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Abstract

An ongoing challenge in neuromorphic computing is to devise general and computationally efficient
models of inference and learning which are compatible with the spatial and temporal constraints of the
brain. One increasingly popular and successful approach is to take inspiration from inference and learning
algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent
Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored
with high-precision memory, and precise operations that are difficult to realize in neuromorphic hardware.
Remarkably, recent work showed that exact backpropagated weights are not essential for learning deep
representations. Random BP replaces feedback weights with random ones and encourages the network
to adjust its feed-forward weights to learn pseudo-inverses of the (random) feedback weights. Building
on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated
synaptic plasticity for learning deep representations in neuromorphic computing hardware. The rule
requires only one addition and two comparisons for each synaptic weight using a two-compartment leaky
Integrate & Fire (I&F) neuron, making it very suitable for implementation in digital or mixed-signal
neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned,
achieving nearly identical classification accuracies compared to artificial neural network simulations on
GPUs, while being robust to neural and synaptic state quantizations during learning.

1 Introduction

Biological neurons and synapses can provide the blueprint for inference and learning machines that are
potentially thousandfold more energy efficient than mainstream computers. However, the breadth of ap-
plication and scale of present-day neuromorphic hardware remains limited, mainly due to a lack of general
and efficient inference and learning algorithms compliant with the spatial and temporal constraints of the
brain.
Machine learning and deep learning are well poised for solving a broad set of applications using neuromor-
phic hardware, thanks to their general-purpose, modular, and fault-tolerant nature [Esser et al., 2016; Lee
et al., 2016; Neftci et al., 2016]. One outstanding question is whether the learning phase in deep neural
networks can be efficiently carried out in neuromorphic hardware. Performing learning on-the-fly in less
controlled environments where no prior, representative dataset exists confers more fine-grained context
awareness to behaving cognitive agents. However, deep learning usually relies on the immediate availability
of network-wide information stored with high-precision memory. In digital computers, the access to this
information funnels through the von Neumann bottleneck, which dictates the fundamental limits of the
computing substrate. Distributing computations along multiple cores (such as in GPUs) is a popular solu-
tion to mitigate this problem, but even there the scalability of BP is often limited by its memory-intensive
operations [Zhu et al., 2016].

The implementation of gradient BP on a neural substrate is even more challenging [Baldi et al., 2016;
Grossberg, 1987; Lee et al., 2016] because it requires 1) using synaptic weights that are identical with
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forward passes (symmetric weights requirements, also known as the weight transport problem), 2) carrying
out the operations involved in BP including multiplications with derivatives and activation functions, 3)
propagating error signals with high precision, 4) alternating between forward and backward passes, 5)
changing the sign of synaptic weights, and 6) availability of targets (labels). The essence of these challenges
is that it requires precise linear and non-linear computations, and more importantly because gradient BP
requires information that is not local to the computational building blocks in a neural substrate, meaning
that special communcation channels must be provisioned. Whether a given operation is local or not depends
on the physical substrate that carries out the computations. For example, while symmetric weights in
neural networks are compatible with von Neumann architectures (and even desirable since weights in both
directions are shared), the same is not true in a distributed system such as the brain: elementary computing
units do not have bidirectional connections with the same weight in each direction. Since neuromorphic
implementations generally assume dynamics closely related to the those in the brain, requirements (1-4)
above also hinder efficient implementations of BP in neuromorphic hardware.

Although previous work [Lee et al., 2016; Lillicrap et al., 2016; O’Connor and Welling, 2016] overcomes
some of the fundamental difficulties of gradient BP listed above in spiking networks, here we tackle all of
the key difficulties using event-driven random BP (eRBP), a learning rule for deep spiking neural networks
achieving classification accuracies that are similar to those obtained in artificial neural networks, potentially
running on a fraction of the energy budget with dedicated neuromorphic hardware.

eRBP builds on the recent advances in approximate forms of the gradient BP rule [Baldi et al., 2016;
Lee et al., 2014; Liao et al., 2015; Lillicrap et al., 2016] for training spiking neurons of the type used in neu-
romorphic hardware to perform supervised learning. These approximations solve the non-locality problem
by replacing BP weights with random ones, leading to remarkably little loss in classification performance
on benchmark tasks [Baldi et al., 2016; Lillicrap et al., 2016] (requirement 1 above). Although a general
theoretical understanding of random BP (RBP) is still lacking, extended simulations and analyses of linear
networks show that, during learning, the network adjusts its feed-forward weights to learn an approximation
of the pseudo-inverse of the (random) feedback weights, which is equally good in communicating gradients.
eRBP is an asynchronous (event-driven) adaptation of random BP that can be tightly embedded with the
dynamics of dual compartment I&F neurons that costs one addition and two comparisons per synaptic
weight update. Extended experimentations show that the spiking nature of neuromorphic hardware and
the lack of general linear and non-linear computations at the neuron does not prevent accurate learning on
classification tasks (requirement 2, 3), and operates continuously and asynchronously without alternation
of forward or backward passes (requirement 4). Additional experimental evidence shows that eRBP is ro-
bust to fixed width representations with limited neural and synaptic state precision, making it suitable for
dedicated digital hardware. The success of eRBP lays out the foundations of neuromorphic deep learning
machines, and paves the way for learning with streaming spike-event data in neuromorphic platforms at
artificial neural network proficiencies. We demonstrate this in simulation of a custom digital neuromorphic
processor using fixed point, discrete-time dynamics.

2 Results

2.1 Event-driven Random Backpropagation

The central contribution of this article is event-driven RBP (eRBP), a presynaptic spike-driven plasticity
rule modulated by top-down errors and gated by the state of the postsynaptic neuron. The idea behind
this additional modulation factor is motivated by supervised gradient descent learning in artificial neural
networks and biologically plausible models of three-factor plasticity rules [Urbanczik and Senn, 2014], which
was argued to subserve supervised, unsupervised and reinforcement learning, an idea that was also reported
in [Lillicrap et al., 2016]. For a given neuron, the eRBP learning dynamics for synapse k can be summarized
as follows:

∆wk = T [t] Θ(I[t])Sprek [t] (1)
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Figure 1: Network Architecture for Event-driven Random Backpropagation (eRBP) and example spiking
activity after training a 784-200-200-10 network for 60 epochs. The network consists in feed-forward layers
(H1, ..., HN ) for prediction and feedback layers for supervised training with labels (targets) L. Full
arrows indicate synaptic connections, thick full arrows indicate plastic synapses, and dashed arrows indicate
synaptic plasticity modulation. In this example, digits 7,2,1,0,4 were presented in sequence to the network.
The digit pixel values are transformed to spike trains (layer D) using a Spike Response Model (Eq. (20)).
Neurons in the network indicated by black circles were implemented as two-compartment leaky I&F neurons
(Eq. (17) and Eq. (19)). The error is the difference between labels (L) and predictions (P), as is implemented
using a pair of neurons coding for positive error (blue) and negative error (red), following Eq. (16). Each
hidden neuron receives inputs from a random combination of the pair of error neurons to implement random
BP. Output neurons receives inputs from the pair of error neurons in a one-to-one fashion. At the moment
of data sample (digit) transitions, bursts of activity (about 3 spikes) in the error neurons occur. To prevent
the perturbation of the weights during these transitions, no weight updates were undertaken immediately
after changing data sample.
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where S
pre
k [t] represents the spike train of presynaptic neuron k (Spre

k [t] = 1 if pre-synaptic neuron k spiked
at time step t), and Θ is the derivative of the spiking neuron’s activation function evaluated at the total
synaptic input I[t]. The essence of eRBP is contained in the factor T . For the final output (prediction)
layer, T is equal to the classification error e of the considered neuron, similarly to the delta rule. For hidden
layers, the T is equal to the error projected randomly to the hidden neurons, i.e. T =

∑

j gjej . where the
gj are random weights that are fixed during the learning.
We found that a boxcar function in place of Θ provides very good results, while being more amenable to
hardware implementation compared to the alternative of computing the exact derivative of the activation
function. This choice is motivated by the fact that the activation function of leaky I&F neurons with
absolute refractory period can be approximated by a linear threshold unit with saturation whose derivative
is exactly the boxcar function. Using a boxcar function with boundaries bmin and bmax, the eRBP synaptic
weight update consists of additions and comparisons only, and can be captured using the following operations
for each neuron:

function eRBP

for k ∈ {presynaptic spike indices S
pre} do

if bmin < I < bmax then wk ← wk + T ,
end if

end for

end function

where Spre is the list of presynaptic neuron indices that have spiked, T is the linear combination of the error
vector. In the spiking network, T is equal to the voltage of a auxiliary compartment that integrates spikes
from the error neurons. Provided the second compartment dynamics, no multiplications are necessary for
an eRBP update. Furthermore, the second compartment dynamics can be made multiplication free (see
Methods) given custom bit shift operations and can be disabled after learning. Although eRBP is presented
using a discrete-time notation, it is straightforward to generalize it in a continuous-time framework. This
rule is reminiscent of membrane voltage-based rules, where spike-driven plasticity is induced only when
membrane voltage is inside an eligibility window [Brader et al., 2007; Chicca et al., 2013].

The realization of eRBP on neuromorphic hardware requires an auxiliary learning variable for integrating
and storing top-down error signals during learning, which can be substantiated as a dendritic compartment.
Provided this variable, each synaptic weight update incurs only two comparison operations and one addition.
Additions and comparisons can be implemented very naturally in neuromorphic VLSI circuits [Liu et al.,
2002], and costs in the order of tens of femtojoules in digital circuits (45 nm processes [Horowitz, 2014]).
In a large enough network, the cost of the second compartment dynamics is small compared to the cost
of the synaptic update, since for N neurons, there are N2 synapses. As a concrete example we use leaky,
two compartment, current-based Integrate-and-Fire neurons with additive and multiplicative noise and
linear synapses (See Methods). The gating term Θ, implemented as two comparisons, operates on the total
synaptic input, rather than membrane or calcium as used in other work. This choice is guided by the
gradient descent rule, which dictates that the derivative should be evaluated on the total input (Methods).
The linearity of the synaptic dynamics allows to use a single dynamical variable for all synapses, such that
the value of this dynamical variable is exactly equal to the total synaptic input I, and thus readily available
at the neuron and the synapses.

The eRBP rule combined with its ability to learn deep representations with near equal accuracies as
described below can enable neuromorphic deep learning machines on a wide variety of tasks. In the following,
we focus on a design that is tailored for digital neuromorphic design, namely that some non-plastic synaptic
weights can be exactly matched. Its implementation in a mixed signal design prone to fabrication mismatch
and other non-idealities is the subject of ongoing work.

4



Network Classification Error

eRBP peRBP RBP (GPU) BP (GPU)

784-100-10 3.94% 3.02% 2.74% 2.19%
784-200-10 3.13% 2.51% 2.15% 1.81%
784-500-10 2.96% 2.35% 2.08% 1.8%
784-200-200-10 3.04% 2.25% 2.42% 1.91%

Table 1: Classification error on the permutation invariant MNIST task (test set). Bold indicates online
trained spiking network

2.2 Spiking Networks Equipped with eRBP Learn with High Accuracy

We demonstrate eRBP in networks consisting of one and two hidden layers trained on permutation invariant
MNIST (Tab. 1) , although eRBP can in theory generalize to other datasets, tasks and network architectures
as well. Rather than optimizing for absolute classification performance, we compare to equivalent artificial
(non-spiking) neural networks trained with RBP and standard BP, with free parameters fine-tuned to
achieve the highest accuracy on the considered classification tasks (Tab. 1). On most network configurations
eRBP achieved performances equivalent to those achieved with RBP in artificial networks. When equipped
with probabilistic connections (peRBP) that randomly blank-out presynaptic spikes, the network performed
better overall. This is because, as learning progresses, a significant portion of the neurons tend to fire near
their maximum rate and synchronize their spiking activity across layers as a result of large synaptic weights
(and thus presynaptic inputs). Synchronized spike activity is not well captured by our rate model, which
is assumed by the eRBP (see Methods). Additive noise has relatively small effect when the magnitude of
the presynaptic input is large. However, multiplicative blank-out noise improves learning by introducing
irregularity in the presynaptic spike-trains even when presynaptic neurons fire regularly. Our previous work
[Neftci et al., 2016] suggested that the probabilistic connections implement DropConnect regularization
[Wan et al., 2013]. In contrast with [Wan et al., 2013], the probabilistic connections remain enabled
both during learning and inference because the network dynamics depend strongly on this stochasticity.
Interestingly, this type of “always-on” stochasticity also was argued to approximate Bayesian inference with
Gaussian processes [Gal and Ghahramani, 2015].

Overall, the learned classification accuracy is comparable with those obtained with offline training of
spiking neural networks (e.g. GPUs) using standard BP.

Transitions between two data samples of different class (digit) are marked by bursts of activity in the
error neurons (Fig. 1). To overcome this problem, weight updates were disabled the first 50ms after the new
digit onset. In future work involving practical applications on autonomous systems, it will be beneficial to
interleave learning and inference stages without explicitly controlling the learning rate. One way to achieve
this is to introduce a negative bias in the error neurons by means of a constant negative input and an equal
positive bias in the label neurons such that the error neuron can be only be active when an input label
is provided1. The same solution can overcome the perturbations caused by bursts of error activity during
digit transitions (see red and blue spikes in Fig. 1).

The presence of these bursts of error activity suggest that eRBP could learn spatiotemporal sequences
as well. However, learning useful latent representations of the sequences requires solving a temporal credit
assignment problem at the hidden layer – a problem that is commonly solved with gradient BP-through-
time in artificial neural networks [Rumelhart et al., 1988] – which could be tackled using synaptic eligibility
dynamics based on ideas of reinforcement learning [Sutton and Barto, 1998].

1Such logical “and” operation on top of a graded signal was previously used for conditional signal propagation in neuro-
morphic VLSI spiking neural networks [Neftci et al., 2013].

5



Figure 2: MNIST Classification error on fully connected artificial neural networks (BP and RBP) and on
spiking neural networks (eRBP and peRBP).
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Figure 3: Classification error in the 784-200-10 network as a function of the number of spikes in the
prediction layer, and total number of synaptic operations incurred up to each output spike. Horizontal line
is 2.85%. To obtain this data, the network was first stimulated with random patterns, and the spikes in
the output layer were counted after τsyn = 4ms.

2.3 Classification with Single Spikes is Highly Accurate and Efficient

The response of the 784-200-10 network after stimulus onset is about one synaptic time constant. Using
the first spike after 2τs = 8ms from the stimulus onset for classification leads to about 5% error (Fig. 3),
and improves steadily as the number output layer spikes increase.

In this example, classification using the first spike incurred about 100 k synaptic operations (averaged
over 10000 test samples), most of which occur between the data and the hidden layer (784 neurons and
200 neurons respectively). In existing dedicated neuromorphic hardware [Merolla et al., 2014; Park et al.,
2014; Qiao et al., 2015], the energetic cost of a synaptic operation is about 20pJ. On such hardware, single
spike classification in eRBP trained networks can potentially result in about 2µJ energy per classification.
This figure is comparable to the state-of-the-art in digital neuromorphic hardware (∼= 2µJ at this accuracy
[Esser et al., 2015]) and current GPU technology (> mJ). We note that no sparsity criterion was enforced
in this network. We expect that sparsity implemented explicitly using weight regularization or implicitly
using Dropout or DropConnect techniques [Baldi and Sadowski, 2013] can further reduce this energy, by
virtue of the lower activity in the hidden layer.

The low latency response with high accuracy may seem at odds with the inherent firing rate code
underlying the network computations (See Methods). However, a code based on the time of the first-spike
is consistent with a firing rate code, since a neuron with a high firing rate is expected to fire first [Gerstner
and Kistler, 2002]. In addition, the onset of the stimulus provokes a burst of synchronized activity, which
further favors the rapid onset of the prediction response. These results suggest that despite the underlying
firing rate code, eRBP can take advantage of the spiking dynamics, with classification accuracies comparable
to spiking networks trained exclusively for single-spike classification [Mostafa, 2016].

2.4 Spiking Networks Equipped with eRBP Learn Rapidly and Efficiently

The spiking neural network requires fewer iterations of the dataset to reach the peak classification perfor-
mance compared to the artificial neural network trained with batch gradient descent (Fig. 2). In minibatch
learning, weight updates are averaged across the minibatch. Batch or Minibatch learning improves learn-
ing speed in conventional hardware thanks to vectorization libraries or efficient parallelization with GPUs’
SIMD architecture, and lead to smoother convergence. However, this approach result in nbatch times fewer
weight updates per epoch compared to online gradient descent. In contrast, the spiking neuron network
is updated after each sample presentation, accounting in large part for the faster convergence of learning.
Other spiking networks trained online using stochastic gradient descent achieved comparable speedup [Lee
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et al., 2016; O’Connor and Welling, 2016]. These results are not entirely surprising since seminal work
in stochastic gradient descent established that, with suitable conditions on the learning rate, the solution
to a learning problem obtained with stochastic gradient descent is asymptotically as good as the solution
obtained with batch gradient descent [Le Cun and Bottou, 2004] for a given number of samples. Further-
more, for equal computational resources, online gradient descent can process more data samples [Le Cun
and Bottou, 2004], while requiring less memory for implementation. Thus, for an equal number of compute
operations per unit time, online gradient descent converges faster than batch learning. Standard artificial
neural networks can be trained using nbatch = 1, but learning becomes much slower on standard platforms
because the operations cannot be vectorized across data samples. (The converse is not true, however:
nbatch > 1 in spiking networks is non-local because it requires storing synaptic weight gradients.) It is for-
tunate that synaptic plasticity is an inherently “online” in the machine learning sense, given that potential
applications of neuromorphic hardware often involve real-time streaming data.

2.5 eRBP can Learn with low Precision, Fixed Point Representations

The effectiveness of stochastic gradient descent degrades when the precision of the synaptic weights using
a fixed point representation is smaller than 16 bits [Courbariaux et al., 2014]. This is because quantization
determines the smallest learning rate and bounds the range of the synaptic weights, thereby preventing
averaging the variability across dataset iterations. The tight integration of memory with computing circuits
as pursued in neuromorphic chip design is challenging due to space constraints and memory leakage. For this
reason, full precision (or even 16 bit) computer simulations of spiking networks may be unrepresentative of
performance that can be attained in dedicated neuromorphic designed due to quantization of neural states
and parameters, and synaptic weights.
Extended simulations suggest that the random BP performances at 10 bits precision is indistinguishable
from unquantized weights [Baldi et al., 2016], but whether this is the case for online learning was not yet
tested. Here, we hypothesize that 8 bit synaptic weight is a good trade-off between the ability to learn with
high accuracy and the cost of implementation in hardware. To demonstrate robustness to such constraints,
we simulate quantized versions of the eRBP network using low precision fixed point representations (8
bits per synaptic weight and 16 bits for neural states). Consistent with existing findings, our simulations
of eRBP in a quantized 784-100-10 network show that eRBP still performs reasonably well under these
conditions (Fig. 4). While many weights aggregate at the boundaries, a majority of them remain away
from the boundaries. Although the learned accuracies using quantized simulations fall slightly short of the
full precision ones, we emphasize that no specific rounding mechanisms [Muller and Indiveri, 2016] was used
to obtain these results and are expected to tighten this gap.

3 Discussion

The gradient descent BP rule is a powerful algorithm that is ubiquitous in deep learning, but when imple-
mented in a von Neumann or neural architecture, it relies on the immediate availability of network-wide
information stored with high-precision memory. More specifically, [Baldi et al., 2016] and [Lee et al., 2016]
list several reasons why the following requirements of gradient BP make them biologically implausible.
The essence of these difficulties is that gradient BP is non-local in space and in time when implemented
on a neural substrate, and requires precise linear and non-linear computations. The feedback alignment
work demonstrated that symmetric weights were not necessary for communicating error signals across lay-
ers. Here we demonstrated a learning rule inspired by Building on feedback alignment [Lillicrap et al.,
2016], and membrane voltage-gated plasticity rules, and three-factor synaptic plasticity rules proposed in
the computational neuroscience literature. With an adequate network architecture, we find that the spike-
based computations and the lack of general linear and non-linear computations and alternating forward
and backward steps does not prevent accurate learning. Although previous work overcome some of the
non-locality problems of gradient BP [Lee et al., 2016; Lillicrap et al., 2016; O’Connor and Welling, 2016],
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Figure 4: (Left) MNIST Classification error using a fully connected 784-100-10 network with quantized
synaptic weights and neural states (8 bits and 16 bits respectively) (Right). Histogram of synaptic weights
of the quantized network after training.

eRBP overcomes all of the key difficulties using a simple rule that incurs one addition and two comparisons
per synaptic weight update.

Taken together, our results suggest that general-purpose deep learning using streaming spike-event data
in neuromorphic platforms at artificial neural network proficiencies is realizable. To emphasize this, we
have implemented eRBP using a software simulations using fixed point, discrete-time dynamics, called the
neural and synaptic array transceiver. This simulator is compatible with a digital neuromorphic hardware
currently in development, the full details of which will be published elsewhere.

Our experiments target digital implementations of spiking neural networks with embedded plastic-
ity. However, membrane-voltage based learning rules implemented in mixed-signal neuromorphic hardware
[Huayaney et al., 2016; Qiao et al., 2015] are compatible with eRBP provided that synaptic weight updates
can be modulated by an external signal on a neuron-to-neuron basis. Following this route, and combined
with the recent advances in neuromorphic engineering and emerging nanotechnologies, eRBP can become
key to ultra low-power processing in space and power constrained platforms.

3.1 Why Neuromorphic Learning Machines?

Spiking neural networks, especially those based on the I&F neuron types severely restrict the possible com-
putations during learning and inference. With the wide availability of graphical processing units and future
dedicated machine learning accelerators, the neuromorphic spike-based approach more machine learning
tasks is often heavily criticized as being misguided. While this is true for some cases and on metrics based
on absolute accuracy at some standardized benchmark task, the premise of neuromorphic engineering, i.e.
that electronic and biological share similar constraints on communication, power and reliability [Mead,
1990], extend to the algorithmic domain. That is, accommodating machine learning algorithms within the
constraints ultra-low power hardware for adaptive behavior (i.e. embedded learning) is likely to result in
solutions for communication, computations and reliability that are in strong resemblance with how the
brain solves similar problems. In addition, the neuromorphic approach offers a few advantages over straight
artificial neural networks: 1) Asynchronous, event-based communication most often used in neuromorphic
hardware considerably reduce the communication between distributed processes, 2) Spiking networks nat-
urally exploit “rate” codes and “spike” codes where single spikes are meaningful, leading to fast and thus
power-efficient and gradual responses (Fig. 3, see also [O’Connor and Welling, 2016]).

One prominent example is the Binarized Neural Network (BNN) [Courbariaux and Bengio, 2016]. The
BNN is trained such that weights and activities are -1 or 1, which considerably reduces the energetic foot-
print of inference, because multiplications are not necessary and the memory requirements for inference
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are much smaller. The discrete, quantized dynamics used in this work and developed independently from
the BNN shares many similarities, such as binary activations (spikes), low-precision variables, and straight-
through gradient estimators. Our neurally inspired approach innovates several new features for binarized
networks: network activity is sparse and data-driven (asynchronous), random variables for stochasticity are
generated only when neurons spike, errors are backpropagated only for misclassified examples, and learning
is ongoing leading to accurate early single spike classification. Many other examples that led to the unprece-
dented success in machine learning were discovered independently of equivalent neural mechanisms, such as
normalization techniques for improving deep learning [Ioffe and Szegedy, 2015; Ren et al., 2016], attention,
short-term memory for learning complex tasks [Graves et al., 2014], and memory consolidation through
fast replays for reinforcement learning [Kumaran et al., 2016; Mnih et al., 2015]. The convergence between
the two approaches (neuromorphic vs. artificial) will not only improve the design of neuromorphic learning
machines, but can also widen the breadth of knowledge transfer between computational neuroscience and
deep learning.

3.2 Relation to Prior Work in Random Backpropagation

Our learning rule builds on the feedback alignment learning rule proposed in [Lillicrap et al., 2016], showing
that random feedback can deliver useful teaching signals by aligning the feed-forward weights with the feed-
back weights. The authors also demonstrated a spiking neural network implementing feedback alignment,
demonstrating that feedback alignment is able to implicitly adapt to random feedback when the forward and
backward pathways both operate continuously. However, their learning rule is not event-based as in eRBP,
but operates on a continuous-time fashion that is not directly compatible with spike-driven plasticity, and a
direct neuromorphic implementation thereof would be inadequate due to the high bandwidth communication
required between neurons. Furthermore, their model is a spike response model that does not emulate the
physical dynamics of spiking neurons such as I&F neurons. Another difference between eRBP and the
network presented in [Lillicrap et al., 2016] is that eRBP contains only one error-coding layer, whereas
feedback alignment contains one error-coding layer per hidden layer. Such direct feedback alignment was
recently proposed in [Nø kland, 2016] and [Baldi et al., 2016], and a theoretical analysis there showed that
gradient computed in this fashion point is within 90 degrees of the backpropagated gradient. [Baldi et al.,
2016] studied feedback alignment in the framework of local learning and the learning channel, and derived
several other flavors of random BP such as adaptive, sparse, skipped and indirect RBP, along with their
combinations. In related work, [Lee et al., 2014] showed how feedback weights can be learned to improve
the classification accuracy by training the feedback weights to learn the inverse of the feedforward mapping.

3.3 Relation to Prior Work in Spiking Deep Neural Networks

Several approaches successfully realized the mapping of pre-trained artificial neural networks onto spiking
neural networks using a firing rate code [Cao et al., 2014; Das et al., 2015; Diehl et al., 2015; Esser et al., 2016;
Hunsberger and Eliasmith, 2015; Marti et al., 2015; Neftci et al., 2014b; O’Connor et al., 2013; O’Connor
and Welling, 2016] Such mapping techniques have the advantage that they can leverage the capabilities of
existing machine learning frameworks such as Caffe [Jia et al., 2014] or Theano [Goodfellow et al., 2013] for
brain-inspired computers. More recently, [Mostafa, 2016] used a temporal coding scheme where information
is encoded in spike times instead of spike rates and the dynamics are cast in a differentiable form. As a
result, the network can be trained using standard gradient descent to achieve very accurate, sparse and
power-efficient classification. Although eRBP achieves comparable results, their approach naturally leads
to sparse activity in the hidden layer which can be more advantageous in large and deep networks.

An intermediate approach is to learn online with standard BP using spike-based quantization of net-
work states [O’Connor and Welling, 2016] and the instantaneous firing rate of the neurons [Lee et al.,
2016]. [O’Connor and Welling, 2016] eschews neural dynamics and instead operates directly on event-based
(spiking) quantizations of vectors. Using this representation, common neural network operations including
online gradient BP are mapped on to basic addition, comparison and indexing operations applied to streams
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of signed spikes. As in eRBP, their learning rule achieves better results when weight updates are made in an
event-based fashion, as this allows the network to update its parameters many times during the processing
of a single data sample. [Lee et al., 2016] propose a method for training spiking neural networks via a
formulation of the instantaneous firing rate of the neuron obtained by low-pass filtering the spikes. There,
quantities that can be related to the postsynaptic potential (rather than mean rates) are used to compute
the derivative of the activity of the neuron, which can provide a useful gradient for backpropagation. [Esser
et al., 2016] use multiple spiking convolutional networks trained offline to achieve near state-of-the-art clas-
sification in standard benchmark tasks. Their approach maps onto the all-digital spiking neural network
architecture using trinary weights. For the above approaches, the eRBP learning rule presented here can
be used as a drop-in replacement and can reduce the computational footprint of learning by simplifying
the backpropagated chain path and by operating directly with locally available variables i.e. membrane
potentials and spikes.

3.4 Relation to Prior Work in Spike-Driven Plasticity Rules

STDP has been shown to be very powerful in a number of different models and tasks [Neftci et al., 2014a;
Nessler et al., 2013; Thorpe et al., 2001]. Although the implementation of acausal updates (triggered by
presynaptic firing) is typically straightforward in cases where presynaptic lookup tables are used, the im-
plementation of causal updates (triggered by postsynaptic firing) can be challenging due to the requirement
of storing a reverse look-up table. Several approximations of STDP exist to solve this problem [Galluppi
et al., 2014; Pedroni et al., 2016], but require dedicated circuits.

Thus, there is considerable benefit in hardware implementations of synaptic plasticity rules that forego
the causal updates. Such rules, which we referred to as spike-driven plasticity, can be consistent with
STDP [Brader et al., 2007; Clopath et al., 2010; Qiao et al., 2015; Sheik et al., 2016a], especially when
using dynamical variables that are representative of the pre- and postsynaptic firing rates (such as calcium
or average membrane voltage).

A common feature among spike-driven learning rules is a modulation or gating with a variable that
reflects the average firing rate of the neuron for example through calcium concentration [Graupner and
Brunel, 2012; Huayaney et al., 2016] or the membrane potential [Clopath et al., 2010; Sheik et al., 2016a]
or both [Brader et al., 2007]. [Sheik et al., 2016a] recently proposed a membrane-gated rule inspired by
calcium and voltage-based rules with homeostasis for learning unsupervised spike pattern detection. Their
rule statistically emulates pairwise STDP using presynaptic spike timing only and using additions and
multiplications. Except for homeostasis, eRBP follows similar dynamics but potentiation and depression
magnitudes are dynamic and determined by external modulation, and comparisons are made on total
synaptic currents to avoid the effect of the voltage reset after firing.

The two compartment neuron model used in this work is motivated from conductance-based dynamics
in [Urbanczik and Senn, 2014] and previous neuromorphic realizations of two compartment mixed signal
spiking neurons [Park et al., 2014]. Although the spiking network used in this work is current-based rather
than conductance-based, eRBP shares strong similarities to the three-factor learning rule employed in
[Urbanczik and Senn, 2014]. The latter is composed of three factors: an approximation of the prediction
error, the derivative of the membrane potential with respect to the synaptic weight, and a positive weighting
function that stabilizes learning in certain scenarios. The first factor corresponds to the error modulation,
while the second and third factors roughly correspond to the presynaptic activity and the derivative of
the activation function. The differences between eRBP and [Urbanczik and Senn, 2014] (besides from the
random BP which was considered in [Lillicrap et al., 2016]) stems mainly from two facts: 1) the firing
rate description used here for simplicity and for easier comparisons between artificial neural networks and
spiking neural networks and 2) eRBP is fully event-based in the sense that weights are updated only when
the presynaptic neurons spike, in order to make memory and compute operations more efficient in hardware.
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4 Conclusions and Future Directions

This article demonstrates a local learning rule for deep, feed-forward neural networks achieving classification
accuracies on par with those obtained using equivalent machine learning algorithms. The learning rule
combines two features: 1) algorithmic simplicity: one addition and two comparisions per synaptic update
provided one auxiliary state per neuron and 2) Locality: all the information for the weight update is
available at each neuron and the synapse. The combination of these two features enables learning dynamics
for deep learning in neuromorphic hardware.

Existing literature suggests that that random BP also works for unsupervised learning [Baldi et al.,
2016; Lee et al., 2014] in deeper and convolutional networks. It can be reasonably expected that the deep
learning community will uncover many variants of random BP, including in recurrent neural networks
for sequence learning and memory augmented neural networks. In tandem with these developments, we
envision that such RBP techniques will enable the embedded learning of pattern recognition, attention,
working memory and action selection mechanisms which promise transformative hardware architectures for
embedded computing.

This work has focused on unstructured, feed-forward neural networks and a single benchmark task
across multiple implementations for ease of comparison. Limitations in deep learning algorithms are often
invisible on “small” datasets like MNIST [Liao et al., 2015]. Random BP was demonstrated to be effective in
a variety of tasks and network structures [Baldi et al., 2016; Liao et al., 2015], including convolutional neural
networks. Although random BP was reported to work well in this case [Liao et al., 2015], the parameter
sharing in convnets is inherently non-local. Despite this non-locality, neuromorphic implementation of
convnets are still possible in neuromorphic [Qiao et al., 2015] if presynaptic connectivity tables are stored
rather than postsynaptic tables.

5 Methods

5.1 Derivation of Event-driven Random Backpropagation

In artificial neural networks, the mean-squared cost function for one data sample in a single layer neural
network is:

L =
1

2

∑

i

e2i ,

ei = (yi − li),

(2)

where ei is the error of prediction neuron i, yi = φ(
∑

j wijxj) is the activity of the prediction neuron i

with activation function φ, x is the data sample and li is the label associated to the data sample. The task
of learning is to minimize this cost over the entire dataset. The gradient descent rule in artificial neural
networks is often used to this end by modifying the network parameters w in the direction opposite to the
gradient:

wij [t+ 1] = wij [t]− η
∂

∂wij
L,

where
∂

∂wij
L = φ′(

∑

j

wijxj)eixj .
(3)

where η is a small learning rate. In deep networks, i.e. networks containing one or more hidden layers, the
weights of the hidden layer neurons are modified by backpropagating the errors from the prediction layer
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using the chain rule:

∂

∂wl
ij

L = δlijy
l−1
j ,

where δlij = φ′(
∑

j

wl−1
ij yl−1

j )
∑

k

δl+1
ik wl+1

ik .
(4)

where the δ for the topmost layer is ei, as in Eq. (3) and y at the bottommost layer is the data x. This update
rule is the well-known gradient back propagation algorithm ubiquitously used in deep learning [Rumelhart
et al., 1988]. Learning is typically carried out in forward passes (evaluation of the neural network activities)
and backward passes (evaluation of the δs). The computation of the δ requires knowledge of the forward
weights, thus gradient BP relies on the immediate availability of a symmetric transpose of the network for
computing the backpropagated errors δlij . Often the access to this information funnels through the von
Neumann bottleneck, which dictates the fundamental limits of the computing substrate.

In the random BP rule considered here, the BP term δ is replaced with:

δlRBP = φ′(
∑

j

wl−1
ij yl−1

j )
∑

k

ekg
l
ik (5)

where glik are fixed random numbers. This backpropagated term does not depend on the previous layer
l + 1, and thus does not have a recursive structure as in standard BP (Eq. (4)) or feedback alignment
[Lillicrap et al., 2016]. This form was previously referred to as direct feedback alignment [Nø kland, 2016]
or skipped RBP [Baldi et al., 2016] and was shown to perform equally well on a broad spectrum of tasks.
A detailed justification of random BP is out of the scope of this article, and interested readers are referred
to [Baldi et al., 2016; Lillicrap et al., 2016; Nø kland, 2016].

In the context of models of biological spiking neurons, RBP is appealing because it circumvents the
problem of calculating the backpropagated errors and does not require bidirectional synapses or symmetric
weights. RBP works remarkably very well in a wide variety of classification and regression problems, using
supervised and unsupervised learning in feed-forward networks, with a very small penalty in accuracy.

The above BP rules are commonly used in artificial neural networks, where neuron outputs are repre-
sented as single scalar variables. To derive an equivalent spike-based rule, we start by matching this scalar
value is the neuron’s instantaneous firing rate. The cost function and its derivative for one data sample is
then:

Lsp =
1

2

∑

i

(νpi (t)− νli(t))
2

∂

∂wij
Lsp =

∑

i

ei(t)
∂

∂wij
ν
p
i (t)

(6)

where ei(t) is the error of prediction unit i and νp, νl are the firing rates of prediction and label neurons,
respectively.

Random BP (Eq. (5)) is straightforward to implement in artificial neural network simulations. However,
spiking neurons and synapses, especially with the dynamics that can be afforded in low-power neuromorphic
implementations typically do not have arbitrary mathematical operations at their disposal. For example,
evaluating the derivative φ can be difficult depending on the form of φ and multiplications between the
multiple factors involved in RBP can become very costly given that they must be performed at every
synapse for every presynaptic event.

In the following, we derive an event-driven version of RBP that uses only two comparisons and one
addition for each presynaptic spike to perform the weight update. The derivation proceeds as follows: 1)
Derive the firing rate ν, i.e the equivalent of φ in the spiking neural network, 2) Compute its derivative
∂

∂wij
νi(t), 3) Introduce modulation with a random linear combination of the classification error to the hidden

neurons, 4) Devise a plasticity rule that increments the weight with the product of the latter two factors
times the presynaptic activity.
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Activation Function of Spiking Neurons with Background Poisson Noise and its Derivative

The dynamics of spiking neural circuits driven by Poisson spike trains is often studied in the diffusion
approximation [Brunel, 2000; Brunel and Hakim, 1999; Deco et al., 2008; Fusi and Mattia, 1999; Renart
et al., 2003; Tuckwell, 2005; Wang, 1999]. In this approximation, the firing rates of individual neurons
are replaced by a common time-dependent population activity variable with the same mean and two-point
correlation function as the original variables, corresponding here to a Gaussian process. The approximation
is true when the following assumptions are verified: 1) the charge delivered by each spike to the postsynaptic
neuron is small compared to the charge necessary to generate an action potential, 2) the number of afferent
inputs to each neuron is large, 3) the spike times are uncorrelated. In the diffusion approximation, only
the first two moments of the synaptic current are retained. The currents to the neuron, I(t), can then be
decomposed as:

I(t) = µ+ ση(t), (7)

where µ = 〈I(t)〉 =
∑

j wjνj and σ2 = w2
bgνbg, where νbg is the firing rate of the background activity, and

η(t) is the white noise process. We restrict neuron dynamics to the case of synaptic time constants that are
much larger than the membrane time constant, i.e. τm ≪ τsyn, such that we can neglect the fluctuations
caused by synaptic activity from other neurons in the network i.e. σ is constant. Although the above
dynamics are not true in general, in a neuromorphic approach, the parameters can be chosen accordingly
during configuration or at design.

In this case, the neuron’s membrane potential dynamics is an Ornstein-Uhlenbeck (OU) process [Gar-
diner, 2012]. The stationary distribution of the freely evolving membrane potential (no firing threshold) is
a Gaussian distribution:

Vnt ∼ N(
µ

gL
,

σ2

2g2Lτm
). (8)

where gL is the leak conductance and τm is the membrane time constant. Although this distribution
is generally not representative of the membrane potential of the I&F neuron due to the firing threshold
[Gerstner and Kistler, 2002], the considered case τm ≪ τsyn yields approximately a truncated Gaussian
distribution, where neurons with Vnt > 0 fire at their maximum rate of 1

τrefr
. This approximation is less

exact for very large µ due to the resetting, but the resulting form highlights the essence of eRBP while
maintaining mathematical tractability. Furthermore, using a first-passage time approach, [Petrovici et al.,
2013] computed corrections that account for small synaptic time constants and the effect of the firing
threshold on this distribution.

The firing rate of neuron i is approximately equal to the inverse of the refractory period, νi = τ−1
refr

with probability P (Vnt,i(t + 1) ≥ 0|s(t)) and zero otherwise. The probability is equal to one minus the
cumulative distribution function of Vnt,i:

P (Vnt,i(t+ 1) ≥ 0|s(t)) = 1

2

(

1 + erf

(

µi(t)

σOU

√
2

))

,

where “erf” stands for the error function. The firing rate of neuron i becomes:

νi =
1

τrefr

1

2



1 + erf





√
τm

σ

∑

j

wijνj







 . (9)

For gradient descent, we require the derivative of the neuron’s activation function with respect to the
weight w. By definition of the cumulative distribution, this is the Gaussian function in Eq. (8) times the
presynaptic activity:

∂

∂wij
νi ∝

1

σOU

√
2π

exp(−µi(t)
2

2σ2
OU

)νj(t). (10)
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As in previous work [Neftci et al., 2014a], we replace νj(t) in the above equations with the presynaptic spike
train sj(t) to obtain an asynchronous, event-driven update, where the derivative is evaluated only when the
presynaptic neuron spikes. This approach is justified by the fact that the learning rate is typically small,
such that the event-driven updates are averaged at the synaptic weight variable [Gerstner and Kistler,
2002]. Thus the derivative becomes:

∂

∂wij
νi ∝

{

exp(−µi(t)
2

2σ2

OU

) if sj(t) = 1

0 otherwise
. (11)

In the considered spiking neuron dynamics, the Gaussian function is not directly available. Although,
a sampling scheme based on the membrane potential to approximate the derivative is possible, here we
follow a simpler solution: Backed by extensive simulations, and inspired by previously proposed learning
rules based on membrane potential gated learning rules [Brader et al., 2007; Clopath et al., 2010; Sheik
et al., 2016a], we find that replacing the Gaussian function with a boxcar function Θ operating on the
total synaptic input, I(t), with boundaries bmin and bmax yields results that are as good as using the exact
derivative. With appropriate boundaries, Θ(I(t)) can be interpreted as a piecewise constant approximation
of the Gaussian function2 since I(t) is proportional to its argument

∑

j wijνj , and has the advantage that
an explicit multiplication with the modulation is unnecessary in the random BP rule (explained below).

∂

∂wij
νi ∝

{

1 if sj(t) = 1 and bmin < Ii(t) < bmax

0 otherwise
(12)

The resulting derivative function is similar in spirit to straight-through estimators used in machine learning
[Courbariaux and Bengio, 2016].

Derivation of Event-Driven Random Backpropagation

For simplicity, the error ei(t) is computed using a pair of spiking neurons with a rectified linear activation
function. One neuron computes the positive values of ei(t), while the other neuron computes the negative
values of ei(t) such that:

νE+
i (t) ∝ ν

p
i (t)− νli(t),

νE−

i (t) ∝ −νpi (t) + νli(t).
(13)

Each pair of error neurons synapse with a leaky dendritic compartment U of the hidden and prediction
neurons using equal synaptic weights with opposite sign, generating a dendritic potential proportional to
(νE+

i (t)− νE−

i (t)) ∼= ei. Several other schemes for communicating the errors are possible. For example an
earlier version of eRBP used on a positively biased error neuron per class (rather than a positive negative
pair as above) such that the neuron operated (mostly) in the linear regime. This solution led to similar
results but was computationally more expensive due to error neurons being strongly active even when the
classification was correct. Population codes of heterogeneous neurons as in [Eliasmith and Anderson, 2004;
Salinas and Abbott, 1994] may provide even more flexible dynamics for learning. The weight update for
the last layer becomes:

∆wij ∝
{

−ei(t) if shj (t) = 1 and bmin < Ii < bmax

0 otherwise
. (14)

The weight update for the hidden layers is similar, except that a random linear combination of the error
is used instead of ei:

∆wC
ij ∝

{

−
∑

k gike
E
k (t) if sCj (t) = 1 and bmin < Ii < bmax

0 otherwise
. (15)

2or equivalently, for the purpose of the derivative evaluation, the activation function is approximated as a rectified linear
with hard saturation at τ

−1

refr, also called “hard tanh” in the machine learning community.
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where C = {d, h}. All weight initializations are scaled with the number of rows and the number of columns

as gik ∼ U(
√

6
NE+NH

) , where NE is the number of error neurons and NH is the number of hidden neurons.

In the following, we detail the spiking neuron dynamics that can efficiently implement eRBP.

5.2 Spiking Neural Network and Plasticity Dynamics

The network used for eRBP consists of one or two feed-forward layers (Fig. 1) with Nd “data” neurons, Nh

hidden neurons and Np prediction neurons. The top layer, labeled P , is the prediction. The feedback from
the error population is fed back directly to the hidden layers‘ neurons. The network is composed of three
types of neurons:
1) Error-coding neurons are non-leaky I&F neurons following the linear dynamics:

C
d

dt
V E+
i = wL+(sPi (t)− sLi (t))

if V E+ > V E
T then V E+ ← V E+ − V E

T ,

(16)

where sPi (t) and sLi (t) are spike trains from prediction neurons and labels (teaching signal). To prevent
negative runaway dynamics, a rigid boundary at zero is imposed. In addition, the membrane potential is
lower bounded to V E

T . Each error neuron has one counterpart neuron with weights of opposite sign, i.e.
wL− = −wL+ to encode the negative errors. The firing rate of the error-coding neurons is proportional
to a linear rectification of the inputs. For simplicity, the label spike train is regular with firing rate equal
to τ−1

refr. When the prediction neurons classify correctly, (sPi (t) − sLi (t))
∼= 0, such that the error neurons

remain silent.
2) Hidden neurons follow current-based leaky I&F dynamics:

C
d

dt

(

V h
i

Uh
i

)

= −
(

gV V
h
i

gUU
h
i

)

+

(

Ihi + σwη
h
i (t)

∑NL

k=1 g
E+
ik sE+

k (t)− gE−

ik sE−

k (t)

)

τsyn
d

dt
Ihi = −Ihi +

Nd
∑

k=1

wd
iks

d
k(t)ξ(t) +

Nh
∑

j=1

wh
ijs

h
j (t)ξ(t)

if Vi(t) > VT then V h
i ← 0 during refractory period τrefr.

(17)

where sdk(t) and shj (t) are the spike trains of the data neurons and the hidden neurons, respectively, Ih are

current-based synapse dynamics, σws
bg
i (t) a Poisson process of rate 1kHz and amplitude σw, and ξ is a

stochastic Bernouilli process with probability p (indices i, j are omitted for clarity). The Poisson process
simulates background Poisson activity and contributes additively to the membrane potential, whereas the
Bernouilli process contributes multiplicatively by randomly “blanking-out” the proportion (1 − p) of the
input spikes. In this work, we consider feed-forward networks, i.e the weight matrix wh is restricted to be
upper diagonal. Each neuron is equipped with a separate “dendritic” compartment Uh

i following similar
subthreshold dynamics as the membrane potential and where sE(t) is the spike train of the error-coding
neurons and gEij is a fixed random matrix. The dendritic compartment is not directly coupled to the

“somatic” membrane potential V h
i , but indirectly through the learning dynamics. For every hidden neuron

i,
∑

j w
E
ij = 0, ensuring that the spontaneous firing rate of the error-coding neurons does not bias the

learning. The synaptic weight dynamics follow a dendrite-modulated and gated rule:

d

dt
wh
ij = ηUh

i Θ(Ihi )s
h
j (t). (18)

where Θ is a boxcar function with boundaries bmin and bmax.
3) Prediction neurons, synapses and synaptic weight updates follow the same dynamics as the hid-

den neurons except for the dendritic compartment, and one-to-one connection with pairs of error-neurons
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Figure 5: Neural states and synaptic weight of the prediction neuron after 500 training examples. (top)
Somatic membrane potential dynamics of prediction neuron 0, where output spikes are superimposed as
grey vertical bars. (Middle-top) Dendritic membrane potential, where blue and red bars indicate negative
error neuron 0 spikes and positive error neuron 0 spikes, respectively. In the time range (500,750), the
digit 0 is presented to the network. (Middle-bottom) Total synaptic current of prediction neuron 0, where
superimposed vertical bars are presynaptic spikes of hidden neuron 32. The green shaded area (bmin, bmax)
corresponds to the plasticity-enabled region, i.e. the approximate derivative function Θ(Ip(t)). (Bottom)
Synaptic weight between hidden neuron 32 and prediction neuron 0.

associated to the same class:

C
d

dt

(

V P
i

UP
i

)

= −
(

gV V
P
i

gUU
P
i

)

+

(

IPi + σwη
P
i (t)

wEsE+
i (t)− wEsE−

i (t)

)

. (19)

The spike trains at the data layer were generated using a stochastic neuron with instantaneous firing
rate (exponential hazard function [Gerstner and Kistler, 2002] with absolute refractory period):

νd(d, t− t′) =

{

0 if t− t′ < τrefr

τ−1
refr exp(βd+ γ) t− t′ ≥ τrefr

, (20)

where d is the intensity of the pixel (scaled from 0 to 1), and t′ is the time of the last spike. Although
neurons with I&F neuron dynamics similar to the prediction and hidden neurons could be employed here,
we assumed that data will be provided by external sensors in the form of spike trains that do not necessarily
follow I&F dynamics. Fig. 5 illustrates the neural dynamics in a prediction neuron, in a network trained
with 500 training samples (1/100 of an epoch).

5.2.1 Stochastic, blank-out Synapses and peRBP

In practice, we find that neurons tend to strongly synchronize in late stages of the training. The analysis
provided above does not accurately describe synchronized dynamics, since one of the assumptions for the
diffusion approximation is that spike times are uncorrelated. Multiplicative stochasticity was previously
shown to be beneficial for regularization and decorrelation of spike trains, while being easy to implement
in neuromorphic hardware [Neftci et al., 2016]. Following the ideas of synaptic sampling [Neftci et al.,
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2016], we find that replacing the background Poisson noise with multiplicative, blank-out noise [Vogelstein
et al., 2002] at the plastic synapses slightly improves the results and mitigates the energetic footprint of
the stochasticity [Sheik et al., 2016b].

5.3 Quantized, Discrete-time dynamics

In order to demonstrate the effectiveness of eRBP in dedicated digital hardware with realistic constraints
on precision and limited computations, we created a simulation of a digital neuromorphic learning core.
The hardware simulator is a bit-accurate, fixed point emulation of a spiking neural network implemented
on a digital hardware platform for ultra-efficient and flexible learning dynamics that is currently under
development. Full details of the model and its architecture will be discussed elsewhere. Here, we describe
the subset of the model dynamics necessary for peRBP. The dynamics of the neuron i implemented at the
hidden layer is the following:

V h
i [t+ 1] = V h

i [t]−m(aV ⋄ V h
i [t], V

h
i [t]) + aIV ⋄ Ii + bV

Uh
i [t+ 1] = Uh

i [t]−m(aU ⋄ Uh
i [t], U

h
i [t]) +

∑

j

gU ⋄ wE
ij [t]s

E
j [t]

Ihi [t+ 1] = Ihi [t]−m(asyn ⋄ Ihi [t], Ihi [t]) +
∑

j

gI ⋄ wh
ij [t]ξ[t]s

h
j [t] +

∑

j

gI ⋄ wd
ij [t]ξ[t]s

d
j [t]

if V h
i [t+ 1] ≥ VT , s

h
i [t+ 1]← 1 and V h

i [t+ 1]← Vreset

if V h
i [t+ 1] < VT , s

h
i [t+ 1]← 0

(21)

where the fourth and fifth line account for thresholds, resets, and spiking outputs si. sdj [t], s
h
j [t], s

h
j [t], and

sEj [t] ∈ {0, 1} are the spiking output of the input (data), hidden, and error-coding neurons i at time t,
respectively. Indices from ξ[t] were dropped for clarity, and every instance of ξ[t] in the equations above
refers to an independent and identically distributed Bernouilli draw with probability p. The terms gU and
gI are weight gain factors used to adjust the range of the synaptic weights.

Parameters a, including aV aU asyn, and aIV are integers implementing the coupling between and within
the states V , U and I. The ⋄ operator is a custom bit shift that performs multiplication by powers of two
and that can be implemented using only bitwise operations:

function a ⋄ x
if a ≥ 0 then return x≪ a,
else if a < 0 then return sign(x)(|x| ≫ −a),
end if

end function

The reason for using ⋄ rather than left and right bit shifting is because integers stored using a two’s
complement representation have the property that right shifting by a of values such that x > −2a′ , ∀a′ < a

is −1, whereas 0 is expected in the case of a multiplication by 2−a. The ⋄ operator corrects this problem
by modifying the bit shift operation such that −2a′ ⋄ a = 0, ∀a′ < a. Furthermore, such multiplications by
powers of 2 have the advantage that fewer bits are required to store parameters on a logarithmic scale, which
is a natural parametrization for such linear difference equations. A similar operation was used in the BNN
[Courbariaux and Bengio, 2016] for an approximate power-of-two operation, although in our simulations,
the first argument a is considered constant.

The function m(·, ·) defined as

function m(x, y)
if y 6= 0 and x = 0 then return sign(−x),
else return x,
end if

end function
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ensures that all states leak towards zero in the absence of external drive.
Weight dynamics are implemented as:

wh
ij [t+ 1] = Clip(wh

ij [t] + η ⋄ Uh
i [t]Θ(Ihi [t])sj [t],−128, 128), (22)

where Clip clips the weights higher than 128 and lower than -128. Dynamics for the prediction neurons were
the same except that they reflected the connectivity of the output layer. Positive error neurons followed
the following dynamics:

V E
i [t+ 1] = V E

i [t]−m(aV ⋄ V E
i [t], V E

i ) + (gE ⋄ wL)(sPi (t)− sLi (t))

if V E
i [t+ 1] ≥ V E

T , sEi [t+ 1]← 1 and V E
i [t+ 1]← V E

i [t+ 1]− V E
T

if V E
i [t+ 1] < V E

T , sEi [t+ 1]← 0,

(23)

As for continuous dynamics, negative error neurons follow the exact same dynamics with wL of opposite
sign and error neuron membrane voltages are lower bounded to zero.

For data neurons, input spike trains were generated as Poisson spike trains with rate γd, where d is
the pixel intensity. For label neurons, input spikes were regular, i.e. spikes were spaced regularly with
interspike interval τ−1

refr

In the simulations used for eRBP, all states V , U and I and parameters were stored in 16 bit fixed
point precision (ranging from -32768 to 32767), except for synaptic weights which were stored with 8 bit
precision (ranging from -128 to 128) and coupling parameters were stored with 5 bits precision (from 0 to
32).

5.4 Experimental Setup and Software Simulations

We trained fully connected feed-forward networks MNIST hand-written digits, separated in three groups,
training, validation, and testing (50000, 10000, 10000 samples respectively). During a training epoch, each
of the training digits were presented in sequence during 250ms. We tested eRBP using two configurations:
one with additive noise (σw > 0, p = 1, labeled eRBP), and one with multiplicative noise implemented as
blank-out noise on the connections (blank-out probability p < 1 and σw = 0, labeled peRBP). To prevent
the network from learning (spurious) transitions between digits, the synaptic weights did not update in the
first 50ms window of each digit presentation.
We tested eRBP training on two different implementations: 1) Spiking neural network based on the Auryn
simulator [Zenke and Gerstner, 2014], and 2) Hardware compatible simulator with quantized neural states
and weights. Results are compared against GPU implementations of RBP and standard BP performed in
Theano [Bergstra et al., 2010] using an equivalent, non-spiking neural network. Besides layered connectiv-
ity, all networks were unstructured (e.g. no convolutions or poolings).
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Nd Number of data neurons all networks 784
Nh Number of hidden neurons Variable
Nl Number of label neurons all networks 10
NE+ Number of positive error neurons all networks 10
NE− Number of negative error neurons all networks 10
Np Number of prediction neurons all networks 10
σ Poisson noise weight eRBP 50 · 10−3 nA

peRBP 0 · 10−3 nA
p Blank-out probability eRBP 1.0

peRBP .65
τrefr Refractory period Prediction and hidden neurons 3.9ms

Data neurons 4.0ms
τsyn Synaptic Time Constant all synapses 4ms
gV Leak conductance state V Prediction and hidden neurons 1 nS
gU Leak conductance state U Prediction and hidden neurons 5 nS
C Membrane capacitance all neurons 1 pF
VT Firing threshold Prediction and Hidden neurons 100mV
V E
T Error neurons 100mV

Ntrain Number of training samples used all figures 50000
Ntest Number of training samples used Tab. 1 eRBP, peRBP 10000

Tab. 2 eRBP, peRBP 1000
Tab. 2 RBP, BP 10000

Ttrain Training sample duration all models 100mV
Ttest Testing sample duration Tab. 1,Fig. 3 500ms

Tab. 2 250ms

wh, wd, wp, g Initial weight matrix RBP, BP U(
√

6
#rows+#cols

)

eRBP U(
√

6
#rows+#cols

)nA

peRBP U(
√

7
#rows+#cols

)nA

wE eRBP, peRBP 90 · 10−3nA
wL+ eRBP, peRBP 90 · 10−3nA
wL− eRBP, peRBP −90 · 10−3nA
bmin eRBP, peRBP −1.15 nA
bmax eRBP, peRBP 1.15 nA
β Data neuron input scale eRBP, peRBP .5
γ Data neuron input threshold eRBP, peRBP −.215
Tsim Simulation time per epoch all models 100 s
ǫ Learning Rate eRBP 6 · 10−4

peRBP 10 · 10−4

RBP, BP 1 hidden layer .4
RBP, BP 2 hidden layers .5

nbatch Batch size RBP, BP 100

Table 2: Parameters used for the continuous-time spiking neural network simulation implementing eRBP.
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aV , aU , asyn, aIV State Couplings Hidden and prediction neurons −3,−7,−6, 4
gV , gU , gI , gE Synaptic weight gain factors −3,−7,−6, 4
VT Firing threshold Prediction and hidden neurons 32797
V E
T Firing threshold Error neurons 1025

bV Bias Prediction and hidden neurons 1000
Vreset Reset Voltage Prediction and hidden neurons 32796
p Blank-out probability all plastic synapses .6
η Learning rate all neurons −10
τrefr Refractory period Prediction and hidden neurons 39

Data neurons 40
Tsim Simulation time per epoch all models 90 · 106
Ttrain Training sample duration all models 1500
Ttest Testing sample duration all models 3000
bmin eRBP lower bound all plastic synapses −2560
bmax eRBP upper bound all plastic synapses 2560
β Data neuron input scale data neurons 25
nbatch Batch size All GPU (Theano) simulations 100

Table 3: Parameters used for the discrete-time spiking neural network simulation implementing eRBP.
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