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ABSTRACT | Events are real-world occurrences that unfold

over space and time. Event mining from multimedia streams

improves the access and reuse of large media collections, and it

has been an active area of research with notable recent

progress. This paper contains a survey on the problems and

solutions in event mining, approached from three aspects:

event description, event-modeling components, and current

event mining systems. We present a general characterization of

multimedia events, motivated by the maxim of five BW[s and

one BH[ for reporting real-world events in journalism: when,

where, who, what, why, and how. We discuss the causes for

semantic variability in real-world descriptions, including mul-

tilevel event semantics, implicit semantics facets, and the

influence of context. We discuss five main aspects of an event

detection system. These aspects are: the variants of tasks and

event definitions that constrain system design, the media

capture setup that collectively define the available data and

necessary domain assumptions, the feature extraction step

that converts the captured data into perceptually significant

numeric or symbolic forms, statistical models that map the

feature representations to richer semantic descriptions, and

applications that use event metadata to help in different

information-seeking tasks. We review current event-mining

systems in detail, grouping them by the problem formulations

and approaches. The review includes detection of events and

actions in one or more continuous sequences, events in edited

video streams, unsupervised event discovery, events in a

collection of media objects, and a discussion on ongoing

benchmark activities. These problems span a wide range of

multimedia domains such as surveillance, meetings, broadcast

news, sports, documentary, and films, as well as personal and

online media collections. We conclude this survey with a brief

outlook on open research directions.

KEYWORDS | Data mining; events; indexing; multimedia;

pattern recognition; review; survey

I . INTRODUCTION

Events can be defined as real-world occurrences that

unfold over space and time. In other words, an event has a

duration, occurs in a specific place, and typically will

involve certain change of state. Using this definition, Ba

walk on the beach,[ Bthe hurricane of 2005,[ and Ba trip to

Santa Barbara[ would all qualify as events. Events are

useful because they help us make sense of the world

around us by helping to recollect real-world experiences

(e.g., university commencement 2006), by explaining

phenomena that we observe (e.g., the annual journey of

migrating birds), or by assisting us in predicting future

events (e.g., the outcome of a tennis match).

While no statistics are available on how much real-

world event content is being captured in multimedia, we

can infer its scale from the fact that video already accounts

for more than half of internet traffic, with YouTube alone

taking 10% [114]. The increasing degree to which real-

world events are captured in multimedia further enhances

our ability to not only archive events, but to also recollect,

reason about, and relate to other events. For instance,

analyzing the video of traffic patterns on a highway can

help plan construction and reduce congestion, and

pinpointing anomalies from closed-circuit surveillance

video may prevent small crimes or terrorist attacks. With

current technologies, however, there is little or no

metadata associated with events captured in multimedia,

making it very difficult to search through a large collection

to find instances of a particular pattern or event. There is a

clear need for automated analysis of multimedia streams to

improve the use and re-use of multimedia repository.

This paper surveys event mining, and we cover aspects

in describing, modeling, and analyzing events from multi-

media. Event description is the basis for setting up event

detection problems and defines goals of such systems. Our
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survey on event modeling decomposes the media analysis

problem and discusses the main issues and common solu-

tions for each component.

Event description tries to structure the semantics of

real-world event representations in order to clarify

assumptions and assist in event analysis. We draw upon

the principle of the five BW[s and one BH[ (5W1H) in

journalism. We present examples of these six dimensions

(who, when, where, what, why, and how) along which events
can be described. We also discuss reasons for semantic

variability, i.e., how there are multiple possible descrip-

tions of an event, and why this should happen. The

semantic variability has two aspects: event aggregates and

implicit event facets. There are two main reasons for this

variability: context and the sensory gap between real-world

happenings and what are captured in media.

Event detection is the process of mapping multimedia

streams to event descriptions. We examine the five major

components of an event-modeling system: target proper-

ties, data capture, feature representation, computational

model, and application. The target event properties, data

capture, and application components define the problem,

while the feature representation and computational model

make up the solution.

A significant portion of this survey is devoted to

reviewing a range of existing and ongoing work on event

detection, put in the perspectives of the faceted event

descriptions and the event-modeling components. We

group event detection systems based on their problem

setup and detection target. These include: detecting

known events and activities from one continuous capture,

such as in surveillance applications; unsupervised event

detection and pattern detection, such as detecting routine

but unknown behaviors in videos of meetings; or

recovering event semantics from collections of photos

and videos. We also review current benchmarks that are

related to event detection, which provides a perspective for

both practitioners and researchers about several consensus

problems in the community along with relative perfor-

mance comparisons.

In this paper, we intend to clarify and categorize three

facets of the event mining problem: target semantics, the

problems, and the solutions. The main contributions of

this paper are as follows.

1) In event description, we rely on the 5W1H frame-

work and build on prior work on event represen-

tation [144] and interactive annotation [142]. We

reorganized the earlier frameworks so that the

semantics of the aspects are aligned with common

sense and more complete (see Section II-A7). We

also discuss how the embodiment in real-world

media influences event aspects and event detec-

tion. In particular, we explain the semantic

variations that appear in each aspect and discuss

how intuitive aggregates and media production

can affect different event facets, e.g., the notion of

media time and real-world time in when, and

semantic aggregations in what, where, and when.
2) We provide a dual overview of the components and

systems for event detection. In terms of coverage,

there have been a few surveys in multimedia

analysis and indexing but none have discussed

events in depth. There are surveys on extracting

generic static semantics [151], in which event is an

important but distinct subset mentioned in the

passing, or on image/video retrieval [20], [118],

[129], [131], [155], which can be an application for

event analysis. In terms of organization, Section II

provides a component overview similar to a few

image/video retrieval surveys [78], [129], [131],

[155]; Section IV surveys existing event detection

systems grouped by common problem scope and

solution components, similar to earlier system

surveys [20], [118]. This dual structure is necessary

since event-modeling problems are very diverse,

and there are a number of problem setups and

components that the community is actively

working on.

Modeling event semantics and extracting them from

multimedia data are of interest to numerous areas outside

the multimedia analysis community. This is due to a number

of reasons: First, the understanding of event semantics in

real-world media collections draws upon a number of

research areas that are traditionally separate: knowledge

representation [93], [122], computer vision, auditory

analysis, natural language processing, machine learning,

databases, to name a few. Problems in this area provide

synergies among these areas for the understanding of

multimedia content and present new challenges such as

multimodal fusion and learning with structured input–

output. Second, with the ubiquitous presence of multimedia

data in our lives for both informational and entertainment

needs, better understanding and modeling events will

enable better user experiences and improve system design

in closely related areas such as computer–human interac-

tion, multimedia communication and transmission, multi-

media authoring, etc. Finally, the underlying data processing

and learning methodologies used here are very similar to

those seen in many other domainsVstream data mining,

network measurement and diagnosis, bio-informatics,

business processing mining, and so on.

We limit the scope of this paper in threemain ways. First,

ourmain focus is on event analysis from existing archives and

repositories. While event analysis can certainly benefit from

systematic representation and capture of metadata [144],

solving the problemwith incomplete data is more likely to be

valuable for many real-world applications and existing

content collections. Second, although we provide a frame-

work for thinking about the problems and solutions in the

event and pattern mining space, our review of specific

approaches is by no means complete, in part due to the rapid

development in the area. And finally, while our focus is on
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the general problem of event modeling across multiple

modalities, the majority of the work reviewed here relies to a

significant extent on visual information, and less on other

modalities such as sound, freeform text, or structured meta-

tags. This is in part due to the perspective of the authors and

also due to the relatively limited work already done on the

analysis across the different modalities.

The rest of the paper is organized as follows: Section II

presents event characterization along six commonsense di-

mensions and discusses their semantic variability. Section III

examines the event-modeling problems and presents five

major components of a event-modeling system. Section IV

reviews the state of the art on event detection and modeling.

Section V concludes the paper with a brief outlook.

II . EVENT DESCRIPTION

Events can be described in many legitimate forms, such as a

walk on the beach, the hurricane of 2005, a trip to Santa

Barbara. Real-world events are captured with images,

sounds, videos, and text, these media and the underlying

semantic facets such as who, where, when, and what support

the understanding of events. Diverse as they seem, there are

underlying structures in event semantic that allow a sys-

tematic organization of these descriptions. In this section,

we resort to six common-sense aspects called 5W1H to char-

acterize events in multimedia. We will also discuss factors

that account for the variability in these semantics.

A. 5W1H of Multimedia Events
We refer to journalistic practices for covering real-

world events to design a systematic way of describing

events. A key maxim in journalism is to use the six

interrogativesVwho?, when?, where?, what?, why?, and

how? to develop a comprehensive reportage of the event.

We adopt the same six facets to describe events in multi-

media streams, because they are key semantic attributes

that are sufficient and necessary to summarize an event, as

prescribed by journalism principles, and also because they

can be preserved in the process of capturing a real-world

event into multimedia sequences, as can be seen in the

example that follows.

Fig. 1 shows an example of a real-world event: 2007

NBA finals, Game 4. This event can be summarized along

the six facetsVwho: the Cleveland Cavaliers and the San

Antonio Spurs; when: June 14th, 2007; where: the Quicken
Loans Arena, Cleveland, Ohio, U.S.; what: the Cavaliers

play the Spurs in Game 4; how: the Spurs win the NBA

Finals 4-0 with a 83-82 victory in this game; why: the Spurs
exhibited teamwork and played good defense. A human

observer, not surprisingly, can recover the same summary

from either snapshot of the game: a news article or a TV

broadcast of the game.

These event facets, referred to as 5W1H for short, are

types of metadata, or structured, descriptive information

about a multimedia clip. Similar to the distinction made in

library resources, we distinguish the metadata in multi-

media into two broad categories: intrinsic and extrinsic
metadata [127]. Being intrinsicmeans being attached to the

multimedia clip during capture and production, and

remaining relevant to the resource it describes, no matter

what, the context. Examples of intrinsic metadata include

the widely used EXchange Image File (EXIF) [69] meta-

data, the media format, bitrate, or the viewers/players/

platform on which the multimedia clip can be viewed or

edited. Extrinsic metadata include additional information

that describes the media clip, that helps present its

meanings within a context. The 5W1H are part of the

extrinsicmetadata of the media content, since they serve to

describe semantics rather than signal-level composition of

the media; their interpretations may be variable across

different context, as will be shown by the examples in

Sections II-A1–A6 and the discussions in Section II-B3.

Moreover, they are actually invariant to certain intrinsic
information of the multimedia clip given the same context,

e.g., the same scene, taken by two different cameras from

exactly the same viewpoint and camera settings can share

the same set of semantic descriptions. We are interested in

the 5W1H, as they are extrinsic value-adds to media

representation, that can both enrich the representation

and help event-based media applications and information

seeking tasks, as discussed in Section III-B.

We now go on to discuss each of the six event facets in

more detail: how they help describe an event, how their

scope, meanings, and applicability change when applied to

multimedia data, and how new values can be defined and

created at different stages of media production and

consumption. We also compare and connect the 5W1H

with the work on common event representation model

[144], from which this work draws upon.

1) WhenVTime: Time is one of the key components of

an event, yet the description of time can take many forms.

Consider the event of Bmy conference trip to ACM

Multimedia[; it is possible to specify the time attribute in a

variety of waysVBOctober 21st–25th, 2006[ (exact),

Bbefore Thanksgiving[ (relative), Bevery year[ (periodic),

Bin the fall[ (at a coarse granularity), Bin the best season of

the year[ (affective).

Importantly, there is more than one temporal coordi-

nate in events captured by media: real-world time, media

time, time of post-processing, time of uploading and

sharing on a website, time that comments are posted, etc.

The relationship between real-world time and media time

is the most important one, since this relationship can

change the semantics of the media components (e.g., shot

sequences) as explained in the following. Furthermore,

this relationship is set after the media is produced and is

invariant to how media is distributed or consumed.

The real-world time refers to the absolute, unambig-

uous time that an event takes place in the physical world,

e.g., 7:00 pm Pacific Time, October 22nd, 2006. Media
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time refers to the relative value within the media stream,

e.g., 10 minutes after the news began, third shot in the film,

the first picture in a vacation collection, etc. Note that media

time is observable from the data streams, while real-world

time can either be known, e.g., captured in media metadata

such as EXIF, or it can be hidden or imprecise, e.g., the

interview shot at 10 minutes into the news shot may have

been taken sometime during the day that is unknown to the

viewers. Reconciliation of real-world clips that refer to the

same event, or alignment of media time and real-world time,

can become a challenging problem in the absence of addi-

tional temporal metadata.

Fig. 2 illustrates possible mappings between real-world

time and media-time coordinates with four example

content domains. Fig. 2(a) represents a continuous media

capture, such as surveillance videos and meeting captures.

Fig. 2. Four possible mappings between real-world time and media time for different types of real-world media clips: (a) surveillance,

meeting capture; (b) home video, raw footage; (c) news, documentary; and (d) film, drama.

Fig. 1. Example of a real-world eventVGame 4 of 2007 NBA FinalsVsummarized into six semantic facets from journalism

coverage (middle left) and multimedia clip (middle right).
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Media in such domains is typically one long shot,1 where

there is one-to-one correspondence with the media time

and real-world time through a constant offset. This setup

easily generalizes to a multicamera continuous capture,

where several capturing devices are time synchronized.

Fig. 2(b) represents intermittent sequential media capture,

such as home videos or raw professional footage. In such

capture, the media clip typically consists of multiple shots,

each of which has a different temporal shift with respect to

the real-world time, and the temporal order of the shots

preserve the temporal precedence in the real world.

Fig. 2(c) represents edited footage with intermittent

capture and temporal reordering. This can happen in

broadcast news and documentaries, where different shots

not only have different shift with respect to the real-world

time, the temporal precedence between shots are also

reordered among the field footage, interviews, and studio

shots. Finally, Fig. 2(d) represents edited video with

reordering and temporal scaling. This can happen in film,

sports replays, and other drama genres. Such videos may

not map to specific real-world times, they may also employ

special camera and cinesthetic techniques [124] to

compress or expand time in a shot.

The relationship between real-world time and media

time varies widely across different content domains. This

poses a great challenge for event recognition systems to

generalize across domains, since the assumptions about

such relationships are implicitly coded in the system and

are rarely explicit and reconfigurable in the metadata.

Many event recognition systems do not yet address the

issue of recovery between media time and real-world event

time. This has not yet been a critical problem as current

recognition systems have been focused on recognizing the

objects/people in the given content domain. However, this

issue will become increasingly important when researchers

begin to address the increasing need of retrieving media

stream from diverse sources related to events (e.g., finding

Ba kid’s birthday party[ on YouTube) [75], [76].

2) WhereVLocation: Space is another key multimedia

variable that can be used to index and interpret events.

Prior work [94] reveals that time and location are the most

important attributes for people to recall real-world events.

Similar to time, the description of location can also take

many forms, e.g., B500 W. 120th St., New York, NY

10027[ (absolute and exact); Bfive miles northeast[

(relative); Bnot far from the Hudson River[ (approximate).

It can also be used at different granularities, Bthe

seventeenth floor auditorium in the GE Building[ or Bin

New York City.[

Space, like time, is used in two coordinate systemsVthe

absolute spatial location where an event occurs and the

display space where creators can reorganize elements to

communicate a specific affect or meaning. The relationship

between absolute real-world event locations and their

corresponding media locations is not a straightforward

mapping, in a similar manner as that for time (Fig. 2).

Changes in the real-world event location are not necessarily

reflected in changes to an object or a person’s location in

the video. Geo-spatial visualization of media [9], [11] is a

possible way to visualize event location changes in

correspondence to media location changes. We note that

in creative domains, there is very little in relationships

between real-world event locations and how they are

manifest on screen. Film makers routinely alter our

perception of space (as well as time) through clever event

capture and event editing [17], [32].

3) WhoVSubject: The who field has typically referred to
the subject in the media clipVwho is in the photo/video?
However, this can quickly get complex given the entire

media processing chain. For example, one could ask who
took the photo, who edited the photo, who posted the photo
online, who has seen the photo, etc. While the first two

questions are directly connected to the event itselfVevent

participation and event capture, the last three questions

are about operations on the media clip that remediates the

original eventVmedia editing, communication, and view-

ing. These different attribute values are useful in different

contexts. For example, who edits the media clip may be

important in the context of a media production house,

where the Bevent[ refers to an edit of the raw capture, not

the original event captured in the content. It may be

important to be able to retrieve the media clips for the

editing event based on the media clip editor.

Similar to when and where, the who facet in event

participation can have many forms, e.g., BAbraham Lincoln

the U.S. President[ (absolute), Ba politician[ (generic

category), Ba group of suited people[ (a collection), BPh.D.

students more senior than Tom Sawyer[ (relative), etc.

Sometimes the who facet need not refer to people or

impersonated characters, it may simply be the subject of

action, e.g., Brocket launching,[ or change of state, e.g.,

Bearthquake,[ Bhurricane.[

4) WhatVActions, Activities, and Their Aggregates: The
what field describes the change or action taking place in

the media clip. It answers the question what is happening in
this clip? For example, in a video clip containing a stroll by

the beach, the what field would be described as Bwalking,[

Bstroll.[ The answer also depends on the required

granularity or levels of abstraction. For example, the

what question could be alternatively answered asVTom
walking on Venice beach (highly specific), to a person
walking (abstract).

In addition, the what question can be answered in

different ways, depending on the event that the clip

belongs to. For instance, we could ask about the action,

what is Bob doing; the object, what is Bob working on; the

1In this paper, a shot is just one single continuous camera take. This is
a mechanical definitionVequivalent to when the camera is started, to
when it is switched off.
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goal for what is Bob preparing the presentation for. The
utility of the questions depend on the event and the

specific user context.

5) WhyVEvent Context: The why field provides reasons

for an event to happen, e.g., Bwhy did Tom’s party take

place?[ This question cannot be answered by examining a

single event in isolation. In this case, the reason why the

party took place could depend on another eventVBhe

successfully defended his thesis.[ The set of events that are

needed to understand the semantics of a specific event

form the context of the event. Note that this is different

from the event description context. The event description

context is the set of conditions (Section II-B3) that affect

the values of the 5W1H attributes not the set of other

events that lead to, or result from, this event.

6) HowVEvent Dynamics: The how field answers a

subtly different question from why or what. It is the answer
to the questions how was the event? or how did this event
come about? In the preceding example, the how aspect to

Tom’s event can be Bit was a fun party,[ Bforty people

came and congratulated him,[ Bthe guest lists was

determined three weeks ago, and a few friends helped

Tom with the shopping and cooking since the day before,[

Bthe party went way over budget.[ The how facet helps

understand the event dynamics, it can either modify the

what facet from different angles, or like the why field

connects to other related events and can only be answered

in context.

We note that the why and the how attributes of an event

may depend on other events. Most current multimedia

analysis research does not try to answer these questions

from a single media instance. Why and how is part of

knowledge representation and reasoning in core AI, and

their extraction and inference can benefit from work in

this area such as event calculus [93]. Also note that each of

the six facets can take multiple values, Section II-B

discusses the reasons for this semantic variability from

three viewpoints.

7) Connections With Earlier Event Representation Models
[142], [144]: The event description through the 5W1H

draws upon the work on event models by Westermann and

Jain [144], or earlier work by Vendrig and Worring on film

annotation [142].

Westermann and Jain proposed six aspects for event

representation, to which four out of our six event facets are

similar, i.e., the temporal, spatial, informational, and causal
aspects there correspond to when, where, who, and why
attributes, respectively. It is worth noting that their focus

is on event capture and representation, while our primary

concern is on adding semantic descriptions by event

analysis. Their representation also included the intrinsic

media metadata (modalities, media format, size, etc.; see

Section II-A) as the experiential aspects, and event–

subevent relationships in the structural aspect. In event

analysis, we are often working with a given set of media

clips for which the intrinsic metadata are already fixed
(e.g., the NBA game broadcast stream was already

captured). Moreover, we find that the event–subevent

relationship can be inferred through continuity or

similarity relationships in the 5W1H, the hierarchical

nature of events (Section II-B1), as well as reasoning in

knowledge representation [93].

Vendrig and Worring used the four aspects also com-

mon in Westermann and Jain: who, when, where, what. In
addition, we include the what and how attributes for the

semantic tags and modifiers associated with the event.

These attributes often cannot be recovered from the media

content and other events aspects alone since they values

will vary with respect to context and task (Section II-B),

yet users tag using these semantics [10], and they are

becoming increasingly relevant in tagging, annotation, and

content analysis tasks.

B. Why are Semantics Variable?
We have seen a significant amount of variation in each of

the key event facets. This variation mainly falls into two

types: 1) varying semantic granularity and 2) implicit or

hidden semantics. Furthermore, these variations come from

two causes: the dependence on context and a multimedia

clip as an incomplete capture of everyday experiences.

1) Multilevel Semantics and Event Polysemy: A media clip

can belong to many different events due to the different

granularities at which the clip is described.

Fig. 3 illustrates event polysemy in a conference

scenario: A video clip can be either described as BDr. A

runs live demo of system X in Rm IA, 11:20 am on Oct 24th[

(Box e), or BDr. A and Ms B present papers at the

ACM Multimedia conference content analysis session,

10:20–11:50 am, Oct 24th[ (Box d). While both descriptions

are valid, the second description applies to a longer time

span and can be regarded as containing the first description

as a subevent. Furthermore, the same clip can also be

generally described as part of BACMMultimedia conference

technical presentations[ (Box b), as opposed to Bthe social

and leisure activities at ACM Multmedia[ (Box c). Through

this example, we can see that event polysemy results from

aggregating or expanding event descriptions in one or more

facets. Also, (d) can be derived from (e) and a few other

events instances (not shown) that share the same location

(where) and are adjacent in time (when); while Bconference
lunch[ (Box f) and Ba walk on the beach[ (Box g) can be

aggregated since their what facets can both be described as

Bsocial and leisure activity.[

Fig. 4 further illustrates semantic aggregation along

specific facets. Without loss of generality, we plot time (the

when facet) as the x axis and location (the where facet) in the
y axis, and we use colored squares to represent technical

seminars on different topics (the what facet). Fig. 4(a) shows
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that talks that are adjacent in time and location can be

grouped into one aggregate event, such as BACM Multime-

dia technical sessions[; Fig. 4(b) shows that seminars that

share the same location and regular temporal intervals

belong to one semantic theme Bmultimedia research group

weekly seminars[; Fig. 4(c) shows that a set of seminars that

took place in diverse time and locations actually share the

author (the who facet) and topic (the what facet),

summarized as BMyLifeBits talk by Gordon Bell.[

From the examples above, we can see that event

polysemy results from the aggregation of event instances

along one or more of the semantic facets among the

5W1H. There are many meaningful aggregating opera-

tions, such as: continuity [Fig. 4(a)], shared values

[Fig. 4(c)], or regular intervals [Fig. 4(b)]. In addition,

event polysemy is the effect of multilevel semantics

within one event, while semantics is certainly affected by

contextual factors such as the cause, effect, task, as will

be discussed in Section II-B3.

2) Implicit Semantics and Hidden Facets: Aside from the

plurality of valid meanings, event facets can also be

implicit or unknown.

Implicit facets can be recovered due to their inherent

correlation with the known facet. For instance, we can

describe Box (c) in Fig. 3 as Bsocial and leisure activities

during ACM Multimedia 2006,[ with only the aggregated

what facetVfrom this description, we can recover the

when and where facets from BACM Multimedia 2006,[

assuming access to a corresponding knowledge base.

Fig. 3. Multilevel event semantics by aggregating event instances: ACM Multimedia Conference (see Section II-B1). Photos courtesy of

ACMMM06 Flickr group: http://www.flickr.com/groups/acmmm2006/.

Fig. 4. Example event aggregations over different semantic attributes. (a) ACM MM 2006 conference sessions, continuous over

space and time; (b) multimedia group seminars, at a constant location and regular intervals over time; (c) topic-specific seminars

‘‘MyLifeBits’’ talk by Gordon Bell, diverse in location or time.
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Unknown facets result from either imprecise correla-

tions or the incompleteness in event capture and anno-

tation. For example, a news story covering an important

initial public offering (IPO) includes an interview with an

economist scholar. While the theme of the interview is tied

with the news story, the exact when and where facets are
unknownVthe time should be after the public announce-

ment of this news and before the TV broadcast is aired, but

the exact real-world time remain unknown due to the

imprecise specifications from the parent event. The

interview clip may contain a head-and-shoulder indoor

shot of the interviewee, there the location is neither

mentioned nor discerned from the video itself.

While we acknowledge the polysemy and scarcity of

semantic event descriptions, such imprecision is often

seen in real applications without affecting our use of such

descriptions. For example, aggregating shared what facets
among event instances is of interest to many current event

detection systems (Section IV). This is because problems

in visual event detection are decomposed as recognizing

occurrences of similar actions or activitiesVcommonly

referred to as event class detection. This problem can

include, for example, person walking, baseball homerun,
with instances occurring in different times and/or

locations.

There are two reasons that caused imprecise event

descriptions in practice: 1) Event context that narrows

down the values of event facets or supplies necessary

values for the implicit facets (Section II-B3). 2) The

sensory gap between everyday experience and captured

media clips, responsible for the loss of unknown values in

media production process (Section II-B4).

3) What is the Role of Context?: Event context refers to
the set of interrelated multisensory conditions that affect

the choice of event facet values.

Prior work has studied context in ubiquitous computing

and media retrieval applications. Dey [36], [37] has built

context-sensitive ubiquitous computing systems that take

into account location, identity, activity, and time. There,

context is defined as [36] Bany information that can be used

to characterize the situation of an entity, where an entity is a

person, place or object that is considered relevant to the

interaction between a user and an application, including the

user and application themselves.[ Winograd [145] bounded

the definition of context as the set of information that is

relevant for the current communication. Note that these

definitions imply to two important propertiesV1) Context is

a dynamic construct [38], [51] and 2) Context is related to

knowledge and cannot be discussed independent of it [106].

Context has also been used in multimedia content analysis

applications. Mani and Sundaram [87] construct a graph-

based context representation that helped retrieval of a large

collection of personal photos.

For event description, context includes knowledge,

user task, and event history. The use of context can help

disambiguate event descriptions by supplying hidden

event facet values, narrowing down and deciding the

angle from which the questions about the 5W1H are

asked. Knowledge is an emergent set of multisensory facts,

a subset of which is in attention and affects the attributes

that describe an event. For example, the background

knowledge about soccer matches can help fill in the

location for BItaly won FIFA 2006[ as BBerlin, Germany.[

A user may choose to describe a picture as Bthe golden

shot that decided FIFA 2006[ if his/her task is to annotate

a set of FIFA 2006 photos, while the same photo may

receive the label of Ba soccer shot[ if the user is trying to

describe this picture among a collection of general news

stock footage for events happened in 2006. Similarly,

event history can affect the granularity of event descrip-

tions, e.g., Ba lecture on image processing[ can be further

specified as Blecture 7 of EE480 in Engineering building 332

on image enhancement[ if the user has seen the previous

sessions of the same lecture series.

4) Sensory Gap: The sensory gap [33], [129] is the gap

between a real-world event and the information in a

(computational) description derived from a recording or

recordings relating to that event. This gap is responsible

for the loss of certain event facet semantics after media

capture and makes them unrecoverable from the media

alone.

Multimedia clips and their annotations typically

capture a very small subset of the information relating to

the event. For example, the attendees of the technical

conference all sample different aspects of the BACM

Multimedia 2006[ event. Among the small subset of

events one person can participate, they choose to record

another reduced set. For example, a user may decide to

take photographs at the conference dinner, while record-

ing the speech at the keynote presentation on her mp3

player for later review. Others may choose to document

conference presentations on their computer via text. What

they choose to record (e.g., a walk on the beach, the

conference keynote, dinner) and how they choose to

capture is informed by their situational context. Every user

who captures the event implicitly leaves out most of the

people and the subevents in the conferenceVe.g., the

conference talks not attended, or lunch conversations

unarchived. Importantly, while no single user has a

complete understanding of the conference event, summa-

rizing and aggregating the capture across users may still

recover the semantics of the conference.

The capture may also be a distorted recording to the

original experience. For example, the semantics of an

event may be altered if the person decides to take only

black and white photographsVit is no longer possible to

describe the event capture in terms of the color of the

clothes worn by the participants. Note that different stages

of media production, such as premeditation, capture or

editing [56], [96], will change or create new metadata
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about the 5W1H in the event being captured. For the

purpose of this paper, we do not distinguish these changes

incurred by different operations.

III . ELEMENTS OF EVENT MODELS

In this section, we discuss typical event-modeling systems.

These systems can be decomposed into a few broad

components, as shown in Fig. 5 and Table 1. The main

body of this section will be devoted to a high-level

overview of each component, presenting their common

forms and variations. These components will also help

structure the discussions in Section IV by providing a basis

for system comparison, as summarized in Table 2.

Fig. 5 depicts the five broad components of an event-

modeling system: task definition, data acquisition, feature
representation, modeling, and applications. Intuitively, both
the data and analysis operations flow from left to right. An

Fig. 5. General components for event modeling. Components (a)–(e) are discussed in Section III-A through III-E, respectively.

Table 1 Overview of Event Detection Components. For Descriptions See Corresponding Parts in Section III. Component-Labels and

Type-Labels are Used in Table 2
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event detection problem is essentially influenced by the

definition and properties of the target event, constrained

by the availability of data, and directed by the goals of the

intended applications. The data acquisition setup is also

influenced by what the system is to accomplish. The

acquired data feeds the algorithmic components that

extract content features, builds event models, and makes

decisions about the events. These additional metadata

from features and modeling output then drive multimedia

event applications, mainly information-seeking tasks such

as retrieval, browsing, or summarization.

Table 1 summarizes a subset of the common options for

the five main components described in the rest of this

section. The components (a)–(e) in this table also label the

algorithms in Section IV and Table 2. Here, the task
definition is naturally broken into event type and system

task, and event applications are omitted from this table

since the generic applications discussed in Section III-B

can be driven by most event detection systems, and event-

specific retrieval systems (e.g., summarization of medical

imagery) are beyond the scope of this survey.

In the rest of this section, we examine various event

detection problems currently being addressed (Section III-A),

then tie the formulation of event detection problems with

event applications (Section III-B) and data acquisition sce-

narios (Section III-C); we also briefly overview the two major

algorithmic elements: feature representations and computa-

tional models in Sections III-D and E, respectively.

A. Event-Modeling Problems
Although we often hear about systems that perform event

detection, the meanings and scopes of what are being solved

are very diverse. This diversity comes from two sources. The

word detection can refer to several different computational

tasks, some of which maybe co-existing or overlapping.

Furthermore, the properties of an event are largely variable
at different semantic levels and aggregations along several

principle attributes, as described in Section II. Such

variation can transform the problem very dramatically. We

now examine these two factors in more detail.

1) Different Tasks in Event Mining: The task of associating
one or more semantics from data can take one of many

forms, depending on the data available and the target

decision. Extending from pattern classification problems

in closely related areas such as face detection and

recognition [59], [163], speaker identification [111], and

image segmentation [123] we present the following six

tasks on event semantics.

1) DetectionVcompare data (multimedia clip) with

a known event or event model, decide the

presence or absence of the event, e.g., Bdoes this

shot contain a person walking?[

2) SegmentationVlocate which part of the data

correspond to the event of interest, this specifi-

cation can be in time, space, or both, e.g., Bwhen

did the game point for Wimbleton men’s final

start, how long did it last?[

3) RecognitionVrecover from data a description of

the event containing one or more of the five W

attributes, e.g., Bwhich word in the American Sign

Language does this gesture represent?[

4) Verification or identificationVconfirm a specific

property in the event Bis this Agassi’s secret serve

with a speed up to 160 mph?[

5) AnnotationVassociating possibly more than one

semantic labels to data, possibly choosing from a

semantic ontology and taking into account the

relationships among the semantics, e.g., Btennis

match, crowd, athletes, Wimbleton, semi-final.[

Table 2 Overview of Event Detection Systems and Their Corresponding Components.

For Component Labels See Table 1. For Detailed Discussions See Section IV
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6) DiscoveryVfind events without knowing its

semantics beforehand, using the regularity or

self-similarity among event instances, e.g., from

Fig. 4(b), Bthe crowd gathering at room 332 every

Wednesday at 11 am.[

Note that these different tasks often co-occur, e.g., detecting

an Bairplane landing[ event and segmenting it out in time.

Also note that the first three tasks, i.e., detection,

recognition, and verification, would require a known event

model or event description, while annotation require more

than one event models that may be interrelated. Finally, in

current event-modeling systems some of these tasks tend to

associate with particular attributes in the B5W1H,[ e.g.,

segmentation is typically concerned with when and where,
recognition is concerned with what and sometimes who, etc.
Here, we present the detection and segmentation as two

separate tasks where detection does not involve finding

where/when the event is; this is consistent with recent

benchmark tasks on generic concepts and events [139] and

different from the definitions in face detection [59] where

the detection task encompasses the two.

In the rest of this paper, we use event detection in its

general sense, which can include one or more of these five

tasks above.

2) Event Properties: Regular or Sporadic, Usual or Unusual:
Many existing research in event detection carry one or

more of the common modifiers for their detection target,

for example, Bsporadic events,[ Brare or unusual events,[

Brecurrent events.[ These modifiers constrain event

detection problems differently and they exercise important

influences on the algorithm being chosen.

Being regular means Bmarked or distinguished by stead-

iness or uniformity of action, procedure, or occurrence[

[6], while being sporadic is Bcharacterized by occasional or

isolated occurrence, appearance, or manifestation[ [6]. We

can aggregate regular event instances into an event class as

described in Section II-B1 by the steadiness or uniformity

of their occurrences, e.g., Bdepartment seminars Fridays at

11:00 am,[ Bthe serves and returns in a tennis game[ (with

every play started with a serve and followed by one or

more returns). While sporadic events may have consistent

meaning but usually cannot be explained or predicted from

the regular events, pertaining to the why aspect of the

5W1H, e.g., Baces in a tennis game[ (serves that the op-

ponent cannot return), we know that a tennis game must

contain a number of plays for a single point, which in turn

contain serves and returns, but it is impossible to predict

whether an ace will happen based on the plays happened

so far.

An alternative classification of event types is usual
versus unusual, or normal versus abnormal. Being unusual or
abnormal not only means that the why aspect is unaccount-
ed for, but also means that the what and how aspects are

unknown from a normal pool of media clips. For example, a

Bfoul in a soccer game[ is a sporadic but normal event,

while a Bbanana kick[ or an Bupheaval of soccer fans[ are

rather unusual in collections of soccer broadcasts.

These event properties affect our algorithm design

choices. For example, regular and sporadic events in sports

can both be detected with a set of trained classifiers [39];

detecting unusual events often means finding outliers that

do not fit the current set of models [164]; once

Bdiscovered,[ we can also build models to describe the

unusual events [161].

3) Current Event Detection Problems: Among the event

detection problems currently being addressed, we can see

a few salient groups with very similar problem setups. The

similarities are in the semantic aspects or along event-

modeling components: detecting which of the five W

attributes, how to group or aggregate event instances,

properties of target events, data format, and target

applications. Section IV reviews existing research work

in the following four groups in more detail.

1) detecting known events and activities from one

continuous capture (Section IV-A);

2) event detection in edited sequences (Section IV-B);

3) unsupervised event detection and pattern mining,

i.e., detect unknown events (Section IV-C);

4) event annotation in a collection of media objects

(Section IV-D).

We simply list the partitions here and leave their problem

definitions, scopes, examples and discussion to the

individual subsections in Section IV. The main purpose

of this partition is to facilitate the presentation of a diverse

collection of existing work, rather than drawing artificial

boundaries on what is worth working on. Aside from

shared problem setup and goals, the emergence of these

partitions can in addition be attributed to the perceived

usefulness along the criteria for maximizing the impact of

content-based modeling and metadata extraction [24],

which include providing metadata that are neither

available from production nor easily generated by humans

and working on content collections that will most benefit

from the value-addVthose of large volume and low

individual value.

B. Applications of Event Modeling and Detection
In order to understand what an event detection system

should achieve, it helps to examine the uses of event

metadata. Event metadata can provide semantically

meaningful indexes that help decompose a task with

faceted metadata and map an information-seeking task to a

multimedia event ontology, such as the large-scale

multimedia ontology (LSCOM) for broadcast news [98].

This can provide additional aspects for matching and

filtering information just as the faceted attributes of

author, title, publisher, helps catalog, search, and promote

books in libraries.

Many information-seeking tasks, on the other hand, can

be mapped onto such event-based semantic metadata. For
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instance: 1) Active, or goal-oriented information seeking

involves finding media clips that matches an existing

description, the 5W1H can help narrow down the range

of possible media clips. 2) Matching involves deciding

whether or not a media clip matches a given description,

e.g., Bis this video a machine learning lecture?[ Bis this

video funny?[Vfor which semantic metadata can be di-

rectly checked for the match. 3) Browsing and impression

formation means trying to get an idea about the content of

an entire collection from an overview or random sample of

the content, e.g., the Bmost popular tags[ page at Flickr [5],

or the thumbnails view in modern operating systems.

Semantic metadata can be directly summarized into text

form, tag clouds, or thumbnails, which are more intuitive

and convenience for an overview than collections of media

sequences unrolled in time. 4) Indexing and archival is to

insert metadata for items in a collection so that they can be

easily found at a later time, e.g., a librarian inserting

library-of-congress call numbers for newly acquired books.

Here, event metadata are directly applicable as additional

indexes.

The benefit of semantic metadata on information-

seeking tasks can propagate its influence to real-world

multimedia systems, for example, semantic metadata has

helped generate significantly better results for automatic

and interactive video search [80], [99], [100], [130].

C. Forms of Event Media Data
Multimedia archives are snapshots of real-world events

from capturing, editing, and archiving with limited

metadata and annotation. The setup for media capture

imposes limits on what are available to us for data analysis,

it also puts constraints for system design. Here, we

examine a few typical scenarios and examine the often

implicit but important assumptions.

1) Single Stream From One Continuous Take: This

scenario typically uses one camera and/or audio recorder,

with either a fixed installation such as close-circuit

surveillance [133] or moving in space such as unmanned

aerial vehicle (UAV) [88] or lifelogs [28], [42], [133]. The

scope of data analysis is within a start/stop of the recording

device. Thus, there is continuity in both space and time.

Mapped to the 5W1H in event attributes (Section II-A),

the offset between the media time and the real-world time

is constant [as shown in Fig. 2(a)], and the location

correspondence is either fixed or continuously changing.

Such continuity enables common signal-level processing

operations in the image sequences and sound such as

motion estimation, tracking, registration, background

substraction, and mosaicing. This scenario is addressed

by many visual-based event and activity modeling systems

(Section IV-A) due to its high value in practice (security

systems and other monitoring services) and the simple fact

that the other scenarios are various combinations and

compositions of the start/stop of recording.

2) Multiple Concurrent Streams: Multiple cameras or

microphones can be set up to capture multiple view points.

This setup is commonly found in surveillance networks

[88] and meeting recordings [133]. These concurrent

streams offer richer representation about the original

scene. They are often calibrated so that the spatial and

temporal correspondence can be reconstructed, yet they

present additional challenges in data association for

finding events from multiple sources. Existing work on

analyzing multiple concurrent streams is reviewed in

Sections IV-A and C.

3) Single Stream From Multiple Takes: Conventional

video and audio are linear media in that they contain a

single sequence meant to be consumed in temporal order.

Such a sequence can be obtained by concatenating

segments taken at different time and/or location, as shown

in Fig. 2(b)–(d). Most broadcast content and its raw

footage are in this category, e.g., the TRECVID corpora

containing news, documentary, and rushes [139]. Event

semantics in these streams manifest themselves not only

within each shot but also in the syntactical relationship in a

sequence of shots or a sequence of scenes [124]. Shot

boundaries introduce discontinuities in time and space in

these streams and the reference times and locations of

such discontinuities are often unknown. This unknown

correspondence and the typically short shot length (a few

seconds) can prevent low-level vision algorithms, such as

tracking and object segmentation, from performing

robustly. Existing work on analyzing events in these edited

sequences is reviewed in Section IV-B.

4) Media Collectives: Real-world events are also often

captured in collections of loosely related media streams

and objects, such as pictures from vacation trips [94], user-

generated content around breaking news [7], or photo

pools on community events [4]. Each media object in the

collection may be an unedited continuous capture or a

produced stream as described in Sections III-C1 and C3,

respectively. Yet they tend to be temporally asynchronous

and spatially dispersed with unknown correspondences.

These collectives provide comprehensive views of the

events of interest, yet the appearances of different media

clips are usually diverse. Therefore, media collectives

challenge algorithms that rely on audio–visual, or spatial-

temporal continuities. Existing research on analyzing a

collection of media objects is reviewed in Section IV-D.

D. Feature Representation
Feature representations are extracted from media

sequences or collections, converting them into numerical

or symbolic form. Such representations are convenient

system representations and are prerequisites to event

recognition. Good features are able to capture the

perceptual saliency within the event, distinguishing it

from other events, as well as being computationally and
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representationally economical to lower recognition cost

and improve performance. It is beyond the scope of this

paper to provide a comprehensive survey of audio–visual

features. We present a summary of commonly used

features for completeness and direct the users to

respective surveys on image, video, speech, and audio

features [23], [49], [72], [129].

In order to structure the discussion, we group the

features across different media types into three common

categories, based on methods for computing them and

their level of abstraction.

1) Low-Level Features: Low-level features directly reflect
the perceptual saliency of media signals. The procedures

for computing them do not change with respect to the data

collection or the event being detected.

Still images are usually described in three perceptual

categories, i.e., color, texture, and shape [129], while

image sequences introduce one more dimension of

perceptual saliency, i.e., motion. Color features are

popular due to their ability to maintain strong cues to

human perception with relatively less computational

overhead. The main concern in reliably extracting color

information is to choose from a variety of color spaces and

achieve perceptual resemblance and color constancy over

different scene and imaging conditions. Local shapes

capture conspicuous geometric properties in an image; this

is among the most-studied image features, since psycho-

visual studies have showed that the human visual system

performs the equivalence of edge detection [62]. Local

shapes are often computed over local gray-scale or color

derivatives. Texture loosely describes an image aside from

color and local shape. It typically reflects structure and

randomness over a homogeneous part of an image. Filter

families and statistical models such as Gabor filters and

Markov analysis are popular choices for capturing texture.

Motion provides information about short-term evolution

in video. The 2-D motion field can be estimated from

image sequences by local appearance matching with global

constraints, and motion can be represented in various

forms of kinetic energy, such as magnitude histogram,

optical flows, and motion patterns in specific directions.

Although color, shape, texture, and motion can be

described separately, there are features that provide

integrated views such as correlogram [64] (color and

texture) or wavelets (texture and local shape).

General audio can be characterized by a number of

perceptual dimensions such as loudness, pitch, timbre.

Loudness can be captured by the signal energy or energy in

different frequency bands. Primitive pitch detection for

monophonic tonal signals can be done with simply

counting the zero-crossing rate. More realistic pitch

detection involves autocorrelations and various modifica-

tions. Timbre is captured by the amplitude envelop of

spectrograms as well as the dynamics of the sound, i.e., the

relative strength of different harmonics for tonal sounds

and their onsets and attacks. More elaborate features for

modeling each of these aspects exist, such as robust pitch

extractors [34], [89], linear prediction coefficients (LPC)

[107], and frequency-warped spectral envelops such as the

mel-frequency cepstral coefficient (MFCC) [49].

For text annotations or for audio signals that contain

speech, features can be computed on the text or speech

transcript, using simple measures such as word counts.

Compared to text annotations only, speech signals have

additional timing information upon which prosody features

such as speaking rate and pause length can also be computed.

2) Mid-Level Features and Detectors: Mid-level features

are computed using the raw signal and/or low-level

features. Their computation usually involve signal- or

data-domain-dependent decisions in order to cope with the

change in the data domain and target semantics, and

sometimes training is needed.

Mid-level features capture perceptual intuitions as well

as higher level semantics derived from signal-level

saliency. Examples of mid-level features and detectors

include: tracked objects and segmented object parts [157];

visual concepts pertaining objects, scenes and actions,

such as people, airplane, greenery [139]; audio types, such

as male/female speech, music, noise, mixture [120]; and

named entities extracted from text passages [29]. There

are also mid-level features that are specific to a data

domain, such as the crowd cheering detector or goal post

detectors in sports videos [39].

Features cannot only be extracted from media content,

they can also come from the 5W1H in faceted metadata, i.e.,

structured attributes fields such as dates, location proximi-

ties [94], semantic distances between locations [125], etc.

3) Feature Aggregates for Recognition: Feature aggregates
are derived from features and detectors so that the

inherent spatial-temporal structure in the media sequence

can be represented as numbers/vectors/bags so as to fit the

data structure required by most statistical pattern recog-

nition models. In practice, this aggregation is usually done

with one or several of the following operations.

1) Accumulative statistics. This includes histogram

[135], moments [137], and other statistics over

collections of points. These statistics provide

simple yet effective means for aggregating features

over space and time. They have the advantages of

being insensitive to small local changes in the

content as well as being invariant to coordinate

shift, signal scaling, and other common transfor-

mations. The associated disadvantage is in the loss

of sequential or spatial information.

2) Point selection. The selection of possible feature

detectors from candidate portions of the original

signal aims to preserve perceptual saliency and

provide better localization of important parts.

Tracking and background substraction can be
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viewed as one type of selection, as well as salient

parts extraction and [86], silence detection in

audio, or stop word removal.

3) Set aggregation. This is done over the features in

an image, a image sequence, audio segment, or

other natural data units. The sets can be unordered

or ordered, e.g., bag of words, bag-of-features,

sequences, or more general graph structures.

4) Discussion About Features: The separation we made

among low-level, mid-level, and feature aggregations is

sometimes blurred. For example, tracking can be seen as

either a mid-level feature extraction or part of the selection

process. Also, note that selection and aggregation can also

happen before the extraction of features, such as silence

removal, stop word removal, etc. While good features are

deemed important, some prefer a featureless approach [77]

that leaves the task of determining the relative importance

of input dimensions to the learner. With the wide variety

in feature representations, choices shall be made from

domain knowledge and the event modeling task at hand,

and coming up with the Boptimal features[ would remain

an open problem.

E. Computational Models
In event detection, models are responsible for mapping

data representations to semantic descriptions, where the

descriptions are either in the forms of a discrete label (e.g.,

person running) or continuous states (e.g., the pose or

velocity of an object). The richness of computational

models warrants an entire book [57], and we refer the

readers to existing texts and reviews for pattern recogni-

tion and machine learning approaches [57], [67] for a

comprehensive treatment. We use this subsection to

present a few observations on choosing and using models

for event detection.

1) Knowledge-Driven and Data-Driven Approaches:Human

perception of sensory streams are known to be both

knowledge-driven and data-driven [90]. Several well-known

event recognition systems from the 1990’s are mainly

knowledge driven, using automaton [92], finite state

machine, or grammar models for inference. Data-driven

models range from variants of nearest neighbors to the

generative and discriminative statistical models that repre-

sent complex class boundaries and encode relationships

among the input and output. Nearest neighbor, or distance-

based classifiers remember the primitives of known classes

and classifies and then classify new examples to the nearest

primitive; this has been extensively used in many applica-

tions, such as face recognition [15] or action recognition [31].

It was observed in speech recognition research [70] that

large amounts of annotated training data would enable data-

driven approaches to outperform its knowledge-driven

counterpart. Similar phenomena is also observed with

increasingly large amount of visual- and multimodal event

repository being collected andmade available to the research

community (Section IV-E). One example that combines

knowledge and data is stochastic context-free grammar

(SCFG) [65]. SCFG is initialized and weighted by data, it

smooths the HMM equivalent with nontrivial weights

among unlikely or unseen parse strings and does not suffer

from the lack of data to reliably estimate or even foresee

unlikely paths. Ivanov and Bobick [65] found that SCFG

outperform hidden Markov models (HMM) in the human

activity recognition task due to the inability of HMMs to

represent a large variety of possible paths. Having weighed

the pros and cons, smart combinations of knowledge and

data or systematic ways to encode knowledge into data-

driven models are very much desirable.

2) Generative and Discriminant Models: Generative

models Bproduce a probability density model over all vari-

ables in a system and manipulate it to compute classification

and regression functions[ [68]. Discriminative models

directly attempt to Bcompute the input–output mappings

for classification and regression,[ eschewing the modeling

of the underlying distributions.

Discriminative methodsVlogistic regression, support

vector machines (SVM), boostingVhave seen strong

success in both research and practice over the last few

years. Generative modelsVHMM, dynamic Bayesian

network (DBN), linear dynamic systemsVare still the

models that many choose for capturing events that unfold

in time (Sections IV-A–C). The popularity of generative

models is due to two reasons: they offer to Bexplain[ the

data in addition to being able to complete the detection

task, and they are naturally suited to capture the structure

of the data (sequence, relations). These models with

structural constraints do not suffer a search space of KL,

with K the number of possible states and L the length of

the sequence. Discriminative models with specifically

designed feature representation (e.g., bag of features [113],

fisher scores [66]) and a similarity metric (e.g., Earth-

Mover’s Distance [116], string kernels [84]) have also shown

good detection performance in domains like computational

biology and text classification. Discriminative models have

also been used to model video events such as story

segmentation [63] or short-term events [40], [150], [154]

with promising results.

3) Continuum of Supervised, Unsupervised, and Semi-
Supervised Models: A general machine learning task

involves learning a mapping from input space X to output

space Y : fðXÞ ! Y. For supervised learning, Y is known at

training time, while in unsupervised learning, Y is

unknown. In supervised learning, only fðXÞ is learned, in
unsupervised learning fðXÞ and Y are estimated at the same

time, while in semi-supervised learning a subset of Y may

need to be learned together with fðXÞ, or Y may need to be

learned with certain constraints (equivalence, mutual

exclusion, sequential, etc.). Semi-supervised learning
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methods Buse unlabeled data to either modify or reprior-

itize hypotheses obtained from labeled data alone[ [166].

Popular semi-supervised approaches include EM with

generative mixture models, multiple instance learning,

self-training, co-training, transductive support vector

machines, and graph-based methods. We would direct

the readers to a separate survey [166] for details of these

approaches.

Event detection and recognition problems do not

readily map to this classic supervised versus unsupervised

setup, since event data are inherently structured, and both

X and Y can come in different granularities. For example, a

data tuple ðx; yÞ can mean any of the following: a pixel x
has label y, a region x has label y, an image x is assigned

label y, at least one image x in a video sequence is assigned

label y, or the entire sequence x share the label y. There-
fore, the distinction of supervised and unsupervised models

for event recognition is a gradually changing grayscale,

rather than being black or white. The level of supervision

varies depending on what kind of labeling information is

available at training time. This information can include: a

sequence-level label about whether an entire clip contain

an event, its start/stop time, the object bounding box or

parts, if it is possible or not for two events to co-occur, etc.

These diverse scenarios makes various semi-supervised

learning algorithms very desirable. When formulating

event detection as a learning problem, deciding what to

label (pixels, frame, or sequence) and how the data should

look can be more important than building the machinery to

learn the mapping from data to label.

F. Discussion
It is worth noting that the five components in Fig. 5 are

not necessarily separate. Different types of feature

extraction process can be interwoven (Section III-D4), as

can feature extraction and modeling, or data capture and

feature extraction. For instance, learning similarity mea-

sures or learning to select features resides in the

intersection of features and modeling. Data capture and

feature extraction may be done in one shot, with embedded

architecture such as smart camera systems [146]. Imple-

mented in hardware, such design not only improves upon

software-based system on detection speed, it also makes the

deployment of event detection systems easy for both

everyday use and large-scale multimedia sensor networks.

IV. EVENT-MODELING SYSTEMS
AND EVALUATIONS

Having discussed the problem space of event modeling and

the general components of its solutions, we now turn our

attention to describe a few commonly addressed scenarios

in the literature. Table 2 contains a roadmap for this

section, anchored by the different system components

described in Section II as well as the data domains they are

applied to.

A. Detecting Known Events From One or More
Continuous Capture

Audio–visual streams from one continuous capture is a

frequently studied data domain for event detection. This

type of data is often found in many real-world applications

such as closed-circuit surveillance, UAV video, and video

input for human computer interaction. Moreover, it is the

building block of edited sequences and larger media

collections.

The dual continuity of space and time allows events to

be detected as Blong-term temporal objects[ [160] by

analyzing the behaviors of one or more foreground objects

in a static background. Feature extraction in one contin-

uous capture or multiple synchronous captures typically

involve differentiation in space and/or time with pixel

intensities, segmentation of foreground/background, or

extraction of moving regions, objects or parts. This is done

with a variety of techniques such as image stabilization,

registration and mosaicing, background substraction, and

object and region tracking. For coverage on the extensive

literature on foreground extraction and tracking, we refer

the readers to existing surveys [21], [157]. In the rest of this

section, we review some examples of event recognition

from 2-D images, grouped by their inference mechanisms.

1) Distance-Based Action Recognition: Human actions can

be inferred by comparing distances of pixel-based features

that represent changes in space and time. This approach is

effective because distances of pixel-based features are well

defined, and such recognition works well on a constrained

domain. Davis and Bobick [31] use a two-step approach for

movement recognition in smart rooms. The first step

constructs a binary motion energy image indicating the

presence of motion on the 2-D image plane, the second

step computes a motion history image by integrating the

motion intensity image weighted by the recency of motion.

Action recognition is then achieved by computing the

vector-space distance with the template motion history

images. Zelnik-Manor and Irani [160] detect events as a

multiscale temporal aggregate within a continuous video

shot. They use the directions of local intensity gradient as

the feature representation of input images and then use �2

divergence measure to cluster the feature distributions at

multiple scales. Rao et al. [109] use the motion curvature

feature of the object (hands) and perform dynamic

segmentation of the object in both space and time,

producing a mid-level primitive called Binstants.[ The

time, location, and sign of the curvature are then matched

to templates for event recognition. The first two

approaches above are invariant to the execution rate of

the action, and the third one is somewhat invariant to view

point changes. Time-scale invariance is achieved with the

design of a distance metric over accumulated feature

statistics over the entire sequence, while view-invariance

results from the design of a robust feature, i.e., the sign of

motion curvature.
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2) Grammar-Based Approaches on Tracked Object Parts:
Events can be viewed as structured aggregation and

evolution of tracked objects and their parts. Grammars

and graphs are natural choices to encode these relation-

ships. Medioni et al. [92] represent objects as a graph, with
tracked object parts as the nodes and the tracking

likelihoods as edge weights. The object trajectories are

then combined with a Blocation context[ including static

objects in the scene as well as other moving objects. Events

are matched with known event classes using finite state

automaton. Hongeng et al. [60], [61] parse tracked objects

into individual action threads, the action threads are then

matched to event classes using variants of stochastic finite

automaton: binary interval-to-interval networks or tempo-

ral logic network for multi-agent events. Ivanov and

Bobick [65] use SCFG to recognize complex action

sequences (e.g., conducting music) from video. This is

achieved by first segmenting and tracking low level

primitives (e.g., hands or vehicles) using statistical

detection and then use SCFG to parse the sequence of

primitives taking into account substitution, insertion, and

deletion errors. Although it relies on the immediately

preceding predicate, SCFG is deemed superior than HMM

here if the sequence evolution is complex and if not enough

training data are available to reliably estimate the

probabilities. Shi et al. [126] propose propagation networks
to recognize activity as partially ordered part sequences.

This partial order is represented by a set of constraints

including the duration, temporal precedence, and logical

constraints with temporally coexisting or adjacent parts,

and the inference process with a propagation network is

done with particle filtering. Compared to SCFG, propaga-

tion networks do not need to explicitly represent all valid

event orders in the grammar. Joo and Chellappa [71] extend

SCFG with attribute grammar, which can specify feature

constraints on the part symbols and contains and instance

of SCFG in the model. This was used to detect normal and

abnormal events in parking lot videos. Hakeem et al. [53]
adopt a hierarchical representation of events that consist of

subevents and case lists, which is solved with subtree

isomorphism at detection time.

Grammar-based matching algorithms call for formal

language structures to represent relationships and con-

straints. The Video Event Representation Language (VERL)

[47], [101] is an introduction to an ontology framework for

representing video events. VERL also has a companion

annotation framework, called Video Event Markup Lan-

guage (VEML). This work makes the description of events

composable, whereby complex events are constructed

from simpler events, e.g., agents and their actions, by

operations such as sequencing, iteration, and alternation.

Velipasalar et al. [141] use a similar event definition

language that encodes logical relationships in motion

descriptors and objects tracked in a multicamera surveil-

lance network to recognize events such as Btailgating[ and

Bperson walks by elevator and then exits building.[

3) Generative Models for Event/Action Inference: Given

enough training data, statistical models are often preferred

for learning on structured input/output in many applica-

tions, such as in speech recognition [70]. HMMs, being a

popular choice for stochastic representation of sequences,

are used by Schlenzig et al. [121] to recognize four types of
gestures and by Starner et al. [132] to recognize American

Sign language from wearable computers.

Extensions of HMMhave been developed to account for

multiple sequences, multilayer dependencies, and other

complex data structures. Coupled HMM (CHMM) [19],

[102] explicitly models the temporal dependencies among

different streams, such as audio, video, user input for multi-

object multi-agent action recognition. Chen et al. [26] use
dynamic Bayesian network (DBN) to detect social

interaction from multicamera nursing home surveillance

videos in a two-level setup. The first level is the processing

of audio–visual streams to locate segments with any

human activity and track their 3-D coordinates, using

moving regions identified with background substraction,

fused with energy-based audio features. The second level

uses DBN for inferring events such as Bwalking assistance[

and Bstanding conversation.[ Zhang et al. [91] analyze

multicamera/microphone meeting captures for group

interaction events such as discussion, monologue, presen-

tation, and note taking. The audio and visual streams are

processed independently to generate a set of features

relating to skin-colored blobs, audio localization, pitch,

and speaking rate. A two-layer HMM is then used to infer

individual action and group action in cascade. Each state in

the HMM is assigned domain-specific meanings and the

parameters are learned from data. Aghajan and Wu [8] also

use multilayer graphs to infer gestures from multiple

cameras, where the lower layer performs Bopportunistic

fusion[ of simple features within a single camera and the

upper layer takes care of Bactive collaboration[ between

cameras. Gupta and Davis [52] unify object recognition

and tracking and event recognition, aiming to disambig-

uate objects with temporal context. They also choose

Bayesian networks for modeling interactions between

human and objects, where the nodes in this belief network

correspond to either the object or the types of motion such

as reach, manipulate, etc.

4) Discriminative Models for Event Detection: While

graphical models are natural choices for modeling

temporal evolution in one continuous stream, discrimina-

tive models have also shown good performance since they

directly optimize for the detection boundary. Eng et al. [43]
detect drowning and distress events in swimming pool

surveillance videos. A variant of neural networks called

functional link network is used on extracted foreground

objects (people), compensating for the aquatic background

environment. Kernel-based classifiers have been used to

detect events from within a shot broadcast content. Shots

in TV broadcasts tend to be only a few seconds long. The
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variations in scene, lighting, and camera conditions are

typically too large to do reliable background substraction or

tracking, let alone seeing consistent object appearance and

trajectories. In this scenario, non-object-specific visual

features and mid-level concept detectors become useful for

distinguishing a shot that contains a generic event (e.g.,

airplane landing, riot) from those that do not. SVMs can be

used on kernels generated from HMM likelihoods and

parameters from input feature streams [40]. Kernels can

also come from bag-of-features representation of temporal

streams, with the similarity metric computed with earth-

mover’s distance (EMD) or multiresolution temporal

match [154]. Multiple available kernels can also be

combined [150] to learn both the class decision and

combination weights simultaneously.

5) Discussions: Event recognition from one continuous

capture, as reviewed in this section, focuses on recognizing

the what attribute in the 5W1H of event descriptions

(Section II), the when and where attributes are continuous
or assumed to be fixed.

The reconstructions of 3-D plans for events or actions

have been explored [103], [136]. We have mostly reviewed

event detection from 2-D image sequences. The 2-D

representations in image sequences introduce an inherent

limitation of view dependence, while the 3-D approaches

suffer from larger search space and an ill-formed

reconstruction problem.

Most of the work mentioned here is based on visual

information. A few studies also included audio features

[25], [26], [91] and found significant advantage in doing

so. Multimodal multisource event detection is likely to

receive more attention in the near future due to many

emerging applications and the availability of large multi-

modal collections.

While most of this section covers the detection of

known events, Section IV-C discusses the detection of

unknown events based on self-similarity and regularity,

many of them also on one continuous media capture [140],

[161], [164], [165].

B. Event Detection in Edited Sequences
The meanings of a continuous, edited multimedia

sequence reside both in each shot and in the syntactic

relationships among adjacent shots created by the director.

The most prevalent forms of such content are feature films

and television broadcast archives, where generic and

domain-specific events are useful for indexing, search, and

summarization. A broad definition of events in produced

videos include two categories: those resulting from video

production (i.e., camera or editing operations), such as shot

boundaries, scene change; and those are inherent in the

video content, such as changes in objects, settings, or topics.

1) Detecting Production Events: Detection of video

production effects is a natural first step towards breaking

down the video understanding problem, and it has

received considerable attention since the beginning of

multimedia analysis [162]. Shot boundary detection is

typically detected as a change in color, texture, or motion

features [18]. Recent benchmarks show [139] that abrupt

and gradual changes in broadcast content can be detected

with �90% accuracy, and statistical models such as SVM

[83] and graph transition models [159] have shown good

performance. Several shots with consistent location and

ambient sound constitutes a scene. Scene changes in films

can be inferred [73], [82], [134] with features related to

chromacity, lighting, audio features, coherence, and

memory models.

2) Detecting Content Semantics in Produced Videos:
Domain-specific events inherent in video content can be

further categorized into regular patterns or spontaneous

events. Some video domains contain recurrent continuous

semantic units with a coherent, comprehensible meaning,

such as stories in news, and Bplays[ in many kinds of

sports. Such units are common and the detection of them

is likely to rely on features that reflect the content and

the production conventions. A news story is Ba segment of

a news broadcast with a coherent news focus which

contains at least two independent, declarative clauses[

[139]. State-of-the-art detection algorithms achieve good

segmentation results, with an F1 measure up to 0.74 [22],

[27], [58], [63]. This is done by employing machine

learning techniques such as SVM and HMM, along with

judicious use of multimodal features such as shot length

(production effect) or prosody in the anchor speech

(content feature).

In sports videos, play is a common class of basic

semantic applicable to many sports, including soccer,

baseball, American football, sumo wrestling, tennis,

badminton, and so on. Plays can usually be distinguished

from the visual information, especially type of shot and

camera motion, since broadcast sporting events typically

take place with similar scenes and visual layout. Therefore,

many play detection algorithms [13], [41], [79], [147] use

color, motion, court layout, and tracking features followed

by either rule-based or statistical models such as Bayesian

network or HMM. Spontaneous events in sports are

intuitively characterized by distinct audio cues such as

audience cheering and excited commentator speech,

particular view angles such as the soccer goal post and

penalty area, behavior of salient objects such as players

and balls, as well as mid-level detectors such as whistle

and goal posts [39], [44], [117], [153], [158]. Models for

inferring sporadic events include rules and distances [153],

SVMs [39], [117], [158].

Detection of spontaneous events from films or TV

drama, such as explosion, clapping, and waterfalls has also

been done similarly by Naphade et al. [97] with global

audio and video features and a probabilistic factor graph,

or in a interactive frame work that helps the user to label a
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subset of the 5W1H attributes [142]. For generic produced

videos, little can be assumed regarding the camera, scene,

or objects, due to the frequent transition among shots and

the large variations in the scene and imaging conditions.

Therefore, the analysis systems typically resort to global

content features or generic mid-level features such as color

histogram, correlogram, visual, and audio classes.

Most systems focus on the detection of the what facet
among the 5W1H of events, whereas who and when are

implicit: the director makes a scene cut, the (tracked)

player scores a goal, or an explosion happens ten minutes

into the film. Explicit labeling for who [12], [16], [119] or
where [156] exploit the correspondences between the

visual information and the spoken content.

C. Unsupervised Event Discovery
Most of the work in the previous sections detects

known events. Automatically detecting unknown events can
also be very useful when the user needs to explore a new

collection, find new things that are unaccounted for among

the set of known events, or initialize models and data

annotations for more accurate modeling. This scenario has

received considerable recent attention, in part because

media collections have outgrown the amount of reliable

annotation. Such videos are available on the web [14], in

benchmark activities [139], and from individual research

projects such as the Human SpeechHome [115]. There is a

large variety of problems and solutions in this area,

although it is relatively new. The problems are in two

categories, namely, finding regular events and/or unusual
events. The computational models typically involve clus-

tering algorithms, association and co-occurrence mining,

and dynamic graphical models, in combination with

outlier-identification and model adaptation. The data

domains span many raw and produced content types,

such as broadcast news, sports, surveillance, lifelog,

meetings, etc.

Regular patterns are typically found using clustering

operations with various features and models. A continuous

media sequence can be either presegmented into fixed-

length units or jointly clustered and segmented by

generative models typically in the HMM/DBN family.

Clarkson and Pentland [28] cluster ambulatory audio–

visual streams with HMMs to identify different user

locations. Xie et al. [148] find that recurrent frames and

shot sequences in sports and news programs often

correspond to domain-specific multilevel motifs found

using hierarchical HMM. Ellis and Lee [42] cluster and

segment wearable audio device recordings into homoge-

neous Bepisodes[ corresponding to locations and activities,

using acoustic features over long time windows and

spectral clustering. Turaga et al. [140] build linear dynamic

systems (LDS) on optical flow features for surveillance

action events, with the system iterates between model

learning and sequence segmentation. The authors also

built temporal, affine, and view invariance into the model

with the nature of LDS and modified distance metric.

Feng et al. [44] use association rules on mid-level audio–

visual features to discover events in basketball games.

Unusual events are often defined relative to usual
events with an underlying distance/similarity metric,

where unusual-ness is captured as deviation from the usual

collection with measures such as a very low data

likelihood. Zhou and Kimber [165] model multiple

surveillance streams as coupled HMM, trained with the

usual events and detects unusual events as outliers in the

likelihood values. Zhang et al. [161] learn unusual event

models from audio–visual sequences by adapting from a

general usual model. Radhakrishnan et al. [108] treat video
segments that deviate from the majority of spectral clusters

as outlier events and thus find highlights from broadcast

sports or surveillance videos. Zhong et al. [164] analyze the
co-occurrence matrix among video segments and use

matrix co-embedding to identify outliers from a variety of

surveillance videos with diverse event types. Petrushin

[104] detects frequent and rare events in a multicamera

surveillance network using multilevel self-organizing map

(SOM) clustering on foreground pixel distribution in color

and spatial location; visualization and event browsing are

anchored with a Bsummary frame[ accumulating all

foreground pixels. Hamid et al. [54], [55] use n-grams

and suffix trees to mine movement patterns seen from

ceiling-mounted cameras, finding usual events such as

Bfedex delivery[ and unusual ones such as Btruck driving

away with its back door open.[

Simply mining events based on recurrence or unusual-

ness is a first step towards interpreting the results and

making them useful. One way to help interpretation is to

associate clusters and patterns with words, such as temporal

clusters from news videos [149] or motifs from sports videos

[45], using models built on the co-occurrence statistics

between clusters or motifs and words. One step towards

using and further refining clusters is to build supervised

classifiers based on themined clusters. Fleischman et al. [46]
find frequent motifs from video streams and build SVM

classifiers to distinguish household events such as Bmake

coffee,[ Bwash dishes,[ based on those motifs. Xing et al.
[152] use undirected graphical models to find cross-modal

hidden structures in news videos and use the results to

improve concept detection.

While event discovery usually relies on unsupervised
approaches, the separation between supervised and unsu-
pervised is, in fact, gray-scale. This is especially true since

the inputs and outputs for discovering multimedia events

are structured, instead of being i.i.d. as in classic machine

learning settings. Here, supervision can mean knowing the

onset/offset of events but not knowing the location and

action of objects or knowing objects and scenes but not

knowing their actions and interactions, while being

unsupervised will still require domain knowledge and

clever feature engineering to steer the discovery towards

meaningful directions.
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D. Events in Media Collectives
The sections above mainly focus on events within one

continuous stream or a set of synchronous streams. In a

wide range of real-world scenarios, however, image and

video are captured asynchronously in time and space, often

by different people from various perspectives and some-

times accompanied by textual descriptions. Such scenarios

include photo journalism, consumer photo and videos

collections, as well as user generated content [7] for news
and surveillance. In these domains, content streams can be

viewed as a collection of media objects, each of which can

be described by the 5W1H attributes while the collection

reflect an aggregate event as a whole (e.g., Fig. 3).

We can analyze such collections to infer various aspects

about their semantics. Consumer photo streams have

received much attention as the now ubiquitous digital

cameras have made managing ones’ own picture collection

a challenge. Much work has gone into understanding how

people construct, manage, and use their photo collections.

Multiple studies [50], [76], [94], [112] show that users

group photos by real-world events, and photo collections

are recalled by time, location, or the rest of the 5W1H.

Time information attracts the most attention among the

5W1H attributes, as it often is an unambiguous event

indicator within a small social circle (e.g., family outing last

Sunday), and it is available through the EXIF [69]

metadata. Using the capture time of photos alone can

help segment photo collections into events. For instance,

Graham et al. [50] obtain segments with locally adaptive

threshold, while Gargi [48] finds the larger intervals

between typical Bbursts[ of photos. Content features are

also used to help time-based segmentation. Platt et al. [105]
use color features to further segment large temporal

clusters and compensate for corrupted image capture

times. Loui and Savakis [85] use block-based histogram

correlation in an iterative clustering process involving time

and content features. Cooper et al. [30] incorporate content
feature with temporal information into to a multiscale

clustering and segmentation process. Lim et al. [81]

classified events, objects, and locations using their

semantic relations from a predefined photo taxonomy.

Important as time seems for representing events,

recent studies have also focused on inferring events from

other aspects of the 5W1H in media collections. Resolving

a singular event’s semantics may appear to be too

challenging, yet the main reason why these research

efforts have shown some success is in exploiting the

inherent correlations among the 5W1H across the

captured media. Intuitively, this can include spatial-

temporal correlation (a person can only be in one location

at any given time) or the social activities of the people

involved in the capture (correlations among who and

what). For the spatial-temporal correlation, Naaman et al.
[94], [95] capture long-term user activities with location

and time information, in order to annotate people from

temporal, location, and co-occurrence in events and

individual photos. For people-event correlation, collabo-

rative annotation systems [125], [167] take into account

semantic similarity and co-occurrence and trust to

recommend tags for each user based on a faceted model

with the 5W1H and the image content.

E. Benchmark and Evaluations
The flourishing collection of object and event detection

methods calls for evaluation on larger datasets beyond a

few sequences collected in the lab. The purpose is to draw

sensible conclusions about different approaches by elim-

inating the large variance introduced by different datasets.

Such evaluation also calls for algorithm and system

comparisons that ensure scalability in computational

complexity. Information retrieval (IR) benchmark cam-

paigns trace back to 1991, since the inception of Text

Retrieval Conferences (TREC) [138], motivated by the

realization that IR tasks need to scale up in order to be

realistic. These benchmarks are based on a shared dataset,

target task, and evaluation metric. They are attractive to

researchers as an open, metric-based venue to validate

ideas. Moreover, they often also foster collaboration and

the sharing of resources. Recognizing the importance of

event detection and modeling problems in multimodal

interaction and surveillance, a few international bench-

mark series have been underway in recent years. Existing

benchmark campaigns have been mainly on TV broadcast,

surveillance, and meeting recordings.

The TRECV Video Retrieval Evaluation (TRECVID)

[128], [139] is an international benchmark campaign run

by NIST (U.S. National Institute of Standards and

Technology) that first started as a subtask in TREC and

grown out as an independent activity since 2003.

TRECVID has included a number of data genres around

TV broadcast archives: vintage documentaries (2001–2002),

U.S. News (2003–2004), multilingual news (2005–2006),

documentary (2007), and preproduction footages from

BBC (2005–2006). The benchmark tasks include shot

boundary detection, camera motion estimation, news story

segmentation, high-level feature detection and video retriev-

al. Among these tasks, shot boundary and news story

detection are events in video production; there is a number

of high-level features or video queries that are related to visual

events in the shot, such as Bpeople-marching,[ and Bone or

more people entering or leaving a building.[ TRECVID and

the LSCOM large scale ontology [98] fosters the definition,

annotation, and detection of a large collection of semantic

concepts and events.

Performance Evaluation of Tracing and Surveillance

(PETS) has been held since 2000 for evaluating visual

tracking and surveillance algorithms. This benchmark

supplies multiview multicamera (up to four cameras)

surveillance data [35] for detecting events such as left

luggage in public spaces. Video Analysis and Content

Extraction (VACE) is a government-funded program that

aims developing novel algorithms and implementations for
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automatic video content extraction, multimodal fusion and

event understanding. VACE evaluation benchmarks sys-

tems for automated detection and tracking of scene objects

such as faces, hands, humans, vehicles, and text in four

primary video domains: broadcast news, meetings, sur-

veillance, and UAV. It has been observed [88] that PETS

and VACE have plenty of synergies in terms of evaluation

goals, data domains and tasks, while the specifics in

common tools, ground truth annotations, and metrics still

need to be normalized.

Computer in the human interaction loop (CHIL) is an

international consortium aiming to Brealize computer

services that are delivered to people in an implicit, indirect

and unobtrusive way[ [2]. The data are audio–visual

streams recorded from surveillance, meetings or smart

room application, the tasks include speaker localization,

speaker tracking, multimodal interaction, etc. Augmented

Multiparty Interaction (AMI) is an EU research consor-

tium that Btargets computer enhanced multimodal inter-

action in the context of meetings[ [1] via test collections of

instrumented meeting rooms: video footage from multiple

cameras and microphones. The systems process the audio

and visual track for a collection of both mid-level and high-

level detection tasks such as: face detection, speaker

identification, tracking focus of attention, and detecting

participant influence. CLassification of Events, Activities

and Relationships (CLEAR) [133] is a cross-campaign

collaboration between VACE and CHIL, concerned with

getting consensus and crossover on the evaluation of event

classifications.

Several articles have argued the pros and cons of

benchmark campaigns in multimedia information retrieval

[128], [143]. The discussions apply to event detection and

modeling in general, and we summarize them as follows. The

advantages include: 1) Collect, prepare and distribute data,

making results directly comparable across systems. 2) Create

critical mass around common challenges so as to encourage

donation of resources and collaboration. 3) Participating

groups can learn from each other on the common grounds of

the benchmark. This helps to accelerate the performance of

new comers and helps bridge the gap between research ideas

and practical systems. The commonly noted disadvantages

include limiting the current and future problems being

addressed in the community and reducing the room for

diversity.

Setting up appropriate benchmarks for real-world events

is a challenging task in itself, and the research community is

making progress to define tasks beyond the components (i.e.,

objects, scenes, movements) of events. As a relatively new

area with diverse problem definitions and solutions, it will

benefit from shared tools and common platforms, such as

feature extraction, tracking, and detection results of

important objects such as face, car, people. Event evaluation

also calls for new problems in new application domains, such

as in user-generated content [14], and multimodal, multi-

source, asynchronous event detection.

V. CONCLUSION

This paper presented a survey on multimedia event

mining, covering aspects of event description, modeling,

and analysis in multimedia content. This area has seen

significant recent efforts from the research community,

and this has led to new technologies and systems.

We study events as real-world occurrences that unfold

over space and time. We introduced a framework for event

description based on the five BW[s and one BH[ in

journalism. We showed how the six facets (who, when,
where, what, why, and how) can be used for events

description, and we also discussed how and why there is

semantic variability. Event detection was presented as the

process of mapping multimedia streams to event descrip-

tions. We examined the five major components of event-

modeling systems: target properties, data capture, feature

representation, computational model, and applications.

The target event properties, data capture, and application

components defined the problem, while the feature

representation and computational model made up the

solution. A significant portion of this survey was devoted to

the review of a range of existing and ongoing work on

event detection. We identified several groups of event

detection systems based on their problem setup and

detection target. There are significant differences between

the event detection problem and the detection of static

objects and scenes. Event models produce structured

outputVthe 5W1Hs, from semi-structured inputVimage/

video/audio and metadata. Progress has been made in

event detection components, such as background sub-

straction, tracking, and the detection of single event facet,

such as detecting faces, people (who), objects (what),
location (where, indoor/outdoor), and time (when, day/
night) by focusing on a tightly controlled environments or

a short period of time where other facets remain constant.

Finally, we also reviewed current benchmarks related to

event detection.

This review can be put into perspective from three

different aspects: 1) Solving the event detection problem

from incomplete data is going to remain a significant

challenge for many real-world applications. We focused

on event analysis from existing archives and repositories,

while problems addressing real-time capture and rich

representation of media streams are likely to receive more

attention. 2) The majority of the work reviewed here

relied to a significant extent on visual information and

less on other modalities such as sound, freeform text, or

structured meta-tags. Multimodal fusion is an important

challenge for multimedia research in general, and we are

seeing more and more work on this direction. 3) New

systems and algorithms are under active research in many

organizations, while the systems reviewed in this paper

will soon become a smaller subset of whole picture, our

framework for thinking about the problems and solutions

in the event mining space is likely to remain relevant.
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Event mining is a vibrant area of research. Emerging

topics of investigation include: 1) Distributed, multimodal

multisource event modeling and detection, with immediate

applications in analyzing surveillance and meeting record-

ings [8], [91]. 2) Event modeling and detection by explicitly

modeling multiple facets [95], [167] also producing faceted

annotation based on time and location proximity, as well as

social interactions. 3) Extracting faceted attributes from

unstructured or semi-structured data (image, exif me-

tadata, or user-generated tags) [110]. 4) Event analysis that

takes into account rich event capture and annotation

[144]Vhow to use and disambiguate the faceted attributes

when available and how to discern the relationships among

events. 5) Systematically encode and estimate domain

knowledge, and use this knowledge to improve recognition,

save computation, as well as to help develop systems that

will generalize across different data domains. h
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