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Abstract

Semantic scripts is a conceptual represen-

tation which defines how events are orga-

nized into higher level activities. Practi-

cally all the previous approaches to induc-

ing script knowledge from text relied on

count-based techniques (e.g., generative

models) and have not attempted to compo-

sitionally model events. In this work, we

introduce a neural network model which

relies on distributed compositional repre-

sentations of events. The model captures

statistical dependencies between events in

a scenario, overcomes some of the short-

comings of previous approaches (e.g., by

more effectively dealing with data spar-

sity) and outperforms count-based coun-

terparts on the narrative cloze task.

1 Introduction

It is generally believed that the lack of knowl-

edge on how individual events are organized into

higher-level scenarios is one of the major obstacles

for natural language understanding. Texts often

do not provide a detailed specification of underly-

ing events as writers rely on the ability of humans

to read between the lines or, more specifically, on

their common sense knowledge of underlying sce-

narios. For example, going to a restaurant involves

entering the restaurant, getting seated, making an

order and so on. Consequently, when describing

a visit to a restaurant, a writer will not specify all

the events, as they are obvious to the reader. This

kind of knowledge is typically refereed to as se-

mantic scripts (Schank and Abelson, 1977), and,

in this work, will aim to capture some aspects of

this knowledge within our probabilistic model.

Early work on scripts focused on manual

construction of knowledge bases and rule-based

systems for inference using these knowledge

bases (Schank and Abelson, 1977). More re-

cent approaches relied on automatically learning

script knowledge either from crowd-sourced or

naturally-occurring texts (Chambers and Jurafsky,

2008; Regneri et al., 2010; Modi and Titov, 2014;

Frermann et al., 2014; Jans et al., 2012; Pichotta

and Mooney, 2014; Rudinger et al., 2015a).

Most of these methods represent events as ver-

bal predicates along with tuples of their immediate

arguments (i.e. syntactic dependents of the pred-

icate). These approaches model statistical depen-

dencies between events (or, more formally, men-

tions of events) in a document, often restricting

their model to capturing dependencies only be-

tween events sharing at least one entity (a common

protagonist). We generally follow this tradition in

our approach.

Much of this previous work has focused on

count-based techniques using, for example, either

the generative framework (Frermann et al., 2014)

or relying on information-theoretic measures such

as pointwise mutual information (PMI) (Chambers

and Jurafsky, 2008). Some of these techniques

treat predicate-argument structures as an atomic

whole (e.g., Pichotta and Mooney (2014)), in other

words their probability estimates are based on co-

occurrences of entire (predicate, arguments) tu-

ples. Clearly such methods fail to adequately take

into account compositional nature of expressions

used to refer to events and suffer from data spar-

sity.

In this work our goal is to overcome the short-

comings of the count-based methods described

above by representing events as real-valued vec-

tors (event embeddings), with the embeddings

computed in a compositional way relying on the

predicate and its arguments. These embeddings

capture semantic properties of events: events

which differ in surface forms of their constituents
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but are semantically similar will get similar em-

beddings. The event embeddings are used and es-

timated within our probabilistic model of seman-

tic scripts. We evaluate our model on predicting

left-out events (the narrative cloze task) where it

outperforms existing count-based methods.

2 Background

The general idea in the previous count based meth-

ods is to collect events sequences for an entity

from the corpus (referred as a script). An entity is

typically a noun/pronoun describing a person, lo-

cation or temporal construct mentioned in a docu-

ment. A document is parsed using a statistical de-

pendency parser. Then, the document is processed

with a coreference resolution system, linking all

the mentions of an entity in the document. Infor-

mation from the parser and the coreference system

is used to collect all the events corresponding to an

entity. Different systems differ on how they rep-

resent an event. We later explain in detail these

event representation differences. The process de-

scribed above is repeated for all the documents in

the corpus to collect event chains for each of the

entities. The collected event sequences are used

to build different statistical script models. These

script models are typically evaluated using a nar-

rative cloze test as explained in section 3. In the

cloze test, an event is removed from an event chain

and the task is to predict the missing event.

As described above different script models dif-

fer in, how they represent an event. Chambers and

Jurafsky (2008), Jans et al. (2012) and Rudinger

et al. (2015a) represent an event as verb depen-

dency type (for example subject, object etc) pair.

Using dependency parser and coreference system,

they collect verbs governing entity mentions, this

chain of verbs along with corresponding depen-

dency, forms the event chain. Recently, Pichotta

and Mooney (2014) extended the concept of an

event to include multiple arguments. In their

model, an event is a tuple v(es, eo, ep), where, en-

tities es, eo and ep are arguments with subject, ob-

ject and prepositional relation with the governing

verb v. A multi-argument event model encodes

a richer representation of events. They have em-

pirically show the advantages of having multiple

arguments in an event. In our work, we follow the

event definition of Pichotta and Mooney (2014)

and include multiple arguments in an event.

One of the disadvantage of the count based

models described above is poor event representa-

tions. Due to these impoverished representations,

these models fail to take into account composi-

tional nature of an event and suffer from sparsity

issues. These models treat verb-argument pair as

one unit and collect chains of verb-arguments pair

observed during training. Verb-arguments com-

binations never observed during training are as-

signed zero (or very small, if model is smoothed)

probability, even if these are semantically similar

to the ones in training. These models fail to ac-

count for semantic similarity between individual

components (verbs and arguments) of an event.

For example, events cook(John,spaghetti,dinner)

and prepared(Mary,pasta,dinner) are semantically

very similar but count based models would not

take this into account unless both events occur

in similar context. Due to sparsity issues, these

models can fail. This can be exemplified as fol-

lows. Suppose the following text is observed dur-

ing model training :

John cooked spaghetti for dinner. Later, John

ate dinner with his girlfriend. After dinner, John

took a dog for a walk. After 30 minutes, John came

home. After a while, John slept on the bed.

Event sequence (script) corresponding to the

above story is:

cook(john,spaghetti,dinner)→eat(john,dinner,girlfriend)→

take(john,dog,walk)→come(john,home)→sleep(john,bed)

Suppose during testing the following event

sequence is observed :

prepared(mary,pasta,dinner)→eat(mary,dinner,boyfriend)→

take(mary,cat,walk)→ ? →sleep(mary, couch)

The model is required to guess the missing

event marked with ‘?’. A count-based model

would fail if it never encountered the same events

during training. It would fail to take into account

the semantic similarity between words prepared

and cook, dog and cat.

A related disadvantage of a count based script

models is that they suffer from the curse of dimen-

sionality (Bengio et al., 2001). Since these meth-

ods are based on co-occurrence counts of events,

the number of instances required to model the joint

probability distribution of events grows exponen-

tially. For example, if event vocabulary size is 10

and number of events occurring in a chain are 5,

then number of instances required to model the

joint distribution of events is 510 − 1. This is so

because the number of instances required are di-
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rectly proportional to number of free parameters

in the model.

To counter the shortcomings of count based

script models, we propose a script model based

on distributed representations (Bengio et al., 2001;

Turian et al., 2010; Collobert et al., 2011). Our

model tries to overcome the curse of dimension-

ality and sparsity by representing events as vec-

tor of real values. Both verbs and arguments are

represented as a vector of real values (a.k.a em-

beddings). Verb and argument embeddings are

composed to get event vector (event embedding).

The model automatically learns these embeddings

from the data itself and in the process encodes se-

mantic properties in the event representations.

3 Tasks Definition

One of the standard tasks used for evaluating

script models is Narrative Cloze (Chambers

and Jurafsky, 2008; Jans et al., 2012; Pichotta

and Mooney, 2014; Rudinger et al., 2015a).

Origins of narrative cloze lie in psychology

where it was used to assess child’s ability to fill

in missing word in a sentence (Taylor, 1953).

In our setting the cloze task is described as

follows : given a sequence of events with an

event removed from the sequence, guess the

missing event. For example, given the sequence

cook(john,spaghetti,dinner)→eat(john,dinner,girlfriend)→

take(john,dog,walk)→?→sleep(john,bed) , predict the

event that should come at position marked by ?

Narrative cloze task evaluates models for exact

correctness of the prediction. It penalizes predic-

tions even if they are semantically plausible. It

would be more realistic to evaluate script models

on a task that gives credit for predicting seman-

tically plausible alternatives as well. We propose

adversarial narrative cloze task. In this task, the

model is shown two event sequences, one is the

correct event sequence and another is same se-

quence but with one event replaced by a random

event. The task is to guess which of the two, is the

correct event sequence. For example, given two

sequences below, the model should be able to dis-

tinguish the correct event sequence from the incor-

rect one. Interestingly, Manshadi et al. (2008) also

propose a similar task for evaluating event based

language model and they refer to it as event order-

ing task. As explained in section 5, we evaluate

our model on both the tasks: narrative cloze and

adversarial narrative cloze.

embarked batmobilesubj

predicate embedding 

event embedding

dep embedding

Ta1 Rp Ta2

e

a1 = Csubj a2 = Cbatmobilep = Cembark

arg embedding

hidden layerh

Ah

Figure 1: Computation of an event representa-

tion for a predicate with dependency and an ar-

gument (subj (batman) embarked batmobile), an

arbitrary number of arguments is supported by our

approach.

Correct:

cook(john,spaghetti,dinner)→eat(john,dinner,girlfriend)

→take(john,dog,walk)→come(john,home)→sleep(john,bed)

Incorrect:

cook(john,spaghetti,dinner)→eat(john,dinner,girlfriend)

→take(john,dog,walk)→play(john,tennis)→sleep(john,bed)

4 Script Model

We propose a probabilistic model for learning a

sequence of events corresponding to a script. The

proposed model predicts the event incrementally.

It first predicts a verbal predicate, followed by pro-

tagonist position (since the protagonist argument

is already known) and followed by remaining ar-

guments. We believe this is more natural way of

predicting the event as opposed to predicting the

complete event, treating it as an atomic unit. The

information about the predicate influences the pos-

sible arguments that could come next due to selec-

tional preferences of the verb.

As done in previous work, (Chambers and

Jurafsky, 2008; Jans et al., 2012; Pichotta and

Mooney, 2014; Rudinger et al., 2015a) each event

in a sequence of events has a common entity (pro-

tagonist) as one of the argument. We represent an

event as a tuple v(d, a(1), a(2)) where v is the ver-

bal predicate, d is the position (subj, obj or prep)

of the protagonist, a(1) and a(2) are the other de-

pendent arguments of the verb. We marked absent

argument as ‘NULL’.
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Figure 2: Model for learning event sequence. Here, we are given sequence of events

e1, e2, ....., ek−1, ek, ek+1. Event ek is removed from the sequence and it is predicted incrementally.

4.1 Event Representation

For event representation, one could use a sophis-

ticated compositional model based on recursive

neural networks (Socher et al., 2012) , we take a

simpler approach and choose a feedforward net-

work based compositional model as this is eas-

ier to train and more robust to choice of hyper-

parameters. Our event representations model is

inspired from the event ordering model of Modi

and Titov (2014). Their model uses distributed

word representations for representing verb and ar-

gument lemmas constituting the event. Distributed

word representations (also known as word embed-

dings) encode semantic and syntactic properties of

a word in a vector of real values (Bengio et al.,

2001; Turian et al., 2010; Collobert et al., 2011).

Word embeddings have been shown to be benefi-

cial in many NLP applications Turian et al. (2010);

Collobert et al. (2011).

The event model is a simple compositional

model representing an event. The model is shown

in Figure 1. Given an event, e = (v, d, a1, a2),
(here v is the predicate lemma, d the dependency

and a1, a2 are corresponding argument lemmas),

each lemma (and dependency) is mapped to a vec-

tor using a lookup matrix C. For example, a par-

ticular row number of C, corresponding to index

of a predicate in the vocabulary, gives the embed-

ding for the predicate. These constituent embed-

dings are projected into same space by multiplying

with respective projection matrices R (for predi-

cates) and T (for arguments). Hidden layer h is

obtained by applying a nonlinear activation func-

tion (tanh in our case). Final event representation

e is obtained by projecting the hidden layer using a

matrix A. Formally, event representation is given

by e = A∗tanh(T ∗Ca1,:+R∗Cv,:+T ∗Ca2,:)+b.

All the projection matrices (R, T,A) and lookup

matrix C are learned during training. We also ex-

perimented with different matrices T for subject

and object positions, in order to take into account

the positional information. Empirically, this had

negligible effect on the final results.

4.2 Event Sequence Model

A good script model should capture the mean-

ing as well as the statistical dependencies between

events in an event sequence. More importantly,

the model should be able to learn these represen-

tations from unlabeled script sequences available

in abundance.

We propose a neural network based probabilis-

tic model for event sequences, for learning event

sequence as well as the event representations. The

model is shown in Figure 2. The model is trained

by predicting a missing event in an event se-

quence. During training, a window (size = 5 =

3*2 + 1) is moved over all events in each event se-

quence corresponding to each entity. The event in

window’s center is the event to be predicted and

events on the left and right of the window are the

context events. As explained earlier, the missing

event is predicted incrementally, beginning with

a predicate, followed by the protagonist position,

followed by other participants in the event.

In order to get an intuition how our model pre-

dicts an event, consider the following event se-

quence in a script, with a missing event : (e1 →
e2 · · · → ek−1 → ? → ek+1 → . . . en ). We
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would like to predict the missing event, say ek.

The event model is used to obtain event repre-

sentations for each event in the context. These

event representations are then composed into con-

text representation by summing the representation

for each of the event in the context. We sum the

representations, as this formulation works well in

practice. The desired event ek is predicted incre-

mentally, beginning with the predicate p for ek.

The context embedding is used to predict the ver-

bal predicate via a hidden layer followed by a

multiclass logistic regression (softmax) classifica-

tion. Next, the protagonist position d (subject, ob-

ject etc) is predicted. For predicting d, the con-

text embedding and the predicate embedding (cor-

responding to the predicate predicted in previous

step) are linearly combined to be given as input

to a hidden layer. This is followed by regular

softmax prediction. Similarly, arguments are pre-

dicted. For each of the argument, predicate em-

bedding and the previous prediction (position or

argument) are linearly combined with the context

embedding. If at each prediction stage we used

gold predicate/position/argument embedding for

linearly combining with context embedding, our

model would not be robust to wrong predictions

during testing. Using the embeddings correspond-

ing to predicted unit would make the model robust

against noise and would help the model to partially

recover from wrong predictions during testing.

We train the model by minimizing the negative

likelihood function for the event prediction. For-

mally, we minimize the objective function −J(Θ)
as shown in equation 1 and 2. As shown in equa-

tion 3, we factorize the event distribution into con-

stituents, making appropriate independence as-

sumptions as explained earlier. Each of the factor

is a multiclass logistic regression (softmax) func-

tion. Equation 4 illustrates the probability distri-

bution for the predicate given the context. Here,

uvi
is the word embedding for the predicate vi,

E is the context embedding and bvi
is the bias.

Probability distributions for arguments has simi-

lar form and are not shown here due to space con-

straints.

Θ = {C, T, R, A, Cp, Cf , We, Wp, Ws, Wo,

Wpr, W
(in)
p , W

(in)
s , W

(in)
o , W

(in)
pr , B} is the pa-

rameter vector to be learned. Parameters are

learned using mini-batch (size=1000) stochastic

gradient descent with adagrad (Duchi et al., 2011)

learning schedule. During training, the error in-

curred during predictions at each stage are back-

propagated to update the parameters for the model

including the embeddings for predicates and argu-

ments (matrix C).

We regularize the parameters of the model us-

ing L2 regularization (regularization parameter =

0.01). All the hidden layers have a dropout fac-

tor of 0.5. We trained a word2vec model on train

set documents to learn word embeddings. Pred-

icate and arguments vectors are initialized using

the learned word embeddings. Predicate and argu-

ment embeddings have dimensionality of 50 and

hidden layers have dimensionality of 50. All the

hyper-parameters were tuned using a dev set.

Θ∗ = argminΘ − J(Θ) (1)

J(Θ) =

N∏

i=1

p(ei | e1, ..., ei−1, ei+1, ek, Θ)
︸ ︷︷ ︸

prob. of an event given context

=

N∏

i=1

p(ei | e
︸︷︷︸

context
events

, Θ) (2)

p(ei | e, Θ) = p(vi, di, a
(1)
i , a

(2)
i | e, Θ)

= p(vi | e, Θ)
︸ ︷︷ ︸

verb prob.

∗ p(di | vi, e, Θ)
︸ ︷︷ ︸

dependency prob.

∗

p(a
(1)
i | vi, di, e, Θ)

︸ ︷︷ ︸

first arg prob.

∗

p(a
(2)
i | vi, a

(1)
i , e, Θ)

︸ ︷︷ ︸

second arg prob.

(3)

p(vi | e, Θ) =
exp(uT

vi
(Wp tanh(WeE)) + bvi

)
∑

k
exp(uT

k (Wp tanh(WeE)) + bk)
(4)

5 Experiments and Analysis

5.1 Data

There is no standard dataset for evaluating script

models. We experimented with movies summary

corpus1 (Bamman et al., 2014). The corpus is cre-

ated by extracting 42,306 movie summaries from

November, 2012 dump of Wikipedia2. Each doc-

ument in the corpus concisely describes a movie

plot along with descriptions of various characters

involved in the plot. Average length of a docu-

ment in the corpus is 176 words. But more pop-

ular movies have much more elaborate descrip-

tions going up to length of 1,000 words. The cor-

pus has been processed by the Stanford Corenlp

pipeline (Manning et al., 2014). The texts in the

corpus were tokenized and annotated with POS

1http://www.cs.cmu.edu/˜ark/personas/
2http://dumps.wikimedia.org/enwiki/
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Data Set No. of Scripts No. of Unique

Events

Train Set 104,041 856,823

Dev Set 15,169 119,302

Test Set 29,943 231,539

Table 1: Data statistics

tags, dependencies, NER and coreference (coref)

information. Since, each of the document in the

corpus is about a movie, the scripts in this corpus

involve interesting interactions between different

entities (actors/objects). In order to study and ex-

plore the above mentioned rich script structure, we

selected this corpus for our experiments. Never-

theless, our model is domain agnostic, the experi-

ments performed on this corpus are generalizable

to any other corpus as well.

As mentioned in section 2, we extract scripts

corresponding to each of the entities using the de-

pendency annotations and coref information. The

corpus documents are divided randomly into three

parts: train (~70%), development (~10%) and test

(~20%). Data statistics about the data set are given

in Table 1. As a preprocessing step, low frequency

(< 100) predicates and arguments are mapped to

a special UNK (unknown) symbol. Similarly, ar-

guments consisting of only digits are mapped to a

NUMB (number) symbol. There are 703 unique

predicate lemmas and 46, 644 unique argument

lemmas in the train set. Average length of a script

is 10 events. During testing, predicate and argu-

ments not observed during training are mapped to

the same UNK symbol.

5.2 Baselines Systems

We compare our model against two baseline

models: Unigram model and MultiProtagonist

model.

A unigram model is a simple but competitive

script model. This model predicts an event by

sampling from unigram event frequency distribu-

tion of the train set. The events are predicted inde-

pendent of the context.

MultiProtagonist (M-Pr) is the model proposed

by Pichotta and Mooney (2014) and described

as joint model in Pichotta and Mooney (2014).

The model calculates conditional probability of an

event given another context event (P (e2 | e1 ) by

counting the co-occurrence counts of the events in

the corpus. The model predicts the missing event

given the context events by maximizing the sum of

log conditional probabilities of an event w.r.t each

of the context events i.e.

e∗ = argmaxe

∑k−1
i=1 log P (e | ei)+

∑K

i=k+1 log P (ei | e)

For evaluation and comparison purposes, we

reimplemented both baselines on our dataset. In

the experiments described next, we refer our

model as NNSM (Neural Network based Script

Model).

5.3 Evaluation Metrics

We evaluated models for narrative cloze task

with three metrics Recall@50 and Accuracy and

Event Perplexity. Recall@50 is the standard met-

ric used for evaluating script models (Jans et al.,

2012; Pichotta and Mooney, 2014). The idea here

is to evaluate top 50 predictions of a script model

on a test script with a missing event. The metric is

calculated as fraction of the predictions containing

the gold held-out event. Its value lies in the range

0 (worst) and 1(best). Accuracy is a new metric

introduced by Pichotta and Mooney (2014). This

metric evaluates the event prediction, taking into

account prediction of each constituent. Specifi-

cally, it is defined as average of the accuracy of

the predicate, the dependency, the first argument

and the second argument predictions. This is a

more robust metric as it does not treat an event as

an atomic unit. This is in contrast to Recall@50

which penalizes semantically correct guesses and

awards only events which have exactly the same

surface form.

The baseline models and our model are prob-

abilistic by nature. Taking inspiration from lan-

guage modeling community, we propose a new

metric Event Perplexity. We define event perplex-

ity as 2−
1
N

∑
i log2 p(ei|e(context,i)). The perplexity

measure, like the accuracy takes into account the

constituents of an event and is a good indicator of

the model predictions.

5.4 Narrative Cloze Evaluation

Narrative Cloze task was tested on 29,943 test set

scripts. The results are shown in Table 2 and 3.

We evaluated with two versions of the cloze task.

In the first version, events are the predicate ar-

gument tuple as defined before. Second version,

evaluates on predicates only i.e. an event is not

a tuple but only a predicate. Our model, NNSM

outperforms both the unigram and M-Pr models

on both the versions of the task with all the met-

rics. This further strengthens our hypothesis of
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Model R@50 Accuracy Event

Perplexity

Unigram 0.32 34.26% 298.45

M-Pr 0.31 35.67% 276.54

NNSMfull 0.37 44.36% 256.41

Table 2: Model evaluation on test set for narrative

cloze task against the baselines

Model R@50 Accuracy Event

Perplexity

Unigrampred 0.27 23.79% 264.16

M-Prpred 0.27 24.04% 260.34

NNSMpred 0.49 33.40% 247.64

Table 3: Model evaluation on predicate only event

test set for narrative cloze task against the base-

lines

having distributed representation for events rather

than atomic representations. Unigram, although a

simple model, is competitive with the M-Pr model.

We performed an interesting experiment. We

evaluated another simplistic baseline model, most

frequent event. This baseline model predicts

by sampling from top-5 most frequent predi-

cate/argument in the full event narrative cloze task.

Surprisingly, the accuracy reported by this sim-

ple baseline is 45.04% which is slightly more than

our best performing NNSM model and much more

than the M-Pr baseline. This simple looking base-

line is hard to beat by both count-based methods

and NNSM. None of the previous methods have

been evaluated against this baseline. We propose

using this baseline for evaluation of script mod-

els. We think this outperformance is due to skewed

distribution of the predicate and arguments in the

corpus. As we found empirically, these distribu-

tions have a very long tail and this makes it hard

for the models to beat the most frequent baseline.

5.5 Adversarial Narrative Cloze Evaluation

Similar to narrative cloze, adversarial narrative

cloze task was evaluated on 29,943 test set scripts.

In each of the event sequence an event was re-

placed by a random event. The results for the ad-

versarial narrative cloze task are shown in Table 4

and 5. As evident from the results Unigram model

is as good as random. In this task as well, our

model outperforms the count based M-Pr model

by 2.3% and 2.9% for full and pred model respec-

Model Accuracy

Unigram 50.07%

M-Pr 53.04%

NNSM full 55.32%

Table 4: Model evaluation on test set for adversar-

ial narrative cloze task against the baselines

Model Accuracy

Unigrampred 49.97%

M-Prpred 55.09%

NNSMpred 57.94%

Table 5: Model evaluation on predicate only test

set for adversarial narrative cloze task against the

baselines

tively.

6 Related Work

Work on scripts dates back to 70’s beginning

with introduction of Frames by Minsky (1974),

schemas by Rumelhart (1975) and scripts by

Schank and Abelson (1977). These early formula-

tions were not statistical in nature and used hand-

crafted complex rules for modeling relations be-

tween events. These formulations were limited to

few scenarios and did not generalize well.

Miikkulainen (1990) proposed DISCERN sys-

tem for learning script knowledge. Their neu-

ral network based model read event sequences

and stored them in episodic memory. The model

was capable of generating expanded paraphrases

of narratives and was able to answer simple ques-

tions. Similarly, Lee et al. (1992) proposed DY-

NASTY (DYNAmic STory understanding sYs-

tem). This system was also based on distributed

representations. It predicted missing events in

event sequences and performed script based infor-

mation retrieval. Their system was limited to only

few scenarios and did not generalize well.

As mentioned previously, in past few years a

number of count based systems for script learning

have been proposed for learning script knowledge

in unsupervised fashion. (Chambers and Juraf-

sky, 2008; Jans et al., 2012; Pichotta and Mooney,

2014; Rudinger et al., 2015a). Recently, Regneri

et al. (2010), Modi et al. (2016) and Wanzare et al.

(2016) used crowd-sourcing methods for acquir-

ing script knowledge. They in the process created

script databases which are used to develop auto-
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matic script learning systems. McIntyre and Lap-

ata (2009) developed a system for generating sto-

ries, they learned an object based script model on

fairy tales.

Orr et al. (2014) proposed hidden markov model

(HMM) approach to learn scripts. The model clus-

ters event descriptions into different event types

and then learns an HMM over the sequence of

event types. Again this model treats an event as

an atomic unit and the inference algorithm may

not generalize well, as the number of event types

increases. Similarly, Frermann et al. (2014) pro-

posed non-parametric Bayesian model for learning

script ordering. The inference procedure may not

scale well, as number of event chains increases.

Manshadi et al. (2008) proposed language

model based approach to learning event se-

quences, in their approach as well, events are

treated as atomic units (a predicate-argument tu-

ple). Recently, Rudinger et al. (2015b) have pro-

posed a neural network approach to learn scripts

by learning a bilinear distributed representation

based language model over events. Their model

is non-compositional in nature and they also con-

sider events as an atomic unit and directly learn

distributed representation for events. Granroth-

Wilding and Clark (2015) also propose a compo-

sitional neural network based model for events.

Our model is more general than their model. They

learn event representations by modeling pair wise

event scores for calculating compatibility between

two events. This score is then used to predict

the missing event by selecting an event that maxi-

mizes the average score between the event and the

context events.

7 Conclusion and Future Work

In this paper we proposed a probabilistic composi-

tional model for scripts. As shown in experiments,

our model outperforms the existing co-occurrence

count based methods. This further reinforces our

hypothesis of having more richer compositional

representations for events. Current tasks to eval-

uate script models are crude, in the sense that they

penalize semantically plausible events. In the fu-

ture, we propose to create a standard data set of

event sequence pairs (correct sequence vs incor-

rect sequence). The replaced event in the incorrect

sequence should not be a random event but rather

a semantically close but incorrect event. Models

evaluated on this data set would give a better in-

dication of script learning capability of the model.

Another area which needs further investigation is

related to developing models which can learn long

tail event distributions. Current models do not cap-

ture this well and hence do not perform better than

most frequent event baseline on accuracy task.

In this paper, we proposed a very simple compo-

sitional feed forward neural network model. In the

future we plan to explore more sophisticated re-

current neural network (RNN) based models. Re-

cently, RNN based models have shown success in

variety of applications (Graves, 2012).
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