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Abstract Event labeling is the process of marking events

in unlabeled data. Traditionally, this is done by involving

one or more human experts through an expensive and time-

consuming task. In this article we propose an event label-

ing system relying on an ensemble of detectors and back-

ground knowledge. The target data are the usage log of a

real bike sharing system. We first label events in the data

and then evaluate the performance of the ensemble and indi-

vidual detectors on the labeled data set using ROC analysis

and static evaluation metrics in the absence and presence of

background knowledge. Our results show that when there is

no access to human experts, the proposed approach can be

an effective alternative for labeling events. In addition to the

main proposal, we conduct a comparative study regarding

the various predictive models performance, semi-supervised

and unsupervised approaches, train data scale, time series

filtering methods, online and offline predictive models, and

distance functions in measuring time series similarity.

Keywords Event labeling · Event detection ·
Ensemble learning · Background knowledge

1 Introduction

Event labeling is recognized as a basic function in sur-

veillance and monitoring systems. Labels are essential for

evaluation of the algorithms and for incorporation in real
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time systems. However, event labeling is an expensive and

time-consuming task which requires synergy of one or more

human experts. Several solutions have been developed to

avoid performing human-based labeling. The first group of

methods relies on the creation of artificial and simulated data

[31,38,42,44] so that both normal and abnormal instances

are generated via simulation. In the second group, events are

injected on real background data [8,28]. However, the ideal

scenario is to have access to ground truth data [35] where both

normal and abnormal instances are labeled without simula-

tion. The first and second solutions suffer from two issues.

Firstly, they do not reflect the reality [41] and secondly it is

extremely difficult to develop a simulator that generates data

close to the ground truth [19]. Besides, availability of ground

truth data is limited or has been under some criticisms (e.g.

[37,50]).

Regardless of learning methodologies, evaluation of event

detectors is still highly dependent on human efforts. In super-

vised event detection, both normal and abnormal instances

are required to be labeled by human experts. In semi-

supervised approaches normal instances should be labeled

by humans. In unsupervised methods, detected events are

required to be verified by human experts. However, in prac-

tice, labeling or verification of events by human experts can

be extremely time-consuming and expensive [41]. In order

to solve this problem some efforts have been made to assist

users to label data more efficiently via a graphical user inter-

face [41]. However, such methodologies still are human-

dependent to a great extent.

An automatic event detection system ought to operate

without intuitive dependency on human resources neither in

providing labeled data nor in verification of alarms. One alter-

native for human knowledge can be computer-based knowl-

edge resources. Although there is a lot of non-human knowl-

edge sources, however, unfortunately still a large number of
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event detection systems rely on human-based knowledge. For

instance, available knowledge inside search engines, meta-

image and meta-video databases, data archives, data ware-

houses rarely is incorporated into event detection problems.

Only a few researches addressed this issue. For instance, [3]

use background knowledge from reliable sources of infor-

mation (e.g. CNN, BBC) for matching and validation of

detected events on Twitter streams. Collier et al. [12] use an

event ontology, called BioCaster, as background knowledge

for detection of infectious disease outbreaks from linguistic

signals on the web. SanMiguel et al. [43] present an approach

for creation of domain ontology as background knowledge

for detection of events in surveillance video. Xu et al. [55]

use web cast text as background knowledge source for detec-

tion of events in sport videos. However, in none of the above

works, the target has not been the eliminating of human role

from the detection cycle, rather background knowledge is

used as a supportive role.

The essential tool for elimination of the human role from

the detection cycle is the possession of a highly reliable detec-

tor. However, different event detectors are not equally capa-

ble of detecting events and subsequently different detectors

perform differently on different environments [2,48,49,52].

This is due to the inconsistency of detector performance

[22,52]. But how can we overcome this difficulty? When

we want to make an important decision in our daily routine,

we probably ask for recommendations from different peo-

ples from different perspectives. The similar idea is already

broached in the machine learning which is entitled ensem-

ble learning. Ensemble learning is robust solution for more

accurate and relatively domain-independent classification

and clustering [2,16]. It also can be embedded in parallel

computing paradigm to improve the efficiency [47]. How-

ever, the application of ensemble methods in event detec-

tion has received a little attention in the research literature

[20,23,30,45,53] while theoretically it is believed that com-

bining different detectors should provide a better anomalous

space coverage [20,49].

There are few works in the literature [2] that adapted

ensemble methods to event detection. The first work [4]

applies multiple classifiers for anomaly detection from real

network traffic data. The authors showed that a few judi-

ciously selected classifiers outperform many diverse clas-

sifiers. They propose a method called standard deviation

normalized entropy of accuracy as a strategy for combin-

ing the classifiers. In another work [20] authors combine

four diverse anomaly detectors for automated event label-

ing of network traffic data and create a data with ground

truth. The strength of their approach relies on the synergy

between detectors with different granularity. However, it is

not specified as to how data can be considered as ground

truth while not validated by an external knowledge source or

human expert. Besides, the role of randomness and chance

is not considered in the combination of the outputs of detec-

tors.

In this work we aim at development of an approach for

labeling and detection of events in unlabeled data by exploit-

ing a combination of both ideas of ensemble learning and

background knowledge. This approach has two main appli-

cations. Firstly, it can be used for creating benchmark data

sets for evaluation of event detection algorithms and sec-

ondly can be used in a real world event detection problem

when data nature is unknown and there is no access to human

experts for labeling of data or verification of alarms.

In parallel to our main contribution, we perform a com-

parative study on different important issues in event detec-

tion such as learning strategy composed of unsupervised

and semi-supervised, scale analysis, multiple denoising

approaches, offline and online regression models and dis-

tance function in time series similarity estimation.

The rest of the paper is organized as follows: The next

section identifies the main concepts for event detection and

introduces the proposed model. The Sect. 3 presents a case

study using a real data set, discusses the obtained results and

presents a sensitivity analysis. The last section concludes the

exposition presenting the final remarks.

2 Proposed solution

2.1 Definitions

The central concept in this paper is related to event that there

is as yet no formal agreed definition about that in the litera-

ture. It is sometimes interpreted as a sub-category of anomaly

[11] or in some circumstances equivalent to anomaly [29] or

change [24]. Several definitions exist in different contexts.

However, more appropriate definition that can distinguish

event from anomaly, outlier, change or other equivalent terms

is the definition with emphasis on spatial-temporal dimen-

sion of an event [13,36]. We have to note that in this paper,

even though we do not conduct a spatiotemporal analysis on

data, each event of interest implies an occurrence of some-

thing in a specific place (e.g., Washington, D.C.) and a time

period (e.g., 2012/05/16). In the following, we define and

distinguish some of the concepts used in the paper.

Definition 1 An Event is something that happens in space

and time and creates change in the environment under study.

Definition 2 Event labeling is the process of marking events

in unlabeled data.

Definition 3 An Event Detector (or Detector) is a method or

algorithm that discriminates events from non-event instances.

Definition 4 An Ensemble Detector is a group of event

detection algorithms that assign a score to each instance of
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data. The score usually represents the chance of that instance

not be an event.

Definition 5 Background Knowledge is a sort of knowledge

that cannot be used directly in the training phase due to pri-

vacy, computational complexity or competitive reasons but

can be queried directly or indirectly. Some examples of Back-

ground knowledge sources are as follows.

– Homogeneous sources This category may include data

archives, data warehouses, domain ontologies and other

homogeneous sources. The assumption in this category is

that we have computational limitations for dealing with

big data sets. However it is assumed that it is possible to

query the higher scale data set through an efficient DBMS

gateway.

– Heterogeneous sources Heterogeneous sources differ in

nature with train and test sets. The well-known example is

the World Wide Web. There is huge heterogeneous infor-

mation available on the web that cannot be integrated in

the learning process because of both volume and competi-

tive issues. But a direct query or query over API is possible

over these sources. Our work is concentrated on this type

of knowledge sources. We use existing knowledge inside

Google™web and image search and YouTube™for veri-

fication of detected events.

– Confidential sources Sometimes due to the privacy or

security matters is not possible to have access to whole

database. However, the third party provide secure gate-

way to perform a limited queries over the databases.

2.2 Event labeling model: a proposal

There are two classic event labeling models that rely on

human-based knowledge. In the first model (Fig. 1a) a desired

detector is applied to the data and then detected events are

verified by one or more domain expert(s) [7,15,32,34]. In

this model, checking of all instances is not essential; rather

a limited number of candidates are finally verified by the

expert. This model has two main drawbacks: on one hand

there is no guarantee that the detector algorithms work well

on that particular data set and could detect all potential events

and on the other hand in the evaluation phase is not possible

to measure the accuracy of the detector.

In the second model (Fig. 1b), all instances are checked

individually by knowledge expert(s) and events are labeled

manually [5]. This model has also three main drawbacks:

firstly, it is an infeasible task for large databases to check

instances individually. Secondly, the opinion of one expert

may not be sufficient and affects the labeling quality. Finally,

different experts have different perspectives and therefore it

is hard to assume that they have the same agreement on the

event labels [54].

A recent automatic model is proposed in [20] which does

not rely on human-based knowledge. As depicted in Fig. 1c,

output of ensemble detectors is combined based on the detec-

Fig. 1 Event labeling models.

a Domain expert(s) verify the

alarms raised by a single

detector. b Domain expert(s)

label the instances by manual

inspection. c Events are labeled

by applying an ensemble of

detectors. d Proposed model:

extension of previous model

with this difference that alarms

are verified by background

knowledge before labeling
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tors’ output similarity. The drawback of this method however

is that the result is highly dependent on the detectors’ selec-

tion and no knowledge source (human nor machine) vali-

dates the outputs of detectors. Therefore false alarms might

be raised, more than expected, due to not considering chance

and randomness.

We extend the third model to a new model (Fig. 1d) which

uses potential knowledge resources for verification of alarms.

It also has no dependency on human-based knowledge and

is less dependent on the methods. It is also less affected by

randomness. Since it is based on ensemble detectors, it is

also capable of working in parallel computing framework

and thus can be computationally efficient. Based on these

explanations we define our research hypotheses as follows.

Hypothesis 1 Ensemble detectors improve the detection

performance comparing individual detectors.

Hypothesis 2 Background knowledge along with ensemble

detectors improves the performance of event detection sys-

tems.

In the following we try to examine and validate the above

hypotheses through comprehensive experimental study and

evaluation tasks.

3 Experimental evaluation

There are several public data sets for outlier and anomaly

detection. However it is difficult to find a real data set that

for each instance, the corresponding environmental data and

background knowledge are available. The most challenging

part is the background knowledge which hardly can be found

as an open access source. For this reason many data sets

used in the outlier and anomaly detection literature are not

so useful for our research goals. However, we could manage

to find a data set that has a potential to be adapted for both

above-mentioned issues. In the following we first describe

this data set and then explore the concepts related to the

method.

3.1 Data set

The data set under study is related to 2-year usage log of a bike

sharing system namely Captial Bike Sharing (CBS) at Wash-

ington, D.C., USA. There are three reasons why we think this

data set may fit our research goal. Firstly, it includes at least

two of full life-cycle of the system and therefore seems be

suitable for supervised and semi-supervised learning. Sec-

ondly, there exist some external sources that corresponding

historical environmental values such as weather conditions,

weekday and holidays are extractable. And finally the alarms

are verifiable through open access knowledge sources (search

engines, meta-image and meta-video sources).

Bike sharing systems are new generation of traditional

bike rentals where whole process from membership, rental

and return back has become automatic. Through these sys-

tems, user is able to easily rent a bike from a particular

position and return back at another position. Currently, there

are about over 500 bike-sharing programs around the world

which is composed of over 500 thousands bicycles [40].

Today, there exists great interest in these systems due to their

important role in traffic, environmental and health issues.

Presently, the top three bike-friendly countries are Spain (132

programs), Italy (104 programs) and China (79 programs)

[40]. The number of major cities that are becoming bike-

friendly is growing day-by-day. It is expected that in a near

future, most major cities provide this service along their other

public transport services.

Apart from interesting real world applications of bike shar-

ing systems, the characteristics of data being generated by

these systems make them attractive for the research. Opposed

to other transport services such as bus or subway, the duration

of travel, departure and arrival position is explicitly recorded

in these systems. This feature turns bike sharing system into

a virtual sensor network that can be used for sensing mobil-

ity in the city. Hence, it is expected that most of important

events in the city could be detected via monitoring these

data. Some few researches have already addressed bike shar-

ing data analysis [6,51] mostly via spatiotemporal analysis to

aid operation-oriented decisions. However, our work differs

from such works. In this paper, our main concentration is not

specifically on bike sharing data, rather we use bike sharing

data as a supportive source for examining our event labeling

model.

In the CBS system when a rental occurs, the operation

software collects basic data about the trip such as duration,

start date, end date, start station, end station, bike number and

member type. The historical data set of such trip transactions

is available online via [9]. To avoid trend issues, we select

only corresponding data to years 2011 and 2012 consisting

of 3,807,587 records. Later, we aggregate the data into two

scales of hourly and daily. The hourly time series includes

17,379 h and the daily time series includes 731 days. Next,

we divide both daily and hourly scale time series into two

sets of 2011 (train) and 2012 (test). The test set is illustrated

in both scales in Fig. 2 (daily scale) and Fig. 3 (hourly scale).

As we discuss later, if we apply a regular anomaly detec-

tion algorithm on the daily or hourly time series we would

not be able to detect all events. We only can detect severe

events because bike rental process is probably under effect

of seasonality and environmental settings such as weekday,

holiday, temperature, precipitation, wind speed, humidity,

etc. Therefore, event signature cannot be directly observed

in these time series. In order to study such effects we need

123



Prog Artif Intell (2014) 2:113–127 117

Fig. 2 The number of rented bikes in 2012 in daily scale

Fig. 3 The number of rented bikes in 2012 in hourly scale

to extract weather data. There exists several weather data

sources, however, most of them provide only forecasting

data and do not contain historical weather reports. There is

another group of forecasting sources that contain historical

weather reports for specific last days (e.g. 14 days). Another

group also contains weather historical report but in daily

scale. However, we could manage to find a source that pro-

vides the hourly historical data [21]. We therefore, extract

from this source some attributes such as weather tempera-

ture, apparent temperature, wind speed, wind gust, humidity,

pressure, dew point and visibility for each hour from the

period 1 January 2011 to 31 December 2012 for Washing-

ton, D.C., USA. Next, we map each hour in bike rental time

series with corresponding weather reports. There are some

missing weather reports for some hours. Thus, we map the

closest report for that hour. The maximum temporal differ-

ence is 292 min, with mean of 3 min and standard deviation

of 14 min. We also extract the official holidays of Wash-

ington, D.C. from [14] and map them to the corresponding

dates. Afterward, holidays are combined with weekends such

that finally each day is classified as a working day or non-

working day. Additionally, according to weather conditions

provided in the weather data, we mark each hour by four

weather grades: good, cloudy, bad and very bad.

As a result we create two sets in two scales. In the hourly

scale set, each record includes hour, month, working day, sea-

son, weather grade, temperature, filling-temperature, humid-

ity and wind speed as variables and hourly aggregated count

of rented bikes as target value. In daily scale, each record con-

sists of month, working-day, season, daily average weather-

grade, daily average of temperature, daily average of filling-

temperature, daily average of humidity and daily average of

wind-speed as variables and daily aggregated count of rented

bikes as target value.

We then perform a feature selection step on the data set to

identify the most significant features. As a result, month,

hour, working day and temperature are selected as most

important features for hourly scale and month, working-day

and temperature are selected as final features for daily scale.

The final processed data set is available online via [17].

3.2 The proposed method

Our event labeling system is depicted in Fig. 4. We first apply

ensemble detectors (see Sect. 3.2.1 for details of detectors)

with highest possible disagreement rate. To assess the degree

of disagreement of the detectors, we perform Fleiss’ Kappa

test (see Sect. 3.2.3). The more disagreement on alarms

results in more coverage on anomalous space. In addition,

more alarms increase the chance of false alarms and thus

alarms are required to be validated by an external knowledge

source. We run the detectors and combine all alarms to make a

candidate events list. The output list is much limited compar-

ing whole instances in data set and therefore imposes lower

cost for verification. Then we combine all outputs together

by adding distinctive instances together. In the next step we

verify each candidate via Google web and image search and

YouTube (we choose Google due to its prominent coverage).

The verification phase works as follows: a spatiotemporal

query is submitted to Google (Fig. 5). If an important event

is detected from the result we mark the date with that event.

For instance by querying 2012-10-30 Washington, D.C” we

notice that the Sandy storm has happened on this date. So

this date is marked as “Sandy”. If we could not find any sig-

nificant event from the search result we try Google images

and YouTube or try another query this time including the

keyword “weather” (e.g. “2012-10-30 weather Washington,

D.C”). Note that due to the relatively small volume of our data

set we did not perform some text processing steps. However,

in a fully automatic system we could process the retrieved

textual result and count the most repeated terms.
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Fig. 4 Our event labeling

system

Fig. 5 A query with format of date + place is submitted to Google

web/image search and YouTube for understanding occurred event

In the next phase we compute the weight of the event

by a method similar to [56] where search results count is

used as a criterion for extraction the correlation between two

terms (e.g. food + shopping vs. food + drink). The search

results count itself is meaningless; however, it would be con-

sidered as an appropriate criterion for comparative purposes.

For instance if query “food + shopping” result in one mil-

lion and “food + drink” leads to five million pages, then

it reveals that food is more correlated to drink than shop-

ping. We adapt this idea to measure the weight of candidate

events. To this end, as Fig. 6 shows, we add event title (e.g.

“sandy”) to the previous query and then extract the count

of retrieved results. For instance, as is depicted in the fig-

ure, 6.920.000 results are returned for this query. This can be

used as a criterion to measure the weight of the event. After

obtaining this weight for each event candidate we transform

all weights to their corresponding z-scores. Suppose the vec-

tor x = (w1, w2, . . . , wn) of obtained weights from Google

result count. z-score corresponding to each weight is obtained

by the following equation.

Fig. 6 After understanding event, the query with format of date + event

+ date is submitted to Google to measure the weight of event

z-score =
w − µ

σ
(1)

where w is the obtained weight, µ is the mean and σ is

standard deviation of vector x .

Then we remove from candidate list those events whose

z-score is lower than 2. In other words, we keep only those

events that there is a low probability that be produced by

chance. After this filtering step, the final list contains the

event labels.

3.2.1 Event detectors

Although at first glance, data looks like a time series. How-

ever, based on our prior knowledge we can argue that it is

rare that someone rides a bicycle in some circumstances such

as midnight, heavy rains and very cold or very hot weather.

Conversely, it is very likely that people rent more bikes in

the peak working hours or in good weather conditions in

weekends. In short, it seems that rental count would have a

close relationship to environmental settings. To validate this
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hypothesis, we design our detectors such a way that could

support both of these perspectives. In other words, in some

detectors we assume that data is a time series with auto-

correlated instances (unsupervised detectors) and in other

detectors we assume that instances are temporally indepen-

dent and are correlated to some environmental settings (semi-

supervised detectors). However, we give more weight to the

latter detectors since they are more reasonable based on our

prior knowledge. Please note that the term semi-supervised

should not be confused with its equivalent in classification

or anomaly detection where classes or anomalies labels are

specified in the train data. We here deal with the count time

series, therefore, when we use the term semi-supervised we

refer to a scenario in which we have access to each instances

corresponding environmental settings in the train set and not

the class labels.

Ten detectors are designed in this study such that each has

its own distinctive ability. Different techniques are involved

such as regression trees, control chart, hierarchical cluster-

ing [25, p. 520] with two different distance functions of

Euclidean and Dynamic Time Warping (DTW) [46]. We

also employed Principal Component analysis (PCA) [1] and

Multi-channel Singular Spectral Analysis (MSSA) [39] for

denoising purpose in some detectors. Schematic represen-

tation of the detectors is presented in Fig. 7. For semi-

supervised detectors, we make a predictive model from the

train set based on environmental and periodicity setting (To

ease the further explanations, from now on, when we refer to

environmental setting we mean both environmental and peri-

odicity settings) and then make a forecast on the test set and

then compare the predicted bike rental count with the actual

bike rental count in test set and then monitor the residuals

to detect events. In some detectors we also apply a filter for

denoising data. For unsupervised detectors, we monitor test

time series irrespective of the environmental settings.

As already mentioned, the data set is made in two scales:

hourly and daily. If we perform analysis only on daily scale

Fig. 7 A general architecture of the ensemble detectors. See Table 1

for more details

we would not be able to detect those events that affect the city

only in specific hours during the day. Such events are also

interesting and need to be detected. For instance, suppose that

in 12/05/15 a severe event is happened during 8 a.m. and in the

rest of the hours, we witness a calm day. The daily scale analy-

sis probably would not be able to detect such kind of events,

because some events manifest themselves in hourly scale.

In order to provide a unit output, alarms in hourly scale are

upgraded to the daily scale (e.g. detector 10). For instance in

the above example, 12/5/15, 8 a.m. is transformed to its corre-

sponding higher scale 12/05/15. In this case all the detectors

despite of different scale inputs generate the same output and

their outputs can be combined. Each method finally returns

the corresponding p values of each day. This p value indicates

the probability of that day not be an event. So if we determine

a threshold like 0.05 then each instant with p value lower or

equal to 0.05 should be reported as an event.

In the following, each individual detector is described

in detail. Note that the selected methods for detectors are

optional and can be replaced with any other desired methods.

However, we take into account two factors in our ensemble

detectors architecture (Fig. 7). Firstly, well-known but differ-

ent techniques be involved to make the maximum diversity

and secondly, be more appropriate for automatic settings.

– Detector 1: The predictive model predicts the expected

value on the hourly test set according to the correspond-

ing environmental setting. Then the residuals of hourly

expected value and hourly actual values on test set will be

transformed to z-scores. Next, we compute the daily mean

of z-scores for each day and again transform the obtained

daily means to z-scores and consequently to p-values.

– Detector 2: The predictive model predicts the hourly

expected value on the hourly test set according to the

corresponding environmental setting. Then we compute

the mean of hourly residuals for each day. Afterward, the

computed daily means are transformed to z-scores and

consequently to p-values for each day.

– Detector 3: The predictive model makes a forecast for

the daily test set according to the corresponding environ-

mental setting. Then the daily residuals are computed as a

difference between daily predicted counts and daily actual

counts. Then the residuals are transformed to z-scores and

consequently p-values.

– Detector 4: This method does not need the train data. It

operates directly on the daily test set. The count corre-

sponding to each day is transformed to first z-scores and

consequently p-values.

– Detector 5 and 7: This method operates as follow. First,

The predictive model makes a forecast for the hourly test

set according to the corresponding environmental setting

and then we compute the residuals as difference between

hourly predicted count and hourly actual count. Next,
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matrix of Days × Hours is built such that each cell rep-

resents the residuals corresponding that day and hour. In

the next step, MSSA (Method 5) or PCA (method 7) is

applied on this matrix. The result is a reconstructed matrix.

Later, the residual corresponding each day of original and

reconstructed matrix is transformed to z-scores and con-

sequently p-values.

– Detector 6: This method does not need train data. The

hourly test data is converted to matrix of Days × Hours.

Afterward, MSSA is applied on this matrix and then resid-

uals corresponding to each day of original and recon-

structed matrices are transformed to z-scores and conse-

quently p-values.

– Detector 8 and 9: The predictive model predicts the

expected value on the hourly test set according to the cor-

responding environmental setting. Then the residuals of

hourly expected value and hourly actual values on test

set are clustered using agglomeration hierarchical clus-

tering algorithm one time with Euclidean distance and

one time with DTW distance. Outliers are then are cho-

sen using a manual inspection and are reported as events.

Note that this kind of approach is not appropriate for auto-

matic detection and is only provided here for comparison

to the other approaches.

– Detector 10: The predictive model predicts the expected

value on the hourly test set according to the correspond-

ing environmental setting. Then the residuals of hourly

expected value and hourly actual count on test set are

transformed to z-scores. Reported z-scores are still in

hourly scale so we select the maximum obtained z-scores

for each day. This z-scores corresponding each day are

then transformed to p-values and is reported.

3.2.2 Detectors settings

Table 1 illustrates the settings used for each detector. All

detectors except detector 4 and 6 are semi-supervised. For

semi-supervised methods we apply REPTree regression tree

as our predictive model (see Sect. 3.2.4 for justification).

As it can be seen in Table 1, even though some detectors

receive hourly train set as input, they score events in the

daily scale. Three of detectors (5, 6 and 7) also use a filtering

strategy such as MSSA and PCA for data denoising. Two of

detectors (8 and 9) that are based on agglomerative clustering

can only detect events and are not able to score each instant.

In detector 8, Euclidean and in detector 9, DTW distance is

used. Note that these clustering-based detectors generally are

not appropriate choice for automatic settings since need some

prior knowledge for parameter setup. However, we include

them in ensemble to have more diverse detectors.

3.2.3 Fleiss’ Kappa test

The benefit of combining different detectors relies on diver-

sity among detectors ensembles [20]. Hence, an ideal ensem-

ble detectors is required to include a sort of diverse and dif-

ferent detectors. In order to ensure about the detectors right

choice we apply an agreement test on detectors outputs to

measure the disagreement rate of the detectors (the more

disagreement, the better).

Since we want to evaluate the overall agreement rate

between all detectors and not individual agreements between

pairs of detectors, we cannot use the common Cohen’s kappa

[10]. Instead we use Fleiss’s kappa [18] which is a statistics

that measures the level of agreement between multiple raters

when assigning categorical ratings to a number of items or

classifying items. It is considered as an extension of Cohen’s

kappa statistic that works for multiple raters. If a fixed number

of raters assign numerical ratings to a number of items then

the kappa reveals the consistency of ratings. Fleiss’s kappa

is always between 0 and 1. Table 2 shows how K values can

be interpreted [33].

So far, Fleiss’s kappa has been used in psychology and

bio-informatics for measurement of agreement of different

human agents on a subject. Here we use it for measuring the

rate of agreement between multiple event detectors. Opposed

Table 1 Event detectors settings

Detector Type Predictive model Train Filter Test Comment

1 Semi-supervised REPTree 2011, Hour No 2012, Day –

2 Semi-supervised REPTree 2011, Hour No 2012, Day –

3 Semi-supervised REPTree 2011, Day No 2012, Day –

4 Unsupervised – – No 2012, Day –

5 Semi-supervised REPTree 2011, Hour MSSA 2012, Day 3 RCs

6 Unsupervised – – MSSA 2012, Day 3 RCs

7 Semi-supervised REPTree 2011, Hour PCA 2012, Day 3 PCs

8 Semi-supervised REPTree 2011, Hour No 2012, Day Agglomerative clustering (K = 5), distance = euclidean

9 Semi-supervised REPTree 2011, Hour No 2012, Day Agglomerative clustering (K = 5), distance = DTW

10 Semi-supervised REPTree 2011, Hour No 2012, Day –
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Table 2 Fleiss’es Kappa interpretation

K range Interpretation

K < 0 Poor agreement

0 ≤ k ≤ 0.2 Slight agreement

0.2 ≤ k ≤ 0.4 Fair agreement

0.4 ≤ k ≤ 0.6 Moderate agreement

0.6 ≤ k ≤ 0.8 Substantial agreement

0.8 ≤ k ≤ 1 Perfect agreement

to the psychology and bio-informatics that a k closer to 1 is

more desired, we want a closer value to zero. Because we

look for a group of non-similar detectors that could detect

more range of events. If all detectors for instance agree and

have k equal to 1 then it means that use of multiple detectors

is meaningless and one detector is enough. In contrast, if k

could approach zero it means that idea of using ensemble

detector is helpful and result in better coverage of discovery

of unknown events.

After the experiment we obtain Fleiss’s kappa equal to

0.0034. That means that the ensemble detectors exhibit a very

slight agreement. In other words, if we define H0 hypothesis

as the observed agreement is accidental we cannot reject the

hypothesis due to the observed low agreement. This is the

desired result since it reveals that selected detectors exhibit

high degree of diversity.

3.2.4 Predictive model selection

One of the main components of the introduced semi-

supervised detectors is the predictive model. We apply some

different regression and classifier algorithms in Weka [26]

on the train data to measure the accuracy of the built model.

Table 3 illustrates the comparison of the models in terms

of correlation coefficient, relative absolute error (RAE), root

relative squared error (RRSE), train time in seconds and test

time in seconds. Train time is the time that takes to model

be built on the train set and test time is a time that takes

model be evaluated through tenfolds cross validation. As

it can be seen, among all, REPTree [26] has a better per-

formance in terms of the trade-off between accuracy, train

and test time. It is from the regression tree family and thus

presents interpretable model. IBk, and decision table both

provide relatively the same accuracy but with higher test

time. Therefore, we select REPTree as the predictive model

in the detectors. RRSE, RAE and correlation coefficient in

Table 3 also can be calculated using the following equations

[26, p. 180].

RAE =
|p1 − a1| + · · · + |pn − an|
|ā − a1| + · · · + |ā − an|

(2)

RRSE =
(p1 − a1)

2 + · · · + (pn − an)2

(ā − a1)
2 + · · · + (ā − an)2

(3)

Correlation coefficient =
SP A√
SP SA

(4)

where:

SP A =
∑

(pi − p̄)(ai − ā)

n − 1
, (5)

SP =
∑

(pi − p̄)2

n − 1
, (6)

SA =
∑

(ai − ā)2

n − 1
(7)

In the above equations, a denotes actual target values, p

denotes predicted target values, ā represents the average of

actual target value, p̄ denotes the average of predicted target

values and n denotes the sample size.

Table 3 Predictive models

tested Model Correlation (%) RAE (%) RRSE (%) Train time (s) Test time (s)

REPTree 91.57 30.56 40.24 0.04 2.20

Linear regression 81.12 54.67 58.47 0.69 7.08

RBF network 22.77 96.65 97.36 0.25 2.08

IBk 91.99 29.98 39.27 0.01 7.03

LWL 65.54 76.47 76.25 0.01 60.00

Additive regression 71.57 67.54 69.83 0.10 2.01

Random subspace 84.74 59.47 62.78 0.20 3.10

Regression by disc 90.91 34.02 41.65 0.09 2.00

Conjunctive rule 35.59 92.70 93.43 0.05 1.70

Decision table 91.69 30.11 39.91 5.95 70.70

Decision stump 35.63 92.59 93.42 0.02 2.20

FIMTDD 68.29 71.89 71.49 – –
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3.3 Results

3.3.1 Event labels

Table 4 demonstrates detected events by our system that have

passed verification phase by background knowledge. Bold

items are those events that meet the condition of z-score ≥ 2.

The primary candidates list before verification phase contains

69 events and as it can be seen this number is decreased to

30 events. To validate this result we ask a domain specialist

to rate the impact of each detected event corresponding date

from 0 to 5. The third column in Table 4 indicates the impact

Table 4 Detected Events after verification phase by background

knowledge

Date Event Impact

29-10-2012 Sandy 5

30-10-2012 Sandy 5

19-10-2012 Storm 5

04-07-2012 Washington DC fireworks 5

23-11-2012 Black Friday 4

24-12-2012 Christmas day 4

08-10-2012 Columbus memorial celebration 4

27-05-2012 Memorial day 4

22-11-2012 Annual Thanksgiving day 3

12-11-2012 Veterans day 2

16-04-2012 Tax day 1

23-03-2012 National cherry blossom festival 5

18-09-2012 Heavy rain 5

18-07-2012 Severe thunderstorm 5

01-06-2012 Tornado 4

04-12-2012 Warm weather floods 4

13-05-2012 Bike DC 3

11-02-2012 Cupid Undie run 2012 3

23-01-2012 March for life 3

29-09-2012 Green festival Washington DC 3

25-11-2012 The coldest morning of the season 2

07-10-2012 Unseasonably cool weather 2

07-04-2012 D.C. United vs. Seattle Sounders FC 2

26-05-2012 D.C. United vs. NE revolution 2

21-05-2012 Occasional showers and storms 2

15-09-2012 United vs. NE revolution 2

11-10-2012 D.C. Baseball v.s Tigers 2

12-10-2012 Hockey Capitals vs. NJ devils 2

29-01-2012 Occupy DC 1

19-05-2012 Survive DC 2012 1

Bold items are verified detected events (Events with z-score ≥ 2) and

non-bold items are those events that their z-score ≺ 2. The numbers in

third column is the impact rate (from 0 to 5) given by a human domain

specialist for that date indicating the impact of event

Fig. 8 Effect of condition z-score ≥ 2 on false alarm rate

rates specified by specialist for that date. To evaluate the

effectiveness of condition z-score ≥ 2, we define a cut line

on impact rates given by specialist and then see how detected

events match with the events over the cut line. Since the given

impact rates are between 1 and 5, we define four cute point

of 2, 3, 4 and 5 and compute the true and false alarm rate

one time for all items of Table 4 and one time for bold items.

The result is shown in Fig. 8. As it can be seen, applying

condition of z-score ≥ 2 can decrease the false alarm rate up

to an average of 20 %.

Having look to the Table 4 we notice that five of alarms

with impact rates of 5 and 4 that are specified with human

domain specialist are not appeared in the verified alarms list.

This can be due to two reasons. On one hand, the special-

ist admitted that our verification method based on investi-

gation on Google web and image search and YouTube is

more reliable that his evaluation. This is to some extent log-

ical because existing knowledge in these sources represents

the collaborative knowledge and intelligence of thousands

of people with different insights and perspectives. This defi-

nitely might outperform a single knowledge source that has

a limited insight to the subject. For this reason one reason for

this observed gap can be because of the effectiveness of our

approach comparing the specialist knowledge. In other hand,

it can be due to some existing problems in our methodology

details. For instance, probably due to the naming complexity

of the events, our submitted query has not been well enough

for measuring the weight of event. Four of these events are

related to weather related events. It indicates that the query

of “time + place + weather” might not be a good idea and we

should find for more appropriate alternative query. The rea-

son can be this fact that the weather events on these days are

entitled with different terms and the weight corresponding

to these events is distributed in different terms. For instance,

some sources might call “Tornado” with different terms such
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as high speed wind, storm or severe weather, etc. However,

as it can be seen, only one non-weather event is missed in

our final event labels. It reveals that the condition of z-score

≥ 2 reasonably is able to filter non-significant alarms and

consequently avoid false alarms more effectively.

3.3.2 Event labeling in the absence of background

knowledge

Here we study an event labeling model with relies only on

ensemble detectors and have no access to any external knowl-

edge (Fig. 1c). To compare this model with our proposed

model (Fig. 1d), we need to compare the outputs of both

models. If we assume model d and its result as reference

we can formulate the problem as an information retrieval

problem. We run model c and then measure the similarity of

retrieved events with the reference detected events. In other

words, we want to know how we can reproduce the same

result as model d by using model c. We consider our model

as reference model because its output is already checked with

a human domain expert.

To this end we use a voting strategy to combine ensemble

detectors alarms. We first define a confidence threshold equal

to p value = 0.05 and compute the total of detectors votes

corresponding each day. For detector 8 and 9 that are based

on clustering and do not return p value we assume that the

detectors are confident enough (p value ≤ 0.05) and thus

include them in the voting process.

We count the votes of detectors for each instant and then

compute the similarities of detected list with Table 4. The

results is presented in Table 5. N in this table denotes the

detector votes. N > 1 for instance indicates that at least two

detectors agree that a hypothetical instant should be recog-

nized as event. The terms N > 2, N > 3 and N > 4 means

that at least three, four or five detectors are respectively sus-

picious to a particular instant. As it can be seen, event signals

corresponding to N > 1 are 72 % similar to events marked

with bold in Table 4. It means that if we have vote of at least

two detectors for an instant, the alarms would be over 70 %

similar to final output of our proposed model. However, by

increasing the required vote, F-measure decreases to 58 %

for N > 2 and 0.23 for N > 3 and N > 4.

Table 5 Ensemble detectors retrieval performance in the absence of

background knowledge

Votes Precision Recall F-measure

N > 1 0.81 0.64 0.72

N > 2 0.63 0.53 0.58

N > 3 0.27 0.20 0.23

N > 4 0.27 0.20 0.23

Reference events: bold items in Table 4

Table 6 Individuall detectors retrieval performance in the absence of

background knowledge

Detector Precision Recall F-measure

1 0.60 0.50 0.55

2 0.25 0.22 0.23

3 0.25 0.28 0.26

4 0.40 0.11 0.17

5 0.31 0.28 0.29

6 0.43 0.17 0.24

7 0.17 0.11 0.13

8 1.00 0.22 0.36

9 0.75 0.17 0.28

10 0.33 0.33 0.33

Reference events: bold items in Table 4

We repeat the same procedure for individual detectors

to compare their individual performance. Comparing the

ensemble detectors F-measures in Table 5 with individual

detectors in Table 6 reveals the effectiveness of ensemble

detectors comparing the individual detectors. As it can be

seen the maximum F-measure obtained for individual detec-

tor is related to detector 1 which is equal to 0.55. This is about

20 % lower than ensemble detectors with N > 1 condition.

3.3.3 Evaluation of individual detectors with ROC analysis

ROC curves are robust tools for evaluation of classifiers and

event and anomaly detection algorithms. Vertical axis of a

ROC curve corresponds to true positive rate and horizontal

axis is related to false positive rate.

As we already mentioned our detectors (except detector 8

and 9) return a p value for each instant indicating the chance

of that instant is not an event. In most event detection sys-

tems, usually a pre-defined threshold (0.05) is set by user

as confidence level. Then, if p value returned by detector is

lower than the threshold, an alarm is raised.

In order to plot ROC curve of each detector, we first define

validated bold items in Table 4 as the target set. Then we vary

threshold from 0 to 1 with step of 0.001 and then compute the

true positive and false positive rate of detected set against tar-

get set. Next, in order to compare the accuracy of individual

detectors we compute area under the obtained ROC curves.

The result is presented in Table 7. As it can be seen, detec-

tor 10 provides the best accuracy and detectors 7, 1, 2 and

5 are ranked in the subsequent places, which all provides

over 70 % accuracy. The values in this table do not indicate

the strength of the detectors in general; rather reveals their

specific performance on this particular condition. In other

words, if we would not consider ensemble detectors and we

would not have access to background knowledge, detector 10

could reproduce the same result as our system with accuracy

123



124 Prog Artif Intell (2014) 2:113–127

Table 7 Area under ROC curves

for each individual detectors Detector AUC

1 0.74

2 0.70

3 0.60

4 0.47

5 0.70

6 0.39

7 0.75

8 N/A

9 N/A

10 0.76

of 75 %. There is no guarantee that this detector performs

the same on other circumstances.

3.4 Sensitivity analysis

Here we present our comparative study results. Note that

the following results are domain specific and may not be

generalized to other different problems and settings. Due to

the difficulty and limitations on obtaining data with required

characteristics we were not able to perform experiments on

different domains and applications. Hence, the following spe-

cific findings emphasis on bike sharing data and the similar

regression problems and domains and are required to be val-

idated for other domains.

3.4.1 Learning: semi-supervised vs. unsupervised

Table 7 shows the area under ROC curve for the individual

detectors. As it can be seen, semi-supervised detectors out-

perform unsupervised detectors. Area under curve for unsu-

pervised detectors (detectors 4 and 6) is below 0.6. This

shows that bike sharing data is highly non-sequential and

each instant is temporally independent of other instances.

Instead, instances are dependent on environmental settings.

Unsupervised detectors are able to detect only severe events

while semi-supervised detectors are able to detect more

meaningful events.

3.4.2 Scale analysis: hour vs. day

We designed the detectors such a way to be able to com-

pare the performance of analysis on daily scale vs. hourly

scale. Among semi-supervised detectors, detector 3 is the

only approach that operates on daily scale. It means that

makes a model from train set in daily aggregated counts

(Fig. 2) and then make a forecast on test set in daily scale.

Other approaches make a model from train set in the hourly

scale. Area under curve of detector 3 comparing to the other

methods is presented in Table 7. As it can be seen, the low

AUC value for this detector reveals this fact that for detect-

ing events in day scale it is not always a better idea to make

a predictive model on the same scale, rather sometimes is

better to make a model on smaller scales. The detectors that

operate on hourly scale show at least 10 % more accuracy

comparing detector 3. This provides evidence that for event

detection in a desired scale, training on smaller scale also

would worth to be considered.

3.4.3 PCA vs. MSSA

The idea of MSSA is to adapt PCA for time series. PCA

looks to the instances independently while MSSA takes

into account the auto-correlation between temporal instances

together. Capturing this auto-correlation is not considered in

PCA. We compared the performance of PCA (detector 5)

vs. MSSA (detector 7). We considered only three Principal

components for both and did not check other settings. They

might have different performance in other settings. However

in the same condition as Table 7 shows, PCA outperforms

MSSA. The reason is almost clear. The bike sharing data is

highly non-sequential and it is a poor correlation between

consecutive instances. If there was a strong auto-correlation

then MSSA would perform better. The point is that PCA and

MSSA is required to be chosen depending on the data nature.

PCA is recommended for independent instances and MSSA

for auto-correlated instances.

3.4.4 Predictive model: online vs. offline

In Table 3 we compared the performance of 12 different

algorithms. The last algorithm in this table is related to

FIMT-DD algorithm [27], which is an online regression

tree model. This is a streaming algorithm that scans the

training data only once, using little computational resources

(memory and CPU). As it can be seen, this model includes

less accuracy comparing to the REPTree, however if the

computation complexity is the problem, can present a rel-

atively reasonable performance. The predicted counts cor-

relation to the original counts is 68.29 % vs. REPTree that

presents 91.57 % correlation. This difference seems reason-

able for large data sets or streaming settings where REPTree

fails.

3.4.5 Distance: euclidean vs. DTW

A comparison of the performance obtained using Euclidean

(detector 8) and DTW (detector 9) distances is presented in

Table 7. Although there is any significant difference, DTW

exhibits worst results. This reveals that DTW necessarily

do not always outperform Euclidean distance in time series

similarity measurement. This is another evidence that envi-
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ronmental attributes play an important role in bike sharing

process.

4 Conclusion

We proposed a novel event labeling model based on ensemble

learning and background knowledge. We provided some evi-

dences about the effectiveness of the proposed model through

a set of tasks on a real-world data set.

Our research findings can be summarized as follows:

(1) When there is no access to human experts, background

knowledge (if available) can an appropriate alternative; (2)

scale of the train and test data sets necessarily should not

be the same. We demonstrated that in some particular set-

tings, this assumption could be violated; (3) regression tree

model REPTree is promising on like bike sharing data set.

We believe that this model probably work well on data sets

with same nature dealing with count time series under effect

of environmental and periodicity settings (4) MSSA and

DTW are reconsigned as robust tools in time series analy-

sis. However as we demonstrated they can act inverse when

data is under seasonal effects. (5) On the absence of back-

ground knowledge, ensembles detectors can present a result

70 % similar to the condition where we have access to

background knowledge for verification; (6) we offered evi-

dence that ensemble detectors with at least two votes provide

20 % better result than the best individual detector; (7) we

showed that bike rental data is highly correlated with envi-

ronmental and periodicity settings such as temperature and

hour of the day, month, work of the day (weekend, week-

day, and holiday). A regression tree model can make a pre-

diction based on these environmental attributes very close

to actual counts. This shows that bike rental count time

series should not be analyzed without taking into account

the environmental attributes; (8) web and existing knowl-

edge in that can be potential source for aiding event detection

systems.

Event detection on bike sharing data also has two potential

applications. First, it can be incorporated in a decision sup-

port system for a better planning and management of system

and secondly, can be employed in a recommender system

for alarming or suggestion purposes. For instance, suggest-

ing people not going out due to severe weather conditions

or encourage them to go out for participating in an ongoing

event in the town.

Further research will include the following directions: (1)

Verification of the proposed model performance on other data

sets and with other knowledge sources apart from online

sources; (2) testing different ensemble designs; (3) study-

ing different combination techniques in ensemble detectors;

(4) spatiotemporal analysis on the data to discover localized

events; (5) real time detection; (6) development of some text

processing methods for automated capturing of knowledge

from the Web.
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