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In order to control behavior in an adaptive manner the brain has to learn how some
situations and actions predict positive or negative outcomes. During the last decade

cognitive neuroscientists have shown that the brain is able to evaluate and learn from

outcomes within a few hundred milliseconds of their occurrence. This research has been
primarily focused on the feedback-related negativity (FRN) and the P3, two event-related

potential (ERP) components that are elicited by outcomes. The FRN is a frontally
distributed negative-polarity ERP component that typically reaches its maximal amplitude

250 ms after outcome presentation and tends to be larger for negative than for positive

outcomes. The FRN has been associated with activity in the anterior cingulate cortex
(ACC). The P3 (∼300–600 ms) is a parietally distributed positive-polarity ERP component

that tends to be larger for large magnitude than for small magnitude outcomes. The neural

sources of the P3 are probably distributed over different regions of the cortex. This paper
examines the theories that have been proposed to explain the functional role of these

two ERP components during outcome processing. Special attention is paid to extant
literature addressing how these ERP components are modulated by outcome valence

(negative vs. positive), outcome magnitude (large vs. small), outcome probability (unlikely

vs. likely), and behavioral adjustment. The literature offers few generalizable conclusions,
but is beset with a number of inconsistencies across studies. This paper discusses the

potential reasons for these inconsistencies and points out some challenges that probably

will shape the field over the next decade.

Keywords: economics rewards, reward system, feedback-related negativity, reinforcement learning, dopamine,
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INTRODUCTION
The global function of the nervous system can be character-

ized as the adaptive control of behavior, a process that involves

learning which action is relevant in a given context and switch-

ing to a different behavioral policy or scenario when outcomes

are less optimal than expected. Hence “outcome” refers to the

consequences that an organism faces as direct result of its own

actions (e.g., financial losses due to impulsive investments) or

resulting from its situation (e.g., receiving an unexpected gift).

In order to successfully adapt behavior the brain has to deter-

mine, as quickly and as accurately as possible, whether the current

scenario and behavioral policy results in positive or negative

outcomes. This paper reviews the extant literature on how two

event-related potential (ERP) components, the feedback-related

negativity (FRN), and the P3, shed light on the neural substrate

of outcome processing.

The relevance of outcome processing is highlighted by the

association between individual differences in its functioning and

personality constructs (Kramer et al., 2008; Onoda et al., 2010;

Smillie et al., 2011), economic preferences (Coricelli et al., 2005;

Kuhnen and Knutson, 2005; De Martino et al., 2006; Kable and

Glimcher, 2007; Venkatraman et al., 2009), and pathological

conditions such as compulsive gambling (Reuter et al., 2005;

Goudriaan et al., 2006), drug abuse (Shiv et al., 2005; Everitt et al.,

2007; Fein and Chang, 2008; Franken et al., 2010; Fridberg et al.,

2010; Park et al., 2010), depression (Foti and Hajcak, 2009), and

schizophrenia (Gold et al., 2008; Morris et al., 2008).

In the past decade neuroimaging studies have contributed

enormously to identifying brain regions and patterns of func-

tional connectivity supporting outcome processing in the human

brain (e.g., Delgado et al., 2000, 2003; Breiter et al., 2001;

Elliott et al., 2003; O’Doherty et al., 2003b; Ullsperger and

Von Cramon, 2003; Holroyd et al., 2004b; Huettel et al., 2006;

Kim et al., 2006; Mullette-Gillman et al., 2011). The discov-

ery of this underlying physiology has been accompanied by a

wealth of new knowledge about the functional properties of

these mechanisms. In particular, non-invasive electrophysiolog-

ical methods have provided important information about the

temporal properties of the neural mechanisms mediating out-

come evaluation in humans. Notably, by recording ERPs while

participants perform learning-guided choice tasks or simple gam-

bling games, researchers have begun to describe how the brain

processes outcomes within a few hundred milliseconds from their

onset.
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Among the potential neural correlates of outcome evaluation,

the FRN is by far the most studied ERP component. The FRN is a

frontocentral negative-going ERP component that peaks ∼250 ms

following outcome presentation and is typically larger for nega-

tive outcomes than for positive outcomes (Figure 1A). According

to source localization, the FRN is generated in the medial pre-

frontal cortex (mPFC), most probably in the anterior cingulate

cortex (ACC; Miltner et al., 1997; Gehring and Willoughby, 2002;

Ruchsow et al., 2002; van Schie et al., 2004; Muller et al., 2005;

Nieuwenhuis et al., 2005b; Hewig et al., 2007; Yu and Zhou, 2009;

Yu et al., 2011). Consistent with ERP studies, results implicating

the ACC in processing negative feedback have been reported using

fMRI (Kiehl et al., 2000; Holroyd et al., 2004b).

The P3 is another outcome-related ERP component. The P3

is a positive-polarity component most pronounced at the cen-

troparietal recording sites at about 300–600ms after stimuli pre-

sentation (Figure 1B). According to a model proposed by Yeung

and Sanfey (2004) outcome magnitude (i.e., large vs. small) and

outcome valence (i.e., loss vs. gains) are coded separately in the

brain, with the P3 being sensitive to outcome magnitude and the

FRN to outcome valence. Despite controversial evidence (Hajcak

et al., 2005, 2007; Bellebaum and Daum, 2008; Goyer et al., 2008;

Wu and Zhou, 2009; Pfabigan et al., 2011) the independent cod-

ing model is presently the dominant account of the relationship

between the FRN and the P3 during outcome processing.

The number of ERP studies of outcome have multiplied over

the last decade. Yet the last systematic review of such stud-

ies focused exclusively on the FRN, and dates back 8 years

(Nieuwenhuis et al., 2004a). This paper intends to provide an

updated perspective about current knowledge from ERP research

of outcome processing in the human brain. In order to achieve

this goal, the paper reviews the historical antecedents and dom-

inant theoretical accounts of the FRN and P3. These theories

are evaluated in light of studies addressing how FRN and P3 are

modulated by outcome valence (negative vs. positive), outcome

magnitude (large vs. small), outcome probability (unlikely vs.

likely), and behavioral adjustment. Finally, this paper discusses

some challenges that ERP studies of outcome processing will

probably have to address over the next decade in order to integrate

FRN and P3 effects in a unitary account of outcome processing in

the brain.

THE FEEDBACK-RELATED NEGATIVITY

HISTORICAL ANTECEDENTS OF THE FRN

The study of the neural basis of outcome evaluation and feedback-

guided learning has been facilitated by the discovery of an ERP

component, the FRN, which tends to distinguish between positive

and negative outcomes. Miltner et al. (1997) was the first group

to describe the FRN as an ERP component that is differentially

sensitive to negative and positive feedback. In their study, they

required participants to estimate the duration of a 1 s interval by

pressing a button when they believed that 1 s had elapsed from the

presentation of a cue. Their response was followed by the delivery

of a feedback stimulus indicating whether their estimate was cor-

rect (positive feedback) or incorrect (negative feedback). A time

window around 1 s was used to determine response accuracy and

this window was adjusted so that the likelihood of positive and

negative feedback stimuli for each participant were both 50%.

Miltner and colleagues found that the ERP elicited by negative

feedback was characterized by a negative deflection at fronto-

central recording sites with a peak latency of ∼250 ms. This

negativity was isolated with the method of difference waves, that

is by subtracting the ERP response to positive feedback from

the ERP response to negative feedback. Source localization esti-

mates placed the generator of this difference wave near the ACC.

The same results were found across different conditions in which

FIGURE 1 | A schematic representation of ERP waveforms typically

elicited by outcomes (based on Gehring and Willoughby, 2002;

Yeung and Sanfey, 2004; Goyer et al., 2008; Gu et al., 2011a).

The horizontal axis represents the elapsed time relative to the onset

of behavioral feedback (at 0 ms). (A) Example of ERP waveform for

negative and positive outcomes recorded at a frontocentral electrode

site. The scalp topography represents the contrast between the two

waveforms at the time when the FRN peaks (∼250 ms). (B) Example

of ERP waveform for large and small magnitude outcomes recorded at

a central-parietal electrode site. The scalp topography represents the

contrast between the two waveforms at the time when the P3b peaks

(∼300–600 ms).
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feedback was provided in auditory, visual, and somatosensory

modalities. Miltner and colleagues noted that the characteristics

of this negativity corresponded in many respects (i.e., sensitivity

to errors, polarity, scalp topography, and likely origin in the ACC)

to those of the response-locked error-related negativity (ERN),

an ERP component that reaches maximum amplitude about

100 ms following error commission in speeded response time

tasks (Falkenstein et al., 1991; Gehring et al., 1993; Scheffers et al.,

1996; for a review see Yeung et al., 2004). The authors suggested

that both the ERN (elicited by error commission) and the FRN

(elicited by negative feedback) reflect a general error detection

function of the ACC. Indeed, converging lines of evidence from

fMRI research (Kiehl et al., 2000; Holroyd et al., 2004b), magneto-

encephalography (Miltner et al., 2003; Donamayor et al., 2011)

and intracranial EEG recordings in humans (Wang et al., 2005)

support the idea that the ACC is involved in performance moni-

toring and error detection.

THE REINFORCEMENT LEARNING THEORY OF THE FRN

The error detection hypothesis (Miltner et al., 1997) was later

extended by Holroyd and Coles (2002), who proposed that both

the ERN and the FRN are scalp-recorded indexes of a neural sys-

tem for reinforcement learning. This theory is based on research

that implicates the basal ganglia and the midbrain dopamine

(DA) system in reward prediction and reinforcement learning

(Barto, 1995; Montague et al., 1996; Schultz et al., 1997; Schultz

and Dickinson, 2000; Tobler et al., 2005; for a review see Schultz,

2002). From a computational standpoint, reinforcement learning

problems involve a set of world states, a set of actions available

to the agent in each state, a transition function which specifies

the probability of moving from one state to another when per-

forming a specific action, and a reward function, which indicates

the reward or punishment associated with each transition (Ribas-

Fernandes et al., 2011). In this context, the goal for learning is to

discover, on a trial and error fashion, a policy (i.e., a stable map-

ping between states and actions) that maximizes the cumulative

discounted long-term reward (Sutton and Barto, 1998).

According to the reinforcement learning theory of the

ERN/FRN (RL-theory) the human brain solves reinforcement

learning problems by implementing an “actor-critic architecture”

(Barto, 1995; Joel et al., 2002). This theory assumes that several

actors are implemented throughout the brain (e.g., amygdala,

dorsolateral prefrontal cortex), each acting semi-independently

and in parallel, and each trying to exert their influence over

the motor system. According to the RL-theory, the ACC acts as

a control filter, selecting a motor plan according to weighted

state-action associations and communicating the corresponding

response to the output layer (i.e., motor cortex) for execution.

The role of the critic in the actor-critic architecture is to eval-

uate ongoing events and predict whether future events will be

favorable or unfavorable. When the critic revises its predictions

for the better or for worse, it computes a temporal-difference

reward prediction error (RPE). A positive or a negative RPE

indicates that ongoing events are better than expected or worse

than expected, respectively. The RPE is used to update both

the value attached to the previous state and the strength of

the state-action associations that determined the last response

selection. The RL-theory attributes the role of the critic to the

basal ganglia and assumes that the RPE signal corresponds to

the phasic increase (for positive RPE, or +RPE) or decrease

(for negative RPE, or −RPE) in the activity of midbrain DA

neurons. Indeed, dopaminergic neurons in the monkey mid-

brain have been shown to code positive and negative errors in

reward prediction (Schultz et al., 1997; Schultz and Dickinson,

2000; Tobler et al., 2005). According to the RL-theory, the RPE

signal (i.e., phasic DA) is distributed to three parts of the net-

work: (1) the adaptive critic itself (i.e., basal ganglia), where it

is used to refine the ongoing predictions, (2) the motor con-

trollers (e.g., amygdala), where it is used to adjust the state-action

mappings, and (3) the control filter (i.e., ACC), where it is used

to train the filter to select the most adaptive motor controller

on a given situation. Together, the adaptive critic, the motor

controllers, and the control filter learn how best to perform in

reinforcement learning scenarios. The RL-theory proposes that

the impact of DA signals on the ACC modulates the amplitude

of the ERN/FRN (Holroyd and Coles, 2002). According to this

theory, phasic decreases in DA activity enlarge ERN/FRN by indi-

rectly disinhibiting the apical dendrites of motor neurons in the

ACC, and phasic increases in DA activity reduce the ERN/FRN

by indirectly inhibiting the apical dendrites of motor neurons in

the ACC.

Despite a group of inconsistent findings that are reviewed

in the next section (Hajcak et al., 2005; Oliveira et al., 2007;

San Martin et al., 2010; Kreussel et al., 2012), the RL-theory

remains as the dominant account of the FRN. Also, it has been

an important factor contributing to the augment in the num-

ber of studies about this ERP component, mainly because of

three reasons. First, the RL-theory speaks to one of the most

explored issues in cognitive neuroscience, namely the cogni-

tive functions implemented by the mPFC, and more specifically

the ACC (Carter et al., 1998; Bush et al., 2000; Paus, 2001;

Botvinick et al., 2004; Kerns et al., 2004; Ridderinkhof et al.,

2004; Rushworth et al., 2004; Barber and Carter, 2005; Alexander

and Brown, 2011). The RL-theory suggests that the general role

of the ACC is the adaptive control of behavior, and that the

ACC learns how to better perform its function from discrep-

ancies between actual and optimal responses (for the ERN) or

between actual and expected outcomes (for the FRN). This notion

challenges the conflict-monitoring model (Botvinick et al., 2001;

Botvinick, 2007) that characterizes the ACC as a region that

can detect conflict between more than one response tendency,

for example when a stimulus primes a pre-potent but incorrect

response, or when the correct response is undetermined. While

the conflict-monitoring model is consistent with neuroimaging

evidence for ACC activation during error commission (Carter

et al., 1998; Kerns et al., 2004) and with the characteristics of

the ERN (Yeung et al., 2004), it does not address the FRN and

is inconsistent with evidence from monkey neurophysiological

studies that have not found any conflict-related activity in the

ACC (Ito et al., 2003; Nakamura et al., 2005). The RL-theory, on

the other hand, provides an explanation for both the ERN and

the FRN, and accounts for ACC responses to outcomes in fMRI

studies (Bush et al., 2002; Paulus et al., 2004), and in single-unit

recording studies with monkeys (Niki and Watanabe, 1979; Amiez
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et al., 2005; Tsujimoto et al., 2006) and humans (Williams et al.,

2004).

Second, the RL-theory proposes that the FRN reflects the eval-

uation of events along a general good–bad dimension, but it is

non-specific about what actually constitutes a good or a bad out-

come. Thus, the theory applies both to the difference between

financial rewards and punishments (i.e., utilitarian feedback)

and to the difference between correct trials and error trials (i.e.,

performance feedback). This factor makes the FRN especially

relevant both for researchers interested in economic decision-

making, and for researchers interested in the neural mechanisms

of cognitive control. Gehring and Willoughby (2002) questioned

the existence of such a highly generic mechanism by showing a

medial frontal negativity (MFN) that was elicited by negative util-

itarian feedback (loss of money vs. gain of money) but not by

stimuli revealing that an alternative choice would have yielded

a better result than the actual choice (i.e., performance feed-

back). However, in a subsequent study Nieuwenhuis et al. (2004b)

showed that when feedback stimuli conveyed both utilitarian and

performance information the FRN reflects either dimension of

the information, depending on which aspect of the feedback is

highlighted by the physical properties of the stimuli.

Finally, another contribution of RL-theory to the growing

interest in the FRN is that this theory affirms that the events

are treated as good or bad outcomes not in absolute terms but

relative to their relationship with expectations. Since the FRN

would reflect the difference between the actual and the expected

outcomes, the FRN would potentially provide both a measure

of the impact of events (i.e., experienced value) and a mea-

sure of anteceding expectations (i.e., expected value). Most of

the research about outcome processing in the brain has explored

these factors; several research groups have studied the modu-

lation of the FRN by both properties of the outcome, such as

valence (loss vs. win) and magnitude (large vs. small), or by prop-

erties of the context in which the outcome is presented, such

as reward probability and the potential magnitude of reward.

Few studies have also explored another critical component of

the RL-theory, which implies that the amplitude of the FRN

in a particular trial should predict the degree of behavioral

adjustment in subsequent trials (Holroyd and Coles, 2002). The

following section discusses the RL-theory in light of studies

investigating the relationship between the FRN and outcome

valence, outcome magnitude, outcome probability, and behav-

ioral adjustment.

MODULATION OF THE FRN BY OUTCOMES AND CONTEXTS

The RL-theory predicts that the amplitude of the FRN is cor-

related with the magnitude of the RPE. If this is true, negative

outcomes should elicit larger FRNs than positive outcomes; larger

negative outcomes should elicit larger FRNs than smaller negative

outcomes; and unexpected negative outcomes should elicit larger

FRNs than expected negative outcomes. The RL-theory also pre-

dicts an interaction between valence and magnitude and between

valence and probability. For example, small gains should be asso-

ciated with greater FRNs than large gains. Finally, according to

the RL-theory the amplitude of the FRN on a given trial should

predict behavioral adjustment on subsequent trials. This section

examines the RL-theory in the context of studies addressing how

the FRN is modulated by outcome valence (negative vs. posi-

tive), outcome magnitude (large vs. small), outcome probability

(unlikely vs. likely), and behavioral adjustment.

Outcome valence

The most consistent finding in the FRN literature is that such

ERP component is larger for negative feedback than for posi-

tive feedback. This valence dependency has been confirmed using

monetary rewards (Gehring and Willoughby, 2002; Holroyd and

Coles, 2002; Yeung and Sanfey, 2004; Goyer et al., 2008; Yu et al.,

2011) and non-monetary performance feedback (Miltner et al.,

1997; Luu et al., 2003; Frank et al., 2005; Luque et al., 2012). These

studies have typically measured the FRN amplitude by computing

the difference between the ERP elicited after negative outcomes

and the ERP elicited after positive outcomes. This approach is

most common because the overlap between the FRN and the

P3 may distort the FRN net amplitude. However, a disadvan-

tage to this method is that it does not inform whether the FRN

corresponds to a negative deflection after negative outcomes or

to a positive deflection after positive outcomes, or both. Indeed,

a recent hypothesis argues that the differences between positive

and negative outcomes could be better explained by a positivity

associated with better than expected outcomes, rather than a neg-

ativity associated with worse than expected ones (Holroyd et al.,

2008). This theory proposes that unexpected outcomes, regard-

less of their valence, elicit a negative deflection known as the N200

(Towey et al., 1980) and that trials with unexpected rewards elicit

a feedback correct-related positivity (fCRP) that cancels the effect

of the N200 component in the scalp-recorded ERP.

Recently, several groups have begun to quantify the FRN inde-

pendently for positive and negative outcomes, and most of these

studies have found greater modulation of the FRN to positive out-

comes than to negative outcomes (Cohen et al., 2007; Eppinger

et al., 2008, 2009; San Martin et al., 2010; Foti et al., 2011; Kreussel

et al., 2012). However, at the same time these effects tend to dis-

confirm the fCRP-hypothesis, by showing a greater positivity for

expected compared with unexpected gains (Oliveira et al., 2007;

Wu and Zhou, 2009; San Martin et al., 2010; Chase et al., 2011; Yu

et al., 2011; Kreussel et al., 2012).

In summary, the FRN is consistently larger for negative as

compared to positive feedback, but it is not clear if this effect is

due to a negative deflection following negative outcomes, a pos-

itive deflection following positive outcomes, both alternatives, or

some unmentioned factor. This issue is critical for future research

regarding the neurocognitive role of the FRN, and as of yet

remains an open question.

Outcome magnitude

According to the RL-theory the FRN should not reflect a main

effect of outcome magnitude given that the magnitude of an

outcome can be evaluated as positive or negative only after con-

sidering the valence of such outcome (i.e., large gains are better

than small gains, but the opposite is true for losses). Confirming

this observation, several studies have noted the absence of a main

effect of outcome magnitude (Mars et al., 2004; Yeung and Sanfey,

2004; Toyomaki and Murohashi, 2005; Polezzi et al., 2010). In
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a now-classic study, Yeung and Sanfey (2004) asked participants

to select between cards that were unpredictably associated with

monetary gains and losses of variable magnitude. The authors

conclude in this study that the FRN was larger for losses compared

with gains and did not show a main effect of outcome magni-

tude. However, others have reported that the FRN is larger for

small magnitude outcomes, regardless of valence (Wu and Zhou,

2009; Gu et al., 2011a; Kreussel et al., 2012). This second set of

studies did not elaborate on this finding, but rather as Wu and

Zhou (2009) have suggested, the discrepancy could be related

either to different approaches to measuring the FRN, or to the use

of experimental paradigms where the expectancy toward reward

magnitude was emphasized.

If the FRN does indeed code the difference between expected

outcomes and obtained outcomes, it should be sensitive to devi-

ations from expected reward magnitude (e.g., if the person

expected a large loss, a small loss should be treated as a pos-

itive outcome). Aligned with this notion, Goyer et al. (2008)

found that a model that includes both valence and magnitude

explained a larger proportion of the variance associated with the

FRN compared with a model that only includes valence. They

also found that the difference between the FRN elicited by mon-

etary losses and the FRN elicited by monetary gains was greater

for large magnitude outcomes (i.e., −25¢ minus +25¢) than for

small magnitude outcomes (i.e. −5¢ minus +5¢). In a related

study, Holroyd et al. (2004a) found that the amplitude of the FRN

depends on the range of possible outcomes in a given block. For

instance, winning +2.5¢ elicited a smaller FRN when it was the

best possible outcome than the same result when winning +5¢

was also possible. This FRN effect provided strong support to the

RL-theory, according to which the FRN is an indirect measure

of a firing pattern of DA neurons in the midbrain. Indeed, it has

been shown that the same reinforcement can lead to phasic DA

decreases if it is smaller than expected or phasic DA increases if it

is larger than expected (Tobler et al., 2005).

Other studies have found effects that are less consistent with

the RL-theory. Hajcak et al. (2006) reported that the FRN ampli-

tude did not scale with the magnitude of the loss; Bellebaum et al.

(2010) reported that the size of the potential reward affected the

FRN amplitude in response to non-reward, but not to positive

feedback; and San Martin et al. (2010) reported that the size of

the potential reward affected the FRN amplitude in response to

monetary gains, but not to monetary losses. These studies suggest

that under some circumstances the FRN does not mirror a graded

RPE. In this sense therefore, the existing literature is not entirely

consistent with the RL-theory and new research is necessary to

help resolve these disparate results.

Outcome probability

The probability of the experienced outcome is yet another fac-

tor that is crucial to the RPE and the RL-theory predicts that

the probability of reward would affect the FRN responses to the

upcoming outcome. Unexpected losses therefore should be asso-

ciated with greater negativities than expected losses, and unex-

pected gains should elicit greater positivities than expected gains.

Several studies have supported this prediction (Holroyd and

Coles, 2002; Nieuwenhuis et al., 2002; Holroyd et al., 2003, 2009,

2011; Potts et al., 2006; Hajcak et al., 2007; Goyer et al., 2008;

Walsh and Anderson, 2011; Luque et al., 2012). Nevertheless,

with the exception of the study by Potts et al. (2006), these

studies employed a difference wave approach (i.e., loss minus

gain) and therefore it is not clear if the effects were driven

by large negativities associated with unexpected negative out-

comes or large positivities associated with unexpected positive

outcomes, or some combination of both. Moreover, the dif-

ference wave approach might find an effect in the direction

predicted by the RL-theory even if unexpected outcomes, regard-

less of valence, are associated with larger negativities, provided

that the effect is greater for losses. A study by Oliveira et al.

(2007) shed further light onto this issue. They found that pos-

itive feedback and negative feedback elicited a similarly large

FRN when the actual feedback and the expected feedback mis-

matched. They reported a tendency for people to be overly

optimistic about their own performance, and they found that

because of this tendency there were three times more mismatches

between expectancy and the actual feedback for erroneous tri-

als than for correct trials. Similarly, other studies have reported

that the FRN is elicited by unexpected outcomes, regardless

of valence (Wu and Zhou, 2009; Chase et al., 2011; Yu et al.,

2011).

Oliveira et al. (2007) proposed that the FRN reflects the

response of the ACC to violations of expectancy in general (i.e.,

unsigned RPE), and not only for unexpected negative outcomes.

Similar conclusions have been reached using fMRI in humans

(Walton et al., 2004; Aarts et al., 2008; Metereau and Dreher,

2012) and single-unit recordings in monkeys (Niki and Watanabe,

1979; Akkal et al., 2002; Ito et al., 2003; Matsumoto and Hikosaka,

2009; Hayden et al., 2011). Also, a recent computational model

(Alexander and Brown, 2011) has been able to simulate the FRN

under the assumption that the mPFC is activated by surpris-

ing events, regardless of valence. However, some studies have

reported effects that are hard to reconcile with Oliveira et al.’s

account of the FRN. Both Potts et al. (2006) and Cohen et al.

(2007) found that unexpected gains elicited larger positivities

than expected gains, not larger negativities as Oliveira and col-

leagues suggest. In another study, Hajcak et al. (2005) reported

that the FRN was equally large for expected and unexpected nega-

tive feedback; a result that is inconsistent with both Oliveira et al.’s

account and with the RL-theory.

Broadly speaking, the evidence reviewed above does not per-

mit conclusions about the modulation of the FRN by outcome

probability. Both the RL-theory and the hypothesis proposed

by Oliveira et al. (2007) have received empirical support, but

these are mutually exclusive accounts. New research is needed in

order to understand the relationship between FRN amplitude and

outcome probability.

Behavioral adjustment

Convergent evidence has implicated the ACC in the flexible

adjustment of behavior on the basis of changes in reward and

punishment values. For example, a recent study showed that cin-

gulate lesions in monkeys impaired the ability to use previous

reinforcements to guide choice behavior (Kennerley et al., 2006).

Another study, using a reward-based reversal learning paradigm,
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identified cells in the ACC of the monkey brain that fired only if

reward was less than anticipated and if such reduction in reward

was followed by changes in action selection (Shima and Tanji,

1998). In humans, fMRI studies of reversal learning have reported

the same effect (Bush et al., 2002; O’Doherty et al., 2003a).

If neural RPE signals are used to guide decision-making and

the FRN reflects the impact of such signals in the ACC, as sug-

gested by the RL-theory, FRN magnitudes in response to decision

outcomes should be related to adjustments in overt behavior.

Evidence for this hypothesis was demonstrated by Luu et al.

(2003) using a task in which participants had to respond to a tar-

get arrow with the hand indicated by the direction in which the

arrow pointed. Luu and colleagues found that the amplitude of

the FRN elicited by a feedback indicating that the response was

slow correlated with subsequent speed of response. In another

study, Frank et al. (2005) showed that the difference between

the FRN elicited by negative and positive feedback correlated,

across participants, with the difference between subjects’ ability

to learn to avoid negative feedback versus to learn to approach

positive feedback. Similarly, Bellebaum and Daum (2008) found

that violations of reward predictions modulated the FRN only in

participants that were able to learn, through trial and error, and

use a rule determining reward probability. However, the last two

studies (Frank et al., 2005; Bellebaum and Daum, 2008) do not

rule out the possibility that the reported effects are by-products

of learning instead of underlying causes of individual differences

in overt behavior.

Other researchers have found results that conflict with the

RL-theory. For example, Mars et al. (2004) found that while

subjects used the information provided by error feedback to

adjust their behavior in a time judgment task, no relation-

ship between FRN amplitude and behavioral adjustments was

found. Specifically, more precise adjustments were evident fol-

lowing more versus less informative feedback, and larger behav-

ioral adjustments were seen when subjects received feedback

that implied a large error than following feedback suggesting

a small error. However, FRN amplitude was smaller in the

informative conditions, and was not influenced by the degree

of error. In another study, Walsh and Anderson (2011) pre-

sented a decision-making task with two conditions: a no instruc-

tion condition in which participants received feedback about

whether their choices were rewarded and had to learn reward

probabilities by trial and error, and an instruction condition,

where they additionally received a description of the associa-

tion between cues and reward probabilities before performing

the task. The authors found that instruction eliminated the asso-

ciation between feedback and behavioral adjustment, but the

FRN still changed with experience in the instruction condition.

These studies suggest that, at least under some circumstances, the

FRN can be elicited in the absence of behavioral adjustment, and

behavior can be adjusted in the absence of a concomitant FRN

effect.

Other studies do report a relationship between the FRN and

behavioral adjustment, but not in the direction that the RL-theory

predicts. For example, Yeung and Sanfey (2004) reported that

after a large loss of money participants tended to repeat the selec-

tion of the larger magnitude (i.e., risky option), particularly if

the preceding outcome elicited a large FRN. Similarly, using a

computer Blackjack gambling task, Hewig et al. (2007) found that

those participants exhibiting increased FRNs when losing after

making risky choices showed a strong tendency to switch to even

more risky choices. These results represent a challenge for the

RL-theory, which predicts that participants should be less likely

rather than more likely to perseverate in a response strategy after

a large FRN.

One of the strengths of the RL-theory is that it provides pre-

dictions at the trial-by-trial level. Computational models can be

fitted to behavioral data and the FRN can be compared with

values derived from such models, such as the trial-by-trial fluc-

tuation of the RPE during the task. Two studies found dissimilar

results using that approach. In one study, participants played a

competitive game called “matching pennies” against a simulated

opponent (Cohen and Ranganath, 2007). On each trial, the sub-

ject and the computer opponent each selected one of two targets.

If the subject and the computer opponent chose the same tar-

get, the subject lost one point, and if they chose opposite targets,

the subject won one point. Supporting the RL-theory, the authors

found that the FRN elicited by losses was more negative when

subjects chose the opposite versus the same target on the subse-

quent trial. In another study, Chase et al. (2011) reported that

the FRN amplitude was positively correlated with the magnitude

of the negative RPE (−RPE), but negative outcomes that pre-

ceded behavioral adjustments were not accompanied by enlarged

FRNs. The discrepancy between the results found by these studies

could be explained by the characteristics of their experimen-

tal paradigms. The task used by Cohen and Ranganath (2007)

discouraged the adoption of explicit rules or strategies. The sim-

ulated opponent was preprogrammed to choose randomly unless

it was possible to find and exploit patterns in the behavior of the

human participant. In contrast, in the study by Chase et al. (2011)

participants were instructed to switch choice behavior only when

they were sure that a rule determining the stimuli-response map-

ping had changed, and not after each exception to that rule.

Indeed, in the study by Chase and colleagues the first violations of

the rules were associated with greater −RPEs and greater FRNs,

but not with behavioral adjustment.

In summary, different studies suggest that, at least in some

learning situations, the processes underlying the generation of

the FRN might be dissociated from the processes responsible for

behavioral adjustments. It is possible, like the results from Chase

et al. (2011) and Walsh and Anderson (2011) suggest, that the RL-

theory does not account for behavioral adjustment under some

learning context, but still predicts trial-by-trial fluctuations in

FRN amplitude.

THE P3

HISTORICAL ANTECEDENTS OF THE P3

The P3 is a positive large-amplitude ERP component with a

broad, midline scalp distribution, and with peak latency between

300 and 600 ms following presentation of stimuli. First reported

in 1965 (Desmedt et al., 1965; Sutton et al., 1965), the P3 is

perhaps the single most studied component of the ERP, proba-

bly because it is elicited in many cognitive tasks involving any

sensory modality. The antecedent conditions of the P3 have
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been extensively explored using the so-called “oddball” paradigm

(Duncan-Johnson and Donchin, 1977; Pritchard, 1981; Murphy

and Segalowitz, 2004; Campanella et al., 2012), in which low-

frequency target stimuli (oddballs) are embedded in a train of

non-target stimuli (standards). Typically the subject is required to

actively respond to each target stimulus. Using this task, Duncan-

Johnson and Donchin (1977) were the first to report a correlation

between the probability of an eliciting stimulus and the P3 ampli-

tude. Specifically, they found that P3 amplitude was inversely

proportional to the frequency or probability of the target stimuli

in an oddball sequence (for an extensive review, see Nieuwenhuis

et al., 2005a).

THE CONTEXT UPDATING HYPOTHESIS AND THE NEURAL

SOURCES OF THE P3

The most influential account of the P3 is the context updat-

ing hypothesis (Donchin, 1981; Donchin and Coles, 1988). In

this framework, the P3 indexes brain activity underlying the

stimuli-induced revision of a mental model of the task at hand.

If subsequent stimuli deliver information that mismatches with

part of such model, the model is updated, with the amplitude of

the P3 being proportional to the amount of cognitive resources

employed during the revision the model.

There is an important degree of uncertainty regarding the

neural generators of the P3. Lutzenberger et al. (1987) argued

that large-amplitude potentials like the P3 must have widespread

sources. Consistent with this view, intracranial P3-like activity

has been recorded from multiple cortical areas (for a review see

Soltani and Knight, 2000). Probably the most likely neural sources

of the P3b can be found in a region that includes the temporal-

parietal junction (TPJ; consisting of the supramarginal gyrus and

caudal parts of the superior temporal gyrus) and adjacent areas

(Kiss et al., 1989; Smith et al., 1990; Halgren et al., 1995). Indeed,

studies have shown that lesions of the TPJ region produce marked

reductions of the P3 associated with infrequent, task-relevant

stimuli (Yamaguchi and Knight, 1992; Verleger et al., 1994; Knight

and Scabini, 1998).

P3-like potentials have also been observed in medial temporal

lobe (MTL) structures, including hippocampus and amygdala in

cats (Kaga et al., 1992), monkeys (Paller et al., 1992), and humans

(Halgren et al., 1980; McCarthy et al., 1989; Smith et al., 1990).

The thalamus is another deep structure that produces P3-like

potentials in humans (Yingling and Hosobuchi, 1984). However,

biophysical considerations indicate that the possible contribu-

tions of deep cortical structures like the MTL and thalamus to the

scalp-recorded electroencephalogram (EEG) are much too small

(Lutzenberger et al., 1987; Birbaumer et al., 1990) and thus, the

available evidence suggests that TPJ and adjacent areas are the

most likely neural sources of the scalp-recorded P3.

THE LOCUS COERULEUS–P3 HYPOTHESIS

A more recent hypothesis proposes that the P3 reflects the neu-

romodulatory effect of the locus coeruleus (LC) norepinephrine

(NE) system in the neocortex (Nieuwenhuis et al., 2005a). This

hypothesis was the first account of the P3 based on neuroscien-

tific knowledge and it is supported both by similarities between

the target areas of NE projections and likely P3 generators,

and by similarities between the antecedent conditions for phasic

increases in NE and the antecedent conditions for P3 generation.

The main claim of the “LC-P3 hypothesis” is that the P3 reflects a

LC-mediated enhancement of neural responsivity in the cortex to

task-relevant stimuli. Indeed, it has been shown that NE increases

the responsivity of target neurons, and that such enhanced gain

produces an increase in the signal-to noise ratio of subsequent

processing (Servan-Schreiber et al., 1990).

The main source of NE for the forebrain is provided by the LC

which is a small nucleus in the pontine region of the brain stem.

Within the neocortex, NE innervation is particularly high in the

prefrontal cortex and parietal cortex (Levitt et al., 1984; Morrison

and Foote, 1986; Foote and Morrison, 1987). Dense NE innerva-

tion for the thalamus, amygdala, and hippocampus has also been

reported (Morrison and Foote, 1986). Building on this overlap

between NE targets and likely P3 generations is one of the main

strengths of the LC-P3 hypothesis. Also, the latency of the LC

phasic response (150–200 ms post-stimulus), added to the time

course of NE physiological effects (100–200 ms post-discharge)

(Aston-Jones et al., 1980; Foote et al., 1983; Pineda, 1995; Berridge

and Waterhouse, 2003), is consistent with the typical P3 latency.

Phasic activity of the LC-NE system is sensitive to various

aspects of stimuli to which the P3 amplitude is also sensitive,

including motivational significance, probability of occurrence,

and attention allocation. Similarly to the P3, LC phasic activity

is generally more closely related to the arousing nature of a given

stimulus than to the affective valence of the stimulus (Berridge

and Waterhouse, 2003). For example, phasic LC responses occur

following both positive and negative outcomes, provided that

such outcomes require the animals to update their model of the

environment (Rasmussen et al., 1986).

Noting the similarities between the context updating hypoth-

esis and the involvement of the LC-NE system during learning,

Nieuwenhuis (2011) reinterpreted the LC-P3 hypothesis and the

context updating hypothesis as being complementary rather than

competing accounts of the P3; with the LC-P3 hypothesis pro-

viding a mechanistic explanation, grounded on neuroscientific

evidence, to the more abstract context updating hypothesis. In

this sense, an important contribution of the LC-P3 theory is to

connect studies of the P3 with new accounts about the role of

the NE-mediated attention during learning. For example, it has

been proposed that phasic NE is a generic signal indicating the

need to attend to the environment and learn from it (Bouret

and Sara, 2004), or that phasic NE encodes unexpected uncer-

tainty (i.e., surprise in supposedly non-volatile environments)

about the current state within a task, and serves to interrupt the

ongoing processing associated with the default task state (Yu and

Dayan, 2005; Dayan and Yu, 2006). By conceptually linking the

P3 with theories about the role of NE-mediated attention during

learning, the LC-P3 hypothesis provides an initial framework to

interpret the functional role of the P3 in tasks involving outcome

evaluation.

MODULATION OF THE P3 BY OUTCOMES AND CONTEXTS

Applied to outcome evaluation and learning, the LC-P3 hypoth-

esis predicts that outcomes associated with high levels of

arousal or task-relevance (e.g., indicating the need for behavioral
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adjustment) will be associated with a large P3. The specific

conditions associated with these factors, however, may change

depending on the goal and the context of the task at hand. For

example, losing when losses could be avoided should elicit a larger

P3 than losing when losses are unavoidable. This section evaluates

whether the LC-P3 hypothesis provides a plausible account of the

P3 in brain studies of outcome evaluation and feedback-guided

learning.

Outcome valence

Early ERP studies of outcome processing suggested that feedback

indicating a bad performance (i.e., negative feedback) elicited

larger P3s than positive feedback (Squires et al., 1973; Picton et al.,

1976). However, subsequent studies showed that, when equated

for probability of occurrence, positive and negative feedback

elicited equally large P3s (Campbell et al., 1979), and that large

P3s were elicited both by negative outcomes when participants

thought they made a correct response, and by positive feed-

back when participants thought they made an incorrect response

(Horst et al., 1980). These studies suggested that the effect of

valence might have artificially emerged from the well-known sen-

sitivity of the P3 to stimulus probability (see results with the

oddball paradigm on section “Historical Antecedents of the P3”).

Using monetary rewards, Yeung and Sanfey (2004) found that

the P3 was sensitive to reward magnitude but insensitive to reward

valence. This result seems to fit with the idea that a large P3 is

observed both to affectively negative and positive stimuli, pro-

vided that they are matched according to subjective ratings of

arousal (Johnston et al., 1986; Keil et al., 2002). The claim that

the P3 is insensitive to outcome valence has been supported by

some studies (Sato et al., 2005; Yeung et al., 2005; Gu et al.,

2011b), but there has been more evidence implicating that out-

come valence does in fact modulate the P3. Some studies have

reported that losses elicit larger P3s than gains (Frank et al.,

2005; Cohen et al., 2007; Hewig et al., 2007), but surprisingly

most of the studies have reported the opposite pattern, with

larger P3s for gains than for losses (Toyomaki and Murohashi,

2005; Hajcak et al., 2007; Bellebaum and Daum, 2008; Wu and

Zhou, 2009; Bellebaum et al., 2010; Polezzi et al., 2010; Zhou

et al., 2010; Gu et al., 2011a; Kreussel et al., 2012). Importantly,

in all of the studies reporting larger P3s after losses than after

gains, participants could actually learn to avoid losses, so that

the probability of losing decreased with practice. It is, there-

fore, possible that the effect of valence was artificially derived

from the P3 sensitivity to stimulus probability. However, two

studies reporting larger P3s for gains than for losses share the

same characteristic (Bellebaum and Daum, 2008; Bellebaum

et al., 2010). Moreover, Bellebaum and Daum (2008) found

larger P3s for gains than for losses even when gains were more

likely than losses. New studies might try to determine under

what conditions the P3 is insensitive to outcome valence, and

under what conditions it is increased for gains or increased for

losses.

Recent studies have reported effects of the interaction between

outcome valence and other factors. Wu and Zhou (2009) found

that the difference between the P3 elicited by gains and losses

(larger P3s for gains in this case) was eliminated when the amount

of reward was inconsistent with the expectation built upon a

preceding cue. Following the idea that the P3 might reflect the

amount of cognitive resources allocated for stimulus processing

(Donchin and Coles, 1988), the authors suggested that the incon-

sistency between the actual and the expected outcome magnitude

might capture a large amount of attentional resources, such that

the attention allocated to process outcome valence is reduced. A

goal for new studies might be to replicate this effect and to spec-

ify under what circumstances the brain might need to distribute

attentional resources between outcome variables.

In another study, Zhou et al. (2010) reported the same main

effect of outcome valence, but in this case the difference was

enlarged by action choice as compared to inaction. The authors

suggest that action might increase the affective significance of

gains. However, it is not clear why this would not also be true

for losses.

In summary, the current evidence seems to disconfirm

the hypothesis that the P3 is insensitive to outcome valence.

Nevertheless, it is not clear whether the P3 is larger for gains or

larger for losses. New studies are needed in order to clarify this

issue. Also, and as already commented, early studies (Campbell

et al., 1979; Horst et al., 1980) suggested that the effect of valence

might result from the effect of another, more primitive, variable

such as stimulus probability or affective involvement during the

tasks. Contemporaneous studies need to take this possibility into

consideration, during the experimental design, data analysis, and

when forming conclusions.

Outcome magnitude

The independent coding model (Yeung and Sanfey, 2004) claims

that the P3 is insensitive to valence and sensitive to outcome mag-

nitude. Although the evidence reviewed in the previous section

poses doubts on the first claim, the second claim is widely sup-

ported by the literature. Most of the studies that have tested the

main effect of outcome magnitude have found more positive P3

responses to large magnitude outcomes than to small magnitude

outcomes (Toyomaki and Murohashi, 2005; Goyer et al., 2008; Wu

and Zhou, 2009; Bellebaum et al., 2010; Polezzi et al., 2010; Gu

et al., 2011a; Kreussel et al., 2012). In order to interpret this effect,

these studies have typically appealed to the concept of “motiva-

tional significance,” or the relevance of a stimulus for the current

task (Duncan-Johnson and Donchin, 1977).

Motivationally significant or relevant stimuli are presumed

to capture a large amount of attentional resources, and the P3

amplitude is supposed to scale with those attentional resources

(Donchin and Coles, 1988; Nieuwenhuis et al., 2005a). Under

this interpretation, large magnitude outcomes might receive more

attention and have a greater impact on memory than small mag-

nitude outcomes because they are more relevant for the final

outcome of the session (cf. Adcock et al., 2006). Indeed, in the

context of monetarily rewarded tasks, large magnitude outcomes

have a greater impact in cumulative earnings, for better or for

worse, depending on the outcome valence.

Recent studies have reported other effects involving outcome

magnitude. Bellebaum et al. (2010) reported that not only the

magnitude of the actual reward, but also the potential reward

magnitude, modulated the P3. They used a task in which, on
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each trial, subjects had to guess the location of a coin that

was hidden in one of six boxes. At the beginning of each trial,

subjects were informed about the amount of money that they

could win (i.e., 5¢, 20¢, or 50¢). Interestingly, the P3 elicited by

non-rewarding outcomes (i.e., 0¢) scaled with the magnitude of

the informed potential reward. In another study, Wu and Zhou

(2009) found that the effect of outcome magnitude (i.e., larger

P3s for large rewards than for small rewards) was eliminated

when the reward amount was inconsistent with the expectation

built upon a preceding cue. As already mentioned in the previ-

ous section, Wu and Zhou suggested that all attentional resources

might be allocated by such inconsistency with expectations,

leaving no resources available to process other outcome-related

variables.

In summary, the P3 is consistently modulated by outcome

magnitude, being more positive for large magnitude outcomes

than for small magnitude outcomes. This effect may reflect that

the motivational significance of outcomes scales with outcome

magnitude. According to this interpretation both the actual and

the expected magnitude of rewards determine the motivational

significance of the outcome.

Outcome probability

Studies employing the classic oddball paradigm and manipulat-

ing the probability of the appearance of a particular stimulus

showed that the P3 is more positive for infrequent stimuli than

for frequent stimuli (Courchesne et al., 1977; Duncan-Johnson

and Donchin, 1977; Johnson and Donchin, 1980). In the con-

text of learning tasks, an early study reported that the largest P3s

were elicited by negative feedback when participants thought they

made a correct response, and by positive feedback when partic-

ipants thought they made an incorrect response (Horst et al.,

1980). Given this evidence, it has long been recognized that the P3

is modulated by stimulus probability, with more positive ampli-

tudes elicited by unlikely our unexpected stimuli than to likely or

expected stimuli.

Studies using monetary rewards and manipulating reward

probability have widely supported the conclusion that the P3

is larger for unexpected outcomes than for expected outcomes,

regardless of valence (Hajcak et al., 2005, 2007; Bellebaum and

Daum, 2008; Wu and Zhou, 2009; Xu et al., 2011). These results

are consistent with the context updating hypothesis stating that

unexpected outcomes signal the need to update a mental model

and that the P3 reflects the amount of cognitive resources allo-

cated to this updating process. The results are also consistent

with the LC-P3 hypothesis stating that the P3 reflects the impact

of phasic NE in the neocortex. Indeed, it has been noted that

increasing stimuli probability reduces the magnitude of phasic

LC responses (Alexinsky et al., 1990; Aston-Jones et al., 1994),

and phasic LC responses have been proposed to code unexpected

uncertainty or surprise (Yu and Dayan, 2005; Dayan and Yu,

2006).

Two studies, however, have reported results that pose doubts

into the modulatory effect of probability over the P3. While

the P3s following wins were significantly affected by probabil-

ity in these two studies, with unlikely wins eliciting larger P3s

than likely wins, P3s for losses were either not modulated by

probability (Cohen et al., 2007) or modulated in the opposite

direction (Kreussel et al., 2012) (i.e., larger P3s for expected losses

than for unexpected losses). After observing that the probabil-

ity effect was maximal over anterior sites, Cohen et al. (2007),

suggested that their results were more related with the FRN

than with the P3. Indeed, and given that the FRN for unex-

pected losses tend to be larger (i.e., more negative) than the

FRN for expected losses, the overlap between the FRN and

the P3 may also explain the effect reported by Kreussel et al.

(2012). Disentangling different outcome-related ERP compo-

nents is one of the main challenges for ERP studies of outcome

processing.

In summary, a large amount of evidence, coming both from

classical studies using the oddball paradigm and from more

recent studies using learning and gambling tasks, support the

idea that the P3 is larger for unexpected events than for expected

events, regardless of the event valence. Some studies have reported

results contradicting this claim, but methodological considera-

tions related to the overlap between the P3 and the FRN appear

to provide a plausible explanation for such discrepancy.

Behavioral adjustment

Learning-guided decision-making tasks typically require stor-

ing and dynamically adjusting information about state-choice-

outcome contingencies. Convergent evidence suggests that the

LC-NE system contributes to learning this type of association.

For example, it has been noted that the injection of a drug that

increased the firing of LC neurons in rats promotes the ani-

mal’s adaptation to changes in the behavioral requirements of a

reinforcement-learning task (Devauges and Sara, 1990). In the

monkey, LC activation has been reported to be restricted to task-

relevant stimuli that require a behavioral shift (Aston-Jones et al.,

1999). Building on this evidence, Bouret and Sara (2005) pro-

posed that phasic NE could provoke or facilitate the dynamic

reorganization of the neural networks determining the behavioral

output. Similarly, Dayan and Yu (2006) proposed that NE sig-

nals encode unexpected surprise, serving to interrupt the ongoing

processing and concentrate attentional resources in behavioral

adjustment.

If, as the LC-P3 hypothesis proposes, the P3 reflects the

NE-mediated enhancement of signal transmission in the cor-

tex during the stimulus-induced revision of an internal model

of the environment, a large P3 at the time of outcome pro-

cessing should predict a large behavioral adjustment. In one

of the few studies that have explored the relationship between

the P3 and behavioral adjustment, Yeung and Sanfey (2004)

found that individual differences in the P3 elicited by alter-

native, unchosen outcomes were related to behavioral adjust-

ments. After dividing the participants into two groups on

the basis of the size of their behavioral adjustment after tri-

als in which they failed to select a card associated with a

large win, they found that the difference in the P3 ampli-

tude elicited by large-gain and large-loss alternative outcomes

was larger in the participants showing a greater behavioral

adjustment. In another study, Chase et al. (2011) found that

P3 amplitude was greater for negative outcomes that preceded

behavioral adjustment than for negative outcomes that did not
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precede behavioral adjustment in a probabilistic reversal-learning

paradigm.

Evidence that dissociates the P3 from behavioral adjustment

has also been reported. Specifically, Frank et al. (2005) found that,

across participants, the difference between the ability to learn

to avoid losses and the ability to learn to approach gains was

predicted by the difference in the FRN amplitude elicited by neg-

ative and positive feedback, but not by the P3. Interestingly, the

results found by Chase et al. (2011) showed the opposite pattern,

with the P3 but not the FRN predicting behavioral adjustment.

A possible reason for the discrepancy is that in Frank et al.’s

study the need for adjustment was always signaled by losses,

and as already reviewed the most consistent finding about the

FRN is that it is larger for losses than for gains. In contrast,

in the study by Chase and colleagues participants were explic-

itly instructed to switch choice behavior only when they were

sure that a rule determining the stimulus-outcome contingen-

cies had changed, and not after losing per se. Another possibility

for this discrepancy is that both the FRN and the P3 code

behavioral adjustment, but their relative involvement in this pro-

cess depends on the goal of the task at hand or on the level

of information processing that is required to adjust behavior.

Evidence is scant to strongly support any of these possibilities,

and future research is needed to determine the factors determin-

ing the relative involvement of the FRN and the P3 in behavioral

adjustment.

DISCUSSION

The studies reviewed here suggest that the brain mechanism

underlying the FRN and the P3 are consistently involved in out-

come processing, but at the same time the literature shows an

important degree of scientific uncertainty regarding the factors

that affect the amplitude of these ERP components. Although the

studies reviewed here have enough trials per condition (Marco-

Pallares et al., 2011) and sample sizes that allowed them to detect

significant results, reaching conclusions that generalize across

studies have proven to be difficult. The FRN tends to increase

its amplitude in response to negative outcomes and the P3 tends

to increase its amplitude in response to arousing or task-relevant

outcomes, but there are important exceptions in the literature that

weaken the generalization of these statements.

In order to advance a model that integrates FRN and P3

effects in a unitary and real-time account of outcome processing,

ERP studies of outcome processing will have to address method-

ological, empirical, and conceptual challenges in the upcoming

years. First, optimizing paradigm design will be critical for being

able to generalize conclusions about the role of the FRN and

the P3 during outcome processing. Second, in order to allow

a reliable comparison between studies, the field will have to

advance toward standard methods to measure the ERP compo-

nents. Third, ERP studies have intrinsic limitations for identifying

brain regions and networks involved in outcome processing.

Complementary techniques should be increasingly used to over-

come such limitations. Fourth, studies interested in the effect of

outcome variables on the FRN and P3 have typically involved

different task demands (e.g., passive observation of outcome,

active decision-making, etc.). Determining the impact of task

demands on these ERP components will be crucial to be able

to generalize conclusions about their role. Finally, the stud-

ies reviewed here portray outcome processing as two relatively

disconnected processes. Our modern view of the brain, how-

ever, suggests that outcome processing probably involves several

subprocesses concurring and interacting in time. ERP stud-

ies should take advantage of their high temporal resolution to

study the temporal cascade of outcome processing in the brain.

These challenges are further discussed in the remainder of the

article.

METHODOLOGICAL CHALLENGE: OPTIMIZING PARADIGM DESIGNS

During the last decade, ERP studies of outcome processing have

produced a wealth of evidence employing a rich variety of exper-

imental paradigms. While this heterogeneity is needed to gen-

eralize conclusions about the properties of a neural correlate

beyond a particular experimental task, there is a risk associated

with designing tasks that do not adequately isolate the variables

of interest. For example, as already commented, early P3 studies

concluded that negative feedback elicited larger P3s than positive

feedback, but subsequently Campbell et al. (1979) showed that

these results mostly reflected the well-known effect of stimulus

probability on the P3.

More contemporaneous studies, especially some of those using

feedback-guided learning, could be associated with a similar

confound. These groups found that losing was associated with

larger P3s than winning, but it is equally possible that this

result reflects a probability effect: as learning progresses, losing

becomes less likely. In order to dissociate a valence effect from

a learning/probability/expectancy effect, ERP studies of outcome

processing might benefit from measuring ERP components on

different stages of the experimental session, or by comparing the

ERP response from participants that demonstrate learning with

those who do not.

Another confound that can limit the validity of the results is

the potential gap between the goal that the participants really

pursue during an experimental session and the goal that the

experimenter is trying to elicit. For example, paradigms designed

for studying the modulatory effect of participants’ prediction

on brain activity elicited by gains and losses might unintention-

ally emphasize the goal of predicting the upcoming outcome. If

participants are asked about their belief on the incoming out-

come, they might even perceive a predicted loss as a positive

feedback (i.e., a correct prediction). To limit the effect of this

confound while still being able study the effect of participants’

predictions, paradigms should emphasize the goal of ensuring

gains and avoiding losses. For example, experimenters could make

outcomes contingent on participants’ behavior and not purely

probabilistic. Also, researchers could benefit from verbal reports

about the task and its goals during pilot studies.

The study of outcome processing is associated with a large

number of variables (i.e., outcome valence, outcome magnitude,

expectancy toward magnitude, probability of winning, learning,

motivation, etc.) that, depending on the task at hand, might

covary in a way that undermines empirical results. Paradigms

should be designed acknowledging this complexity in a way that

minimizes the chances of introducing confounds.
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METHODOLOGICAL CHALLENGE: ADVANCING TOWARD STANDARD

MEASUREMENT METHODS

An inherent difficulty of the ERP technique is that, because of

potential component overlap, the comparison of ERPs elicited

by different experimental conditions is often difficult to inter-

pret (Luck, 2005). Although this problem is inherently technical,

the manner by which it is addressed in each study may deter-

mine empirical results and functional interpretations. Research

focused on the FRN has traditionally tried to solve this issue by

creating difference waves (e.g., loss minus win) (Miltner et al.,

1997; Holroyd and Coles, 2002; Nieuwenhuis et al., 2002; Mars

et al., 2004; Hajcak et al., 2005, 2007; Potts et al., 2006; Holroyd

et al., 2009, 2011; Walsh and Anderson, 2011; Xu et al., 2011).

The problem with this approach is that it does not resolve the

question whether the FRN corresponds to a negative deflection

in one condition or to a positive deflection in the other condi-

tion. More recent studies have highlighted the importance of this

issue by showing that, when gains and losses are measured sepa-

rately, even the definition of the FRN as negative deflection that

distinguishes negative from positive outcomes can be questioned

(Oliveira et al., 2007).

Two alternative methods to measure ERP components have

been systematically employed in ERP studies of outcome process-

ing. The first approach is to compute the mean amplitude in a

time window defined for each ERP component (e.g., 200–300 ms

for the FRN) post-onset of the outcome and to enter that mean

amplitudes into statistical analyses (Gehring and Willoughby,

2002; Ruchsow et al., 2002; Nieuwenhuis et al., 2004b; Yeung et al.,

2005; Cohen et al., 2007; Cohen and Ranganath, 2007; Hewig

et al., 2007; Bellebaum and Daum, 2008; Goyer et al., 2008; Polezzi

et al., 2010; San Martin et al., 2010; Zhou et al., 2010; Gu et al.,

2011b; Kreussel et al., 2012; Luque et al., 2012). This method

has the strength of increasing the signal-to-noise ratio in addi-

tion to allowing for better trial-by-trial measures. Nevertheless, it

assumes equivalent baseline for each ERP component in different

conditions. Given the overlap between P3 and FRN, this issue is

particularly critical in outcome processing research. Indeed, the

net amplitude of the FRN can be shifted to more positive values

if the FRN for a particular condition is superimposed in a P3 that

is particularly large. The second alternative method is to measure

the base-to-peak difference for each deflection (e.g., defining the

FRN as the difference between the most positive point and the

most negative point in the 150–350 ms time window post-onset of

feedback) (Holroyd et al., 2004a; Yeung and Sanfey, 2004; Frank

et al., 2005; Toyomaki and Murohashi, 2005; Hajcak et al., 2006;

Oliveira et al., 2007; Bellebaum et al., 2010; Chase et al., 2011).

One problem with this measure is that it is especially susceptible

to noise. Noise can be controlled by replacing the base of compar-

ison with the mean amplitude in a time window around the base

and by replacing the peak measure with the mean amplitude in a

time window around the peak. A more fundamental problem is

that the measure of the base (e.g., the beginning of the FRN) may

be affected by the adjacent deflection (e.g., P2-like positivity).

Alternative methods that have been explored in recent years

include isolating the activity associated with a particular ERP

component using bandpass filtering (e.g., measuring the FRN

after removing the slower frequency to which the P3 is associated)

(Luu et al., 2003; Wu and Zhou, 2009; Gu et al., 2011a; Yu

et al., 2011) or using temporospatial principal component anal-

ysis (PCA) (Carlson et al., 2011; Foti et al., 2011) or independent

component analysis (ICA) (Gentsch et al., 2009). One limitation

of these methods is that they strongly rely on decisions made

by the researchers regarding the parameters used for bandpass

filtering or during the identification of the PCA-derived or ICA-

derived components that will be considered to represent the ERP

components of interest. However, the emerging use of data-driven

approaches for the selection of independent components (Wessel

and Ullsperger, 2011) suggests that ICA might become a standard

technique to decompose ERP components in the incoming years.

The problem of component overlap is inherent to all ERP

research. In recent years, researches interested in how the brain

processes outcomes have begun to consider ways to dissociate the

contribution of the FRN and the P3 to the scalp-recorded ERP

signal, and different methods have been proposed to achieve this

goal. Given that the choice made among different measurement

methods can have consequences, both in the empirical results

that are found and in the conclusions that are proposed, future

research should explore the strengths and limitations of different

measurement methods and advance toward standard practices.

METHODOLOGICAL CHALLENGE: EMPLOYING MULTI-METHODS

APPROACHES (ERP/TIME-FREQUENCY, ERP/fMRI)

The temporal resolution of the EEG signal allows studying the

neurocognitive mechanism of outcome processing and learning

with a high level of temporal detail (milliseconds). The extrac-

tion of outcome-locked ERPs from the EEG signal is a good

way to identify and study regularities in the neural processing of

outcomes. However, ERP research presents two important limita-

tions: it is relatively insensitive to the involvement of large-scale

brain networks and it has a limited ability to identify the neural

generators of the scalp-recorded signals (i.e., poor spatial resolu-

tion). Complementary techniques can be used to overcome such

limitations. Specifically, time-frequency-based approaches could

complement ERP studies by shedding light on the interactions

among large-scale networks and fMRI can be used in a comple-

mentary fashion to help resolve the so-called inverse problem: a

given distribution of scalp-recorded electrical activity could have

been generated by any one of a large number of different sets of

neural generators.

In order to provide a better account of the neural dynamics

of outcome processing, EEG/ERP studies can benefit from the

time-frequency information that is present in the same EEG sig-

nal from which ERPs are extracted. Event-related oscillations can

be extracted using time-frequency decomposition analyses such

as complex wavelet convolutions, from which one can obtain esti-

mates of phase synchronization, spectral coherence, power-power

correlations, spectral Granger causality, and cross-frequency cou-

pling among recording sites (for a review see Cohen et al.,

2011). Assessing large-scale networks is especially important to

better understand the dynamics of feedback-guided learning,

given that learning probably corresponds to changes in con-

nectivity between neural populations (Hebb, 1949). Specifically,

time-frequency-based approaches could be used to test hypothe-

ses about inter-regional coupling between areas that probably
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interact during feedback-guided learning, such as medial pre-

frontal, sensory, and motor cortices.

A fundamental problem of EEG/ERP research is the inverse

problem, by which a given distribution of scalp-recorded elec-

trical activity could have been generated by any one of a large

number of different sets of neural generators. Despite this prob-

lem, convergent evidence suggests that it is highly probable that

the neural sources of the FRN are located in the mPFC (Miltner

et al., 1997; Gehring and Willoughby, 2002; Ruchsow et al., 2002;

Holroyd et al., 2004b; van Schie et al., 2004; Muller et al., 2005;

Nieuwenhuis et al., 2005b; Hewig et al., 2007; Yu and Zhou, 2009;

Yu et al., 2011). The picture is much less clear for the P3, for which

neural sources are probably distributed over different regions of

the cortex. In the same way that theories of the FRN have ben-

efited from theories about the functional role of the mPFC (and

vice versa), our understanding of the functional role of the P3 and

its subcomponents during outcome processing could benefit from

a more precise identification of its neural sources.

Increasingly, efforts are being made in order to use fMRI

data to constrain the solution of the algorithms used for source

localization analyses for ERPs. Although this approach does not

completely solve the inverse problem, it increases the likelihood of

identifying the actual sources of ERP activity. Especially promis-

ing is the use of joint ERP and fMRI ICA that have been used to

reveal a number of cortical and subcortical areas involved in the

generation of the response-locked ERN (Edwards et al., 2012).

EMPIRICAL CHALLENGE: DETERMINING THE IMPACT OF TASK

DEMANDS

One of the primary goals of the brain is the adaptive control of

behavior, but the exact definition of what constitutes an adap-

tive behavior may vary across situations, and different brain

mechanisms can be recruited to guide behavior depending on

the demands imposed by the task at hand. ERP studies of out-

come processing have employed experimental paradigms whose

behavioral demands range from the passive observation of mon-

etary gains and losses in a computer screen (e.g., Yeung et al.,

2005; Potts et al., 2006) to feedback-guided decision-making tasks

requiring the inference of probabilistic rules governing state-

outcome contingencies (e.g., Bellebaum and Daum, 2008; Chase

et al., 2011; Walsh and Anderson, 2011). This breadth is a rich

source of evidence, but at the same time is a likely factor under-

lying the difficulty for extracting generalizable conclusions about

how outcome properties affect each ERP component.

The question of what ERP component better predicts behav-

ioral adjustment is a good example of how different tasks may

recruit different mechanisms to achieve the same overall goal

(e.g., to accumulate monetary rewards). Behavioral adjustment

might depend on the system underlying the FRN in tasks de-

incentivizing the adoption of an explicit rule (cf. Cohen and

Ranganath, 2007), and on the system underlying the P3 in tasks

incentivizing the use of explicit probabilistic beliefs (cf. Chase

et al., 2011). This possible dissociation has an interesting par-

allel with a distinction proposed by Daw et al. (2005) between

model-free reinforcement learning (mediated by the basal ganglia

in a way that is consistent with the RL-theory of the FRN) and

model-based reinforcement learning (mediated by brain regions

that have shown P3-like activity, such as the DLPFC, and MTL

structures).

Future studies might elucidate whether different ERP com-

ponents reflect the recruitment of different learning systems

depending upon different tasks demands. In general, it is fore-

seeable that future ERP studies will, in greater proportion, be

concerned with how different task demands and task contexts

modulate the effect that outcomes have on ERP components.

CONCEPTUAL CHALLENGE: UNDERSTANDING THE TEMPORAL

CASCADE OF OUTCOME PROCESSING IN THE BRAIN

ERP studies of outcome processing have been focused primar-

ily on the FRN and secondarily on the P3. There have been few

attempts to present an account of outcome processing in the brain

that integrates FRN and P3 effects. In this regard, the independent

coding model (Yeung and Sanfey, 2004) is the dominant proposal

to date. By proposing that the FRN codes valence but is insensi-

tive to magnitude and that the P3 shows the opposite pattern, this

model presents these two ERP components as measures reflect-

ing brain processes that are completely independent from each

other. Moreover, the temporal succession between the frontally

distributed FRN and the parietally distributed P3 is not taken into

account; for this model it does not matter if valence is evaluated

before magnitude or if magnitude is evaluated before valence.

Actually, the temporal cascade of ERP components is generally

disregarded even in studies finding evidence that contradicts the

independent coding model.

ERP effects are not always the real-time reflections of the

underlying processes. For example, according to the LC-P3

hypothesis the P3 is an indirect index of LC phasic responses

occurring 300–400 ms before the peak of the P3. However, the

ubiquitous temporospatial succession between the frontally dis-

tributed FRN and the parietally distributed P3 probably reveals

something meaningful about the manner in which the brain pro-

cesses and learns from outcomes. Much of the contribution of

ERP research to cognitive neuroscience has to do with describ-

ing the temporal cascade of neurocognitive processes involved

in solving a particular task. ERP studies of outcome process-

ing, in this regard, have traditionally sub-exploited the temporal

resolution of the ERP technique.

There is also evidence suggesting that the FRN and the parietal

P3 are not the only ERP deflections reflecting outcome pro-

cessing in the brain. Studies could benefit from measuring the

frontally distributed P3a that peaks 60–80 ms earlier than the P3b

(Courchesne et al., 1975; Squires et al., 1975; Friedman et al.,

2001), which according to a visual inspection is present in most

of the ERP studies of outcome processing. These studies might

also benefit from quantifying a positive deflection that typically

began 150 ms after stimulus onset in frontal sites, and that accord-

ing to Goyer et al. (2008) is modulated by outcome magnitude.

This positivity, which in terms of latency could be referred to as

“P2,” (see Figure 1A) probably represents an early stage of the

slow-wave P3a on which the FRN is superimposed.

By considering the whole sequence of ERP deflections that

are modulated by outcomes, ERP studies might contribute to

build models of outcome processing that incorporate the inter-

relationship between different cognitive processes that probably
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take part in outcome processing and learning, such as attention,

valuation, and memory.

OUTLOOK

In order to control the behavior in an adaptive manner the brain

has to learn how certain situations predict positive or negative

outcomes and what actions are appropriate in a given situation.

ERP research has shown that the brain is able to evaluate and learn

from outcomes within a few hundred milliseconds of their occur-

rence. However, the accumulated literature presents a high degree

of scientific uncertainty regarding the factors that modulate dif-

ferent ERP components during outcome processing. The FRN,

in most cases, is larger for negative than for positive outcomes,

but the effect of outcome magnitude and outcome probability

over the FRN is less clear and contradicting evidence has been

found regarding the relationship between the FRN and behav-

ioral adjustment. The P3 is consistently more positive for large

magnitude and unexpected outcomes than for small magnitude

and expected outcomes, respectively, but the modulatory effect of

feedback valence and the relationship between P3 and behavioral

adjustment is much less clear.

During the last decade, ERP research has accumulated rich evi-

dence of how outcomes are processed in the human brain. The

next decade of research will probably be characterized by growing

efforts to reach conclusions that generalize across task scenarios

demands. In doing so, this research will advance our understand-

ing of how the brain is able produce adaptive behavior in a large

variety of situations.
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