l=1

ς2l
2

) 3
4


− ϑ2


(

n∑
l=1

ς2l
2

)2

+

(
n∑
l=1

Θ̃2
l

2c̄l

)2
+ ℵ̄. (63)

As we all know that

Vn =

n∑
l=1

ς2l
2

+

n∑
l=1

Θ̃2
l

2c̄l
. (64)

Furthermore, it follows from Lemma 4 and Lemma 5 that

V
2
n ≤ 2n


(

n∑
l=1

ς2
l

2

)2

+

(
n∑
l=1

Θ̃
2

l

2c̄l

)2
 , (65)

V
3
4
n ≤

(
n∑
l=1

ς2
l

2

) 3
4

+

(
n∑
l=1

Θ̃
2

l

2c̄l

) 3
4

. (66)

By combining (65) with (66, (63) gives

V̇n ≤ −ϑ1V
3
4
n −

ϑ2

2n
V 2
n + ℵ̄. (67)

Until now, the FODSC-based fixed-time adaptive control problem has been
completed.

3.3 Stability Analysis

Based on the above analysis, stability result can be summarized as the
following theorem.

Theorem 1. Consider the strict-feedback system (1) under Assumptions
1− 2. If the virtual control signals (25), (35) and (46), the adaptive updating
laws (26), (36) and (47), the error compensation signals (16), and the actual
control signal (2)-(4), then the following properties hold:
• All the signals in the CLS are practically fixed-time bounded.
• The tracking errors can be regulated to predefined boundary in fixed-

time.
• The Zeno behavior can be excluded.
Proof. For the auxiliary system (16), we prove that ηl can be bounded

in the fixed-time T1 by the following step.
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Step n+1. Consider the Lyapunov function V̄ η =
∑n
l=1

1
2
η2
l and its derivative

as follows:

˙̄V η =− k11 η
3
2
1 − k12 η

4
1 + d1 η1 η2 + d1 η1 (α∗2−α2)

− k21 η
3
2
2 − k22 η

4
2 − d1 η1 η2 + η2 η3 + η2 (α∗3−α3)

− k31 η
3
2
3 − k32 η

4
3 − η2 η3 + η3 η4 + η3 (α∗4−α4)

+ · · ·

− kn1 η
3
2
n − kn2 η

4
n− ηn−1 ηn

=−
n∑
l=1

kl1 η
3
2

l +

n−1∑
l=1

dl ηl
(
α∗l+1−αl+1

)
−

n∑
l=1

kl2 η
4
l . (68)

By utilizing the Lemma 4 and Lemma 5 in [15],
∣∣α∗l+1−αl+1

∣∣ ≤ ∆l can be
obtained in a fixed-time T2. Thus, (68) yields

˙̄V η ≤−
n∑
l=1

kl1 η
3
2

l −
n∑
l=1

kl2 η
4
l + |dn| |ηn| ∂n +

n−1∑
l=1

|dl| |ηl|
∣∣α∗l+1−αl+1

∣∣
≤−

n∑
l=1

kl1 η
3
2

l −
n∑
l=1

kl2 η
4
l +

1

2

n∑
l=1

η2
l +

n∑
l=1

∆l

2
. (69)

Due to the fact that η2
l ≤

(
η2
l

) 1
2 +

(
η2
l

)3
, one has

1

2

n∑
l=1

η2
l ≤

1

2

n∑
l=1

((
η2
l

) 3
4 +

(
η2
l

)2)
. (70)

By combining (70) with Lemma 5, (69) can be indicated as

˙̄V η ≤−
n∑
l=1

(
kl1−

1

2

)
η

3
2

l −
n∑
l=1

(
kl2−

1

2

)
η4
l +

n∑
l=1

∆l

2

≤−λ1 V
3
4
η −λ2 V

2
η +κ̄, (71)

where λ1 = min
{

2
3
4

(
kn1− 1

2

)}
, λ2 =

{
22 n−1

(
kn2− 1

2

)}
and κ̄ =

n∑
l=1

∆l
2 .

Thus, it can be obtained that ηl is practically fixed-time bounded in T1. This
completes the proof.

According to (67) and Lemma 1, the fixed-time convergence problem was
considered as follows:

V̇n ≤ −ϑ1V
3
4
n − (1− l) ϑ2

2n
V 2
n − l

ϑ2

2n
V 2
n + ℵ̄, (72)

where 0 < l < 1 and (72) can be rewritten as V̇n ≤ −ϑ1V
3
4
n − (1− l) ϑ2

2nV
2
n , if

V 2
n>

2nℵ̄
lϑ2

. The setting time of the CLS in fixed-time is expressed as follows:

T3 ≤
4

ϑ1
+

2n

ϑ2 (1− l)
.
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In view of V 2
n ≤ 2nℵ̄

lϑ2
, it can be concluded that Vn is bounded, and then

ςi, Θ̃i, 1 ≤ i ≤ n, are also bounded, so does zi,mi, ji. In view of −ξ < j1 < ξ,
the prescribed performance is guaranteed effectively. Moreover, it follows from
the boundedness of ςi, zi, ηi that α∗i , αi is also bounded. Since zi = xi−α∗i , all
the state variables xi are all bounded. Therefore, all signals in the CLS are
bounded within the setting time Tl = T1 + T2 + T3.

Furthermore, it can be confirmed that all signals are bounded, i.e., v̇ is a
function of all the bounded signals. There is a constant c satisfying |v̇| ≤ c.
Note that P(tk) = 0 (P(tk) = v(tk)− u(tk)) and lim

t→tk+1

P = τ |u| + µ2, then

inter-execution intervals tk − tk+1 ≥ τ |u|+µ2

c . Thus, it can be obtained that
the inter-execution intervals t∗ satisfiy t∗ =

µ2

c > 0, in other words, excluding
the Zeno-behavior. The proof is completed.

4 SIMULATION

Two examples including a comparative example and a practical example
are provided to testify the feasibility and superiority of the proposed control
strategy in this section.

Numerical Example: Consider the following second-order nonlinear sys-
tem is adopted in [29]:  ẋ1 = x2 +0.5x2

1,
ẋ2 = u+ 0.5x1 x2 sin (x1) ,
y = x1,

where the reference trajectory is designed as yd = 0.5 sin t and the following
performance function is given

σ =

{
(0.45− 0.45t)

3
+ 0.015, 0 ≤ t < 1,

0.015, t ≥ 1.

To emphasize the contribution of this paper, the virtual control signals are
set up as

α2 = − d1
2a11

Θ̂1‖S1‖2ς1 − k11
d1
z

1
2
1 − k12

d1
z3

1 − 1
2a12

d1ς1
+ ẏd + 2

π ξ̇ arctan (m1) ,

α3 = − 1
2a21

Θ̂2‖S2‖2ς2 − k21z
1
2
2 − k22z

3
2 − 1

2a22
ς2 − d1η1.

The adaptive laws are chosen as

˙̂
Θ1 =

d2
1c̄1

2a11
‖S1‖2ς21 − r̄1Θ̂1 −

ξ1
c̄1
Θ̂3

1.

˙̂
Θ2 =

c̄2
2a21
‖S2‖2ς22 − r̄2Θ̂2 −

ξ2
c̄2
Θ̂3

2.
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Fig. 2: The curves of y and yd

The relative-threshold-based control signals are constructed in (2)-(4), and
the compensating signal is defined as in (16).

The initial values are chosen as x1 (0) = 0.1, x2 (0) = −0.1, Θ̂1(0) =
0, Θ̂2 (0) = 0.5 and the corresponding design parameters are chosen as ρ =
1,K11=K12= 5,K21=K22= 50, a11 = a12 = a21 = a22 = 0.5, µ1 = 2, µ2 =
0.1, τ = 0.5, β = 0.05, c̄1 = c̄2 = 1, ξ1 = ξ2 = 5, r̄1 = r̄2 = 5, q = 0.9.

To facilitate controller design, two RBFNNs are adopted to handle the un-
known terms Λ1 = f1(x1) and Λ2 = f2(x)− α̇∗2 +d1ς1 existing in the nonlinear

systems. The basis function vector Si(zi) = [si1(zi), . . . , simi(zi)]
T ∈ Rmi can

be obtained by the Gaussian function exp
[
−((zi − cij)T (zi − cij))/b2ij)

]
, (i =

1, 2; j = 1, . . . ,mi) with mi = 9, cij = (j − 5)[1, 1, 1]T , j = 1, . . . ,mi. The
input vectors of RBFNNs and the width of Gaussian functions are chosen as
zi = [x1, x2, D

qα∗2]
T

and bij = 1(i = 1, 2; j = 1, . . . ,mi), respectively.

Validity analysis: Fig. 2 shows the trajectory of output signal y and the
target signal yd. Fig. 3 plots the tracking error can strictly converge into pre-
scribed boundaries within fixed-time. From Figs. 2-3, it can be seen that our
proposed scheme has better performance accuracy. Furthermore, the trajec-
tories of the adaptive parameters Θ̂1, Θ̂2 are depicted in Fig. 4, the control
signal u is shown in Fig. 5. Obviously, it can be observed from Figs. 2-5 that
all signals in the resulting CLS are bounded in fixed-time interval.

Comparative analysis: To achieve an intuitive comparison, the design
parameters in the paper are selected as same as the reference [29]. Compared
with the simulation results in [29], it can be easily observed that the proposed
control method provides a faster convergence time, while the tracking error can
more quickly converge toward predefined range. Therefore, our control strategy
is superior than that proposed in [29] for accommodating better performance
requirements.
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Fig. 3: The tracking error y − yd
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Fig. 4: The adaptive parameter Θ̂1 and Θ̂2
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Fig. 6: The pendulum model.
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Fig. 5: The control signal u

Practical Example: The dynamics of the pendulum model is

mlφ̈+ klφ̇+mg sinφ = u, (73)

where φ denotes the angle, φ̇ denotes the angular velocity, l denotes the length
of the pendulum, m denotes the mass of the pendulum, k denotes an unknown
frictional index, g denotes the acceleration of gravity.

Consider x1 = mlφ and x2 = mlφ̇, (73) can be rewritten as
ẋ1 = x2,
x2 = u−mg sin

(
x1

ml

)
− k

m
x2,

y = x1 .

The target signal is chosen as yd = 0.5 (sin (t) + sin (0.5t)), the RBFNN
membership functions and the desired performance function are selected as in
Example 1.

The original values of the pendulum are defined as x1 (0) = 0.1, x2 (0) =
−0.1, Θ̂1 (0) = 0, Θ̂2 (0) = 0.5. The relevant parameters are selected as k =
1.095,m = 1, l = 1,K11=K12= 5,K21=K22= 50, a11 = a12 = a21 = a22 =
0.5, c̄1 = c̄2 = 1, ξ1 = ξ2 = 5, r̄1 = r̄2 = 5, µ1 = 2, µ2 = 0.1, ρ = 1, τ = 0.5, β =
0.05, q = 0.9.

The pendulum plant is shown in Fig. 6 and the relative results are described
in Figs. 7-10, where Fig. 7 plots the responses of output signal y and tracking
signal yd. The profile of tracking error is illustrated in Fig. 8. By contrast, it has
better tracking accuracy than [29]. Fig. 9 shows the responses of the adaptive
parameters Θ̂1, Θ̂2 and the trajectory of the control signal u (t) is displayed
in Fig. 10. Furthermore, it can be inferred that the proposed method can
guarantee that all the signals of the resulting CLS are bounded in fixed-time
and the system output can track the target signal with an ideal approximation
accuracy.
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Fig. 7: The trajectories of y and yd
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Fig. 8: The tracking error y − yd

5 Conclusions

In this article, an event-based adaptive NN fixed-time control problem for
strict-feedback nonlinear systems with prescribed performance has been stud-
ied. Based on the FODSC technique, by combining the approximation ability
of NN and the command filter backstepping method, the unknown nonlinear
functions and the issue of “explosion of complexity” have been conquered, re-
spectively. Meanwhile, the novel error compensation signal is established for
filter error and an event-triggered controller has been developed to save the
transmission resources, where is no Zeno phenomenon. Furthermore, by ap-
plying the performance function to ensure the tracking error converges into
predefined bounds in the fixed-time interval. Finally, comparative and prac-
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tical examples are presented to confirm the feasibility and superiority of the
proposed control method.
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