
Event Stream Processing Units

in Business Processes

Stefan Appel, Sebastian Frischbier, Tobias Freudenreich, Alejandro Buchmann

TU Darmstadt, Germany

lastname@dvs.tu-darmstadt.de

Abstract. The Internet of Things and Cyber-physical Systems provide enormous

amounts of real-time data in form of streams of events. Businesses can bene-

fit from the integration of this real-world data; new services can be provided to

customers, or existing business processes can be improved. Events are a well-

known concept in business processes. However, there is no appropriate abstrac-

tion mechanism to encapsulate event stream processing in units that represent

business functions in a coherent manner across the process modeling, process

execution, and IT infrastructure layer. In this paper we present Event Stream

Processing Units (SPUs) as such an abstraction mechanism. SPUs encapsulate

application logic for event stream processing and enable a seamless transition

between process models, executable process representations, and components at

the IT layer. We derive requirements for SPUs and introduce a BPMN extension

to model SPUs. We present a runtime infrastructure that executes SPUs and sup-

ports implicit invocation and completion semantics. We illustrate our approach

using a logistics process as running example.

1 Introduction

Business process modeling and execution is widely adopted in enterprises. Processes

are modeled by business experts and translated into executable workflow representa-

tions. They are executed inside IT infrastructures, e.g., Service-oriented Architectures

(SOAs) or workflow management systems. With the adoption of the Internet of Things

and Cyber-physical Systems, huge amounts of information become available that reflect

the state of the real world. The integration of this up-to-date information with business

processes (BPs) allows quick reactions on unforeseen situations as well as offering new

services to customers, e.g., monitoring of environmental conditions during transport of

goods and handling exceeded thresholds.

A common paradigm for the representation of information from sources like the

Internet of Things or Cyber-physical Systems are streams of events. The notion of a

stream illustrates that new events occur over time, e.g., continuous temperature sensor

readings. In such event-based systems, event producers do not necessarily know the

event consumers, or whether the events will be consumed at all. This independence is

intrinsic to the event-based approach [4]. The decoupling of event producers and con-

sumers as well as the arrival of an indefinite number of events over time requires an

appropriate event dissemination mechanism. Commonly, publish/subscribe systems are

used; they allow asynchronous communication between fully decoupled participants.

2

Event consumers specify their interest in events in form of subscriptions; event produc-

ers specify the type of events they may publish in advertisements.

While single events are a well known and established concept in BPs [25, 20], event

stream processing lacks an appropriate abstraction for the seamless integration across

the process modeling, process execution, and IT infrastructure layer. In collaboration

with Software AG1, a leader in business process management, we developed Event

Stream Processing Units (SPUs) as such an integration concept.

In this paper we present SPUs. We analyze BP modeling, BP execution, and the IT

infrastructure, and derive requirements for SPUs at the modeling, execution, and IT in-

frastructure layer. We address the decoupled nature of event-based systems and provide

process modelers with an appropriate representation of SPUs that can be mapped to

executable workflow representations and the IT infrastructure seamlessly. SPUs encap-

sulate event stream processing logic at the abstraction level of business functions and

hide implementation details. At the IT layer, SPUs are manageable components that

are conceptually equivalent to services in a SOA. SPUs contain, for example, complex

event processing (CEP) functionality.

The paper is structured as follows: we introduce a logistics scenario as running

example; we then derive requirements for the integration of event streams with BPs at

the modeling, execution, and IT infrastructure layer. In Section 3, we introduce Event

Stream Processing Tasks (ESPTs), a BPMN 2.0 extension to model SPUs. We present

a mapping of ESPTs to BPEL as well as a runtime environment for SPUs. In Section 4,

we discuss related work; we summarize our findings in Section 5.

Scenario We illustrate our concept of SPUs by means of an order-to-delivery process.

The processing of an order consists of multiple process steps: an order is received, the

invoice for the order is prepared and the payment is processed. With SPUs, data gen-

erated during the physical transport can now be integrated with this process. An event

stream that provides monitoring data related to the shipment can be used to detect, e.g.,

temperature threshold violations. An SPU can represent such a monitoring task and in-

tegrate it at the BP modeling, BP execution, and IT infrastructure layer. A shipment

monitoring SPU is instantiated with the shipment of an order. The SPU completes af-

ter delivery. Throughout the paper, we illustrate our approach on the basis of such a

monitoring SPU.

2 Event Stream Integration Requirements

Business process models describe workflows in companies in a standardized way. They

document established business procedures with the goal of making complex company

structures manageable. This encompasses the business perspective as well as the IT

perspective. For the modeling and execution of processes, an appropriate level of ab-

straction is crucial to hide irrelevant details to the process modeler. Building blocks for

BP modeling, BP execution, and IT infrastructure should encapsulate business func-

tions in a self-contained way, e.g., like services in a SOA [22]. The BP model describes

interactions between these building blocks.

1 www.softwareag.com

3

The implementation of BPs in enterprises involves three layers: the modeling layer,

the execution layer, and the IT infrastructure layer (see Figure 1). During design time,

business experts create models, e.g., using the Business Process Modeling Notation

(BPMN) [20]. The model is then transformed into an executable workflow expressed,

e.g., with the Business Process Execution Language (BPEL) [19]. Typically, the work-

flow execution requires IT support, which is provided by a SOA and workflow manage-

ment systems.

Model
(e.g., BPMN 1/2, EPC)

<process name="pns:Caller">
 <invoke partnerLink=“Link">
 <service name="wns:Billing”/>
 </invoke>
</process>

Executable Workflow
(e.g., BPMN 2.0, BPEL)

IT Infrastructure
(e.g., SOA, EDA)

BPM Transition Process

Billing by Credit
Card

Invoke Billing
by Credit Card
Service

Billing by
Credit Card
Service

Invoke Invoice
Service and Billing
Service

Billing Service
(different methods);
Invoice Service

Accounting
(Invoice & Billing)

Examples of Abstraction

high coherence low coherence

D
e
s
ig

n
 T

im
e

R
u
n
 T

im
e

Fig. 1. Transition steps between process modeling, process execution, and IT infrastructure layer.

The transition process from a BP model to, e.g., SOA service interactions is not

trivial and requires expertise from the business perspective as well as from the IT per-

spective. To enable the seamless implementation of modeled processes, the abstraction

of business functions should have the same granularity at each layer; a coherent ab-

straction across the layers minimizes the transition effort [21]. The example in Figure 1

illustrates this: the low coherence case requires a refinement with each transition step

(a single BPMN task maps to multiple services) while the high coherence case allows

a one-to-one transition between the business function representations available at each

layer (e.g., BPMN tasks, BPEL invocations, and SOA services). In the following, we

derive requirements for SPUs as business function abstractions. With the encapsulation

of event stream processing in SPUs, a high coherence between the different layers is

achieved; this supports a seamless transition between process model, executable work-

flow, and IT infrastructure.

2.1 Business Process Modeling Layer

Process models are typically created by business experts that have a good knowledge

about the company structure and established workflows. These process models describe

interactions between business functions [22]. For a clear separation of concerns be-

tween the business perspective and the IT perspective, it is necessary to encapsulate

event stream processing logic in SPUs that hide technical details at the modeling layer.

SPUs are the abstract representation of business functions that process event streams.

SPUs require at least one event stream as input and may output event streams or single

4

events. An important characteristic of SPUs is the demand for continuous processing

of event streams; rather than in single request/reply interactions, SPUs process new

events as they arrive, e.g., a shipment monitoring SPU receives new monitoring data

continuously.

Requirements For the integration of event streams, the modeling notation has to pro-

vide elements or patterns to express SPUs (R1). While the actual event-processing func-

tionality is encapsulated inside SPUs, event streams should be accessible by the mod-

eler. Integrating event streams during modeling simplifies the transition to an executable

workflow. Thus, the modeling notation has to provide means to express event streams

as input/output to/from SPUs (R2). Finally, the model notion must allow SPUs to run

continuously and in parallel to other tasks (R3). This includes appropriate execution

semantics adapted to event-based characteristics (R4).

2.2 Workflow Execution Layer

The execution of BP models requires a transition from the, often graphical, model nota-

tion to a formal process representation. The interactions between the different process

tasks are formalized in a workflow description, e.g., using BPEL. This workflow de-

scription contains, e.g., service invocations and defines the input data for services. Like

traditional BP tasks can be mapped to human tasks or service invocations, SPUs need

to be mapped from the model to the IT infrastructure.

Requirements To support SPUs at the workflow execution layer, the execution notation

has to support the instantiation of the SPUs provided by the IT infrastructure (R5). It

further needs means to define streams of events as input and output of SPUs (R6). The

instantiation and completion of SPUs needs to be configurable with respect to event-

based characteristics (R7).

2.3 IT Infrastructure Layer

The IT infrastructure holds the technical representations of SPUs. It is responsible for

the execution of the encapsulated event stream processing logic. In contrast to SOA

services, SPUs follow the event-based paradigm. While services are invoked explicitly,

SPUs behave reactively on streams of events. Services encapsulate business functions

in a pull manner (reply is requested); SPUs encapsulate reactive business functions that

are defined on event streams pushed into the system.

Requirements The IT infrastructure has to provide a runtime environment for SPUs

that respects event-based characteristics, e.g., implicit instantiation (R8). It must pro-

vide containers for SPUs that represent business functions (R9). Just like services, these

SPU containers must be manageable and capable of receiving the required data in form

of event streams (R10).

5

3 Event Stream Processing Units

To support SPUs at the BP modeling, BP execution, and IT infrastructure layer, we

suggest mechanisms at each layer. At the modeling layer, we introduce Event Stream

Processing Tasks (ESPTs) to represent SPUs in BPMN process models. At the IT infras-

tructure layer, we adapt Eventlets [1] for the implementation of SPUs. The execution

layer is responsible for the mapping between ESPTs and Eventlets. This is shown in

Figure 2: like services form a SOA, SPUs form an event-driven architecture (EDA). At

the execution layer, service tasks in a model are mapped to, e.g., web services. Equally,

ESPTs are mapped to Eventlets.

Events:
Streams of Data

Database:
Persistent Data

EDA

SPU1 ... SPUn

SOA

Service1 ... Servicen

Reactive Workflow (e.g., BPEL, BPMN 2.0)

Push-based

(subscribe)

Pull-based
(request/reply)

Reactive Business Processes (e.g., BPMN)

Service Task

Web Service

Event Stream
Processing Task

Eventlet

Fig. 2. Stream Processing Units (SPUs) as building blocks of an event-driven architecture (EDA)

3.1 Modeling Layer

BPMN 2.0 is widely adopted in industry and has a broad tool support. From a tech-

nological perspective, processes can be modeled in different granularities with BPMN.

From a semantical perspective, the single building blocks (BPMN tasks) of a process

model should reflect business functions and hide technical details. We extend BPMN

with building blocks that represent SPUs. The extension of BPMN is necessary to ad-

dress the characteristics of SPUs determined by the streaming nature of event data.

SPUs exhibit the following specific properties that cannot be expressed completely with

existing BPMN elements:

– Execution semantics: After the instantiation, SPUs can run indefinitely; events ar-

rive and are processed continuously, e.g., temperature measurements during the

shipment transport. The completion semantics differ from service-like request/re-

ply interactions where the reply triggers the process control flow to proceed. In

contrast, completion of SPUs has to be triggered - either implicitly or explicitly. In

either case, the completion indicates a clean shutdown. Implicit completion requires

the specification of a condition that determines when the SPU should complete. Ex-

amples are a timeout in case no new events arrive, the detection of a certain event

6

pattern, or dedicated events, e.g., shipment arrival. Explicit completion triggers the

completion of an SPU externally. For example, when a process reaches a point

where the processing of an event stream is not required anymore, e.g., shipment

arrival has been confirmed.
– Signaling: The continuous processing inside of SPUs requires support to trigger

concurrent actions, e.g., triggering exception handling in case of a temperature

threshold violation without stopping the shipment monitoring SPU.
– Event stream input and output: The inputs for SPUs are event streams. An event

stream is specified by a subscription to future events, e.g., temperature measure-

ments for a certain shipment. The output is specified by an advertisement that de-

scribes the events producible by an SPU.

Our extensions to BPMN are shown in Figure 3. We introduce Event Stream Speci-

fications (ESSs) that reflect input data and output data in form of event streams. Further,

we introduce Event Stream Processing Tasks (ESPTs) to model SPUs.

Event Stream
Processing Task

Input Event
Stream

Output Event
Stream

Event Stream
Processing Task

Implicit Completion Explicit Completion
Completion
Condition

Stop Signal

Fig. 3. Extensions to BPMN: Event Stream Specifications (ESSs) and Event Stream Processing

Tasks (ESPTs)

Definition 1. An Event Stream Specification (ESS) (→ R2) references a stream of

events and their parameters. ESSs can be used as input and output of ESPTs. An ESS

used as input determines the subscription an ESPT has to issue. An ESS used as output

determines the advertisement that describes the event output stream of an ESPT.

Definition 2. An Event Stream Processing Task (ESPT) (→ R1, R3, R4) requires at

least one ESS as input. It may have output ESSs. When the control flow reaches an

ESPT, it is activated with the specified ESS as input. The transition from the active state

to the completing state (see BPMN task lifecycle [20, p. 428]) is triggered implicitly

or explicitly (→ R5). The implicit completion of an ESPT is realized with a modified

conditional sequence flow; the condition determines when the ESPT completes. The

explicit completion is realized with a dedicated signal. It is attached as non-interrupting

signal to the boundary of the ESPT. Upon completion, either implicitly or explicitly, the

ESPT stops processing, performs a clean shutdown, and passes on the control flow. To

trigger concurrent actions, ESPTs can activate outgoing sequence flow elements while

remaining in the active state.

Related BPMN Concepts Events are part of the BPMN specification. However, events

in BPMN are meant to affect the control flow in a process [20, p. 233]. Events modeled

as ESS do not exhibit this property; they are rather a source of business-relevant infor-

mation that is exploited within the process. Thus, due to the different semantics, events

in the sense of the BPMN standard are not appropriate to model SPUs.

7

To avoid unnecessary extensions of BPMN, we evaluated different BPMN task

types as alternatives to ESPTs. From the task types contained in the BPMN 2.0 stan-

dard, service tasks, business rule tasks, loop service tasks, and multiple instance service

tasks share properties with SPUs.

Service Tasks are containers for business functions that are implemented as SOA

services. The execution semantics for service tasks state, that data input is assigned to

the service task upon invocation; upon completion output data is available. For SPUs,

this separation is not feasible; input data arrives continuously and output data can be

available during task execution in form of output streams. Therefore, service tasks are

no appropriate representation for SPUs. In Business Rule Tasks, event stream processing

can be used to check conformance with business rules. However, event stream process-

ing supports a wider application spectrum than conformance checking, e.g., real-time

shipment tracking. Further, output in form of event streams is not part of business rule

tasks; their purpose is to signal business rule evaluation results. Loop Service Tasks

perform operations until a certain stop condition is met. However, the whole loop task

is executed repeatedly, i.e., a repeated service call. This repeated execution of a busi-

ness function depicts a different level of abstraction compared to continuous process-

ing inside an SPU; SPUs perform continuous processing to complete a single business

function. To use loop tasks for event stream processing, the process model would have

to define the handling of single events rather than the handling of event streams. This

conflicts with the abstraction paradigm of business functions and degrades coherence

across the layers. Multiple Instance Service Tasks allow the execution of a task in par-

allel, i.e., parallel service calls. However, like loop tasks, this would require one task

per event which conflicts with the intention to encapsulate business functions in tasks.

In addition, the number of task instances executed in parallel is static and determined at

the beginning of the task. This is not suitable for event processing since the number of

events is not known a priori.

In general, BPMN tasks have no support for triggered completion required in event

processing. In addition, event streams cannot be represented as input to and output

from tasks. Thus, we extend BPMN with ESPTs. ESPTs support implicit and explicit

completion, an essential part of SPU execution semantics. Further, we introduce ESSs

as input to and output from ESPTs in the form of event streams.

Example: Shipment Monitoring To illustrate the application of our BPMN exten-

sions, we model the monitoring of environmental conditions in the order process in-

troduced in Section 1. Figures 4 and 5 show two variants with different completion

strategies. The shipment monitoring is an SPU that receives monitoring events as input

stream. This shipment monitoring SPU is modeled as an ESPT in BPMN; the monitor-

ing events are assigned as an input ESS. The monitoring task can send a message event

(as concurrent action) to indicate a violation of environmental conditions, e.g., temper-

ature threshold exceeded. The message event can activate a task or trigger a different

process for handling the exception; this exception handling is omitted here for brevity.

In Figure 4, the shipment monitoring is modeled with explicit completion semantics.

As soon as the shipment has arrived, the monitoring is not required anymore. Thus, the

monitoring task completion is triggered by sending the stop signal.

8

Confirm
Order

SPU:

Monitor

Shipment

Create
Invoice

Process
Payment

Confirm
Arrival

Shipment
Monitoring

Events

Shutdown
Monitoring

Shutdown
Monitoring

Environmental
Condition Violation

Fig. 4. Shipment monitoring SPU that is stopped explicitly. The data input/output of the service

tasks omitted.

Confirm
Order

SPU:

Monitor

Shipment

Create
Invoice

Process
Payment

Confirm
Arrival

Shipment
Monitoring

Events Environmental
Condition Violation

Shipment Arrival:
Location matches destination address

Fig. 5. Shipment monitoring SPU that is stopped implicitly. The data input/output of the service

tasks omitted.

In Figure 5, the shipment monitoring is modeled with implicit completion seman-

tics. This requires the definition of a completion condition. In our example, we specify

the shipment arrival: when the location of the shipment matches the destination address,

the monitoring is completed. Other implicit completion conditions could be dedicated

arrival events, e.g., arrival scans of shipment barcodes, or timeouts, e.g., no new mon-

itoring events for the shipment arrive. The condition needs to be evaluated inside the

SPU, thus support for different condition types depends on the technical infrastructure

that executes SPUs.

3.2 Workflow Execution Layer

The support of BPs by an IT infrastructure requires a transition from the graphical

process notation to an executable format. With this technical representation, tasks of

a process model can be executed by technical components of the IT infrastructure.

The BPMN 2.0 standard itself specifies such a technical representation of the graph-

ical model. The standard also provides examples for the mapping between BPMN and

BPEL. Independent of the concrete technical representation format, the goal is to bridge

the semantic gap between graphical notation and interfaces of IT components so that the

process can be executed automatically. The transition from a graphical model towards a

technical representation requires adding additional technical information necessary for

the execution.

For different task types and control flow components, execution languages provide

executable representations. When the mapping of graphical process task and process

9

control flow elements is complete and all necessary data is specified, the process execu-

tion engine is able to execute instances of the process. Each instance reflects a concrete

business transaction, e.g., processing of Order No. 42. For each process instance, the

execution engine orchestrates the different tasks, passes on task input and output data,

and evaluates conditions specified in the control flow. Examples are the execution of

BPMN service tasks and human tasks: a service task can be executed by calling a web

service. For this, the execution engine needs the service address as well as the input

data to send to a service and the format of the expected output data from this service.

For the execution of human tasks, process execution engines typically provide a front

end to perform the work necessary to complete the task.

At the execution layer we define the technical details that allow ESPTs to be mapped

to IT components. The mapping mechanism has to take into consideration, that events

arrive indefinitely and are not known when the control flow reaches an ESPT. Thus, the

data input must be specified as a subscription for desired events that arrive during the

execution period of an ESPT. During process execution, this subscription has to parti-

tion the event stream in process instance specific sub streams: when a process instance

is created for a certain business task, e.g., processing of Order No. 42, the event stream

has to be partitioned in sub streams of events relevant for the different order process

instances. This is shown in Figure 6: a monitoring task must be active for each process

instance. This task instance has to receive all monitoring events for the shipment that

is handled in this process instance. Given that each event carries a shipment ID, each

monitoring task instance can issue a subscription for the appropriate events using the

shipment ID as filter. When the process instance ID correlates with the shipment ID,

the subscription can also be derived by the process execution engine on the basis of the

process instance ID.

ShipmentID = 3

ShipmentID = 2

ShipmentID = 1
Shipment Monitoring

Event Stream

Shipment Monitoring1

Process Instance 1

Shipment Monitoring2

Process Instance 2

Shipment Monitoring3

Process Instance 3

Fig. 6. Process execution: Event Stream Processing Tasks (ESPTs) receive sub streams of events

The subscription parameters are essential for the instantiation of an ESPT. Like the

input data passed on to a service during a service call, the subscription is part of the

input data during an ESPT instantiation. Further, when the ESPT is modeled with an

implicit completion, the completion condition is part of the input data required for the

instantiation. As for ESPT completion, different ESPT instantiation strategies are pos-

sible. The push-based nature of stream processing allows an implicit creation of ESPT

instances upon the arrival of appropriate events. In addition, ESPT instances can also

be created explicitly by the process execution engine. When switching from explicit to

implicit instantiation, the responsibility of instantiation moves from the process execu-

tion engine to the IT infrastructure. Implicit instantiation is useful when the moment of

10

instantiation cannot be determined by the execution engine. It is also the more natural

approach with respect to the characteristics of event streams; application logic is exe-

cuted as soon as appropriate events are available. We support both instantiation schemes

to allow for a high flexibility (→ R8). Independent of the instantiation scheme, a sub-

scription does not guarantee the availability of events, e.g., that events for Shipment

No. 42 are published. Explicitly instantiated ESPTs can use a timeout to detect such

an absence of events. With implicit instantiation, ESPT instances are not created in this

case; the execution environment can detect and report this.

ESPT Instantiation and Completion The execution of a BPs leads to process in-

stances that may run in parallel. Each ESPT in the model has corresponding ESPT

instances that are created during process execution. Each ESPT instance processes the

event streams relevant for a particular process instance (see Figure 6). The process exe-

cution engine can create an ESPT instance explicitly during the execution of a process

instance. The subscription parameters required for the explicit instantiation must be de-

rived per process instance; they define the sub stream of events that has to be processed

by a particular ESPT instance, e.g., monitoring events for Shipment No. 42. The explicit

instantiation is specified as follows (→ R6, R7, R8):

EsptInstantiate(EsptName, EventStreamFilter, SubStreamAttribute,

SubStreamId [, CompletionCondition])

For the monitoring example, the explicit instantiation of a monitoring task for Shipment

No. 42 without and with completion condition is:

EsptInstantiate(MonitorShipment, MonitoringEvent,

ShipmentId, 42)

EsptInstantiate(MonitorShipment, MonitoringEvent,

ShipmentId, 42, timeout(120sec))

An ESPT is referenced by name: EsptName, e.g., Monitor Shipment. The subscription

parameter has three parts: First, a general filter for events of interest that applies to all

ESPT instances is specified as EventStreamFilter, e.g., monitoring events. Sec-

ond, the SubStreamAttribute defines the part of the event data that partitions the

event stream with respect to ESPT instances, e.g., the shipment ID; both are static ex-

pressions and derived based upon the ESS used in the model. Third, the SubStreamId

defines the concrete event sub stream for which an ESPT instance should be created,

e.g., Shipment No. 42. The SubStreamId is dynamic and derived per process in-

stance by the execution engine at run time, e.g., based on the process instance ID.

The optional CompletionCondition can be specified for implicit completion, e.g.,

defining a time out.

With implicit instantiation, the process execution engine only registers a static sub-

scription pattern for an ESPT once, e.g., with the registration of the process. Since

events arise in a push-style manner, the IT infrastructure is able to create ESPT instances

implicitly at run time. The implicit instantiation is specified as follows (→ R6, R7, R8):

EsptRegister(EsptName, EventStreamFilter,

SubStreamAttribute [, CompletionCondition])

11

For the shipment monitoring example, the ESPT registration is:

EsptRegister(MonitorShipment, MonitoringEvent, ShipmentId)

In contrast to explicit instantiation, the execution engine is not responsible for the dy-

namic subscription part anymore. Rather, the IT infrastructure ensures, that an ESPT

instance is created for each distinct value of the SubStreamAttribute, e.g., for

each shipment ID.

For the explicit completion of an ESPT instance, the process execution engine has

to advise the IT infrastructure to perform a shutdown of particular ESPT instances, e.g.,

the shipment monitoring of Shipment No. 42. The completion command is specified as

follows (→ R8):

EsptComplete(EsptName,SubStreamId)

The SubStreamId identifies the ESPT instance that should be completed. In the mon-

itoring example for Shipment No. 42, the following completion command is issued after

the arrival confirmation task:

EsptComplete(MonitorShipment,42)

Although ESPTs have different execution semantics than BPMN service tasks, the

control commands to register, instantiate, and complete ESPTs follow a request/reply

pattern. Thus, our integration approach of event streams with BPs can be mapped to web

service invocations. Web service invocation capabilities are part of most process execu-

tion engines so that ESPTs can be registered, instantiated, or completed; the ESPT name

as well as further subscription and completion parameters are specified as variables in

the service invocation. In addition to service invocation mechanisms, it might be nec-

essary to implement a back channel for control flow purposes. Implicitly completing

ESPT instances might have to notify the process execution engine about completion.

This is the case when the control flow waits for a completion of an ESPT, e.g., when an

ESPT is used before a BPMN AND-Join.

ESPT Mapping in BPEL Business process models that contain ESPTs can be mapped

to BPEL. However, the BPEL standard [19] does not support all concepts required for a

complete mapping of the different instantiation and completion strategies. ESPTs with

explicit instantiation and explicit completion can be mapped to standard BPEL: the ex-

plicit instantiation is realized as web service call. The return from this call is blocked by

the IT infrastructure until the ESPT instance is explicitly stopped by a EsptComplete

service invocation. Explicit instantiation and completion in BPEL are as follows:

<invoke partnerLink="EsptWebService" operation="EsptInstantiate"

inputVariable="explicitInstantiateParams"

outputVariable="completed"/>

<invoke partnerLink="EsptWebService" operation="EsptComplete"

inputVariable="explicitCompletionParams"/>

With implicit instantiation, single ESPT instances are transparent to the process exe-

cution engine. The registration of ESPTs has to be performed once with the registration

12

of a process; the ESPT instances are then created automatically. The BPEL standard

does not support hooks for service invocation upon the registration of new processes.

Thus, a BPEL execution engine has to be extended with these capabilities to support

implicit instantiation of ESPTs. The hook for execution at process registration can be

part of the BPEL code itself; when a new process is registered and checked, this part of

the process is executed only once:

<atRegistration><invoke partnerLink="EsptWebService" operation=

"EsptRegister" inputVariable="implicitInstantiateParams"/>

</atRegistration>

When an ESPT is invoked implicitly, there is no BPEL web service invocation in each

process instance. Thus, a blocking service invocation cannot be used to interrupt the

control flow until completion of an ESPT instance. Rather, the process execution en-

gine has to be notified externally about the completion of an ESPT instance so that the

control flow can proceed. Extensions to BPEL engines to react on such external triggers

have been proposed, e.g., in [14] and [12]. The ESPT can be mapped to a barrier that is

released when the ESPT instance signals its completion.

3.3 IT Infrastructure Layer

SPUs require a technical representation at the IT infrastructure layer. In [1] we present

a suitable component model and runtime infrastructure to encapsulate event stream pro-

cessing. We introduce event applets, in short Eventlets, as service-like abstraction for

event stream processing. Our model benefits from concepts known from services; it

hides application logic so that Eventlets represent business functions. We extend the

runtime environment presented in [1] to allow for the integration with BP execution

engines. We now introduce the main concepts of Eventlets to make this paper self-

contained; we then present the extensions to the Eventlet middleware. We adapt the

more general Eventlet nomenclature of [1] to fit the terminology of this paper.

<EventletName>

CompletionCondition: <Validity of Eventlet>
EventStreamFilter: <Precondition for event handling>
SubStreamAttribute: <Distinction criteria for Eventlet instances>

Eventlet Metadata

onInstantiation(subStreamId id) { ... }

onRemove() { ... }

onCompletion() { ... }

onEvent(Event e) { ... }

Eventlet Runtime Code <InstanceID>

Fig. 7. Eventlet structure: Eventlet metadata and Eventlet runtime methods

Eventlets encapsulate event stream processing logic with respect to a certain entity,

e.g., shipments (→ R10). An Eventlet instance subscribes to events of a certain entity

instance, e.g., Shipment No. 42 (→ R11). The basic structure of an Eventlet is shown in

13

Figure 7. The grouping attribute to define the sub stream of events associated with a cer-

tain entity instance is specified as Sub Stream Attribute2 in the Eventlet metadata, e.g.,

the shipment ID. Further, the metadata holds the Completion Condition3, e.g., a time-

out, as well as the Event Stream Filter4 as a general subscription filter applied by all

Eventlet instances, e.g., monitoring event. Eventlet instances are created implicitly or

explicitly (→ R9). With implicit instantiation the middleware ensures that an Eventlet

instance is active for each distinct value of the sub stream attribute, e.g., for each ship-

ment in transport. With explicit instantiation, Eventlet instances are created manually by

specifying a concrete sub stream attribute value, e.g., Shipment No. 42. The completion

of Eventlet instances is triggered implicitly by the completion condition or explicitly by

a command (→ R9). Eventlet instances run in a distributed setting and have a managed

lifecycle; application logic can be executed upon instantiation, removal, completion,

and upon event arrival (→ R11).

In our monitoring example, an Eventlet holds application logic to detect tempera-

ture violations. This can involve a lookup in a database at instantiation to retrieve the

temperature threshold for a certain shipment. It can also involve issuing complex event

processing (CEP) queries to rely on the functionality of a CEP engine for temperature

violation detection. An evaluation of CEP queries encapsulated in Eventlets is presented

in [1]. The semantics of ESPT execution (cf. Section 3.2) are implemented by the Event-

let middleware. The EsptInstantiate and EsptRegister invocations provide

the Eventlet middleware with the metadata to explicitly or implicitly create Eventlet in-

stances. For implicit instantiation, the middleware creates a so-called Eventlet Monitor;

it analyzes the event stream and detects the need to create Eventlet instances as soon as

events of a new entity instance, e.g., a new shipment, occur. Like services, Eventlets are

managed in a repository and identified via the EsptName.

Eventlet Middleware Extension The Eventlet middleware infrastructure uses the Java

Message Service (JMS) for event dissemination. JMS supports publish/subscribe com-

munication with event content sensitive subscriptions. Our implementation supports

events in attribute-value and XML representation. For attribute-value events, the Event

Stream Filter is specified as JMS message selector in a SQL-like syntax. The Sub

Stream Attribute is the name of an attribute, e.g., shipmentID. For XML events, Event

Stream Filter and Sub Stream Attribute are specified as XPath expressions on the event

content. For implicit completion of Eventlet instances, timeouts are supported.

We extended the Eventlet middleware in [1] to support ESPT execution. As shown

in Figure 8, the Eventlet middleware is configured and controlled using a command bus.

This command bus is realized as a set of JMS queues and topics to which all middle-

ware components connect. We added a web service interface to the Eventlet Manager;

the new interface accepts service invocations as described in Section 3.2 and uses the

internal command bus to start or stop Eventlet Monitors and Eventlet instances. The

web service interface is implemented as Java Enterprise application. The Eventlet mid-

2 Referred to as Instantiation Expression in [1].
3 Referred to as Validity Expression in [1].
4 Referred to as Constant Expression in [1].

14

Business Process Execution (e.g., BPEL)

Eventlet
Instances

Eventlet
Repository

Eventlet
Monitors

Command Bus

JMS
Interface

WSDL/SOAP
interface

Native
Client

Eventlet Manager

Eventlet Middleware

Fig. 8. Eventlet middleware access via web service

dleware can be deployed on multiple application servers and use a JMS infrastructure

in place. It is designed for scalability: Eventlet instances can run on arbitrary machines.

4 Related Work

Events are part of various BP modeling notations like BPMN 2.0 and event-driven pro-

cess chains (EPCs) [13, 25]; they trigger functions/tasks and influence the process con-

trol flow. The incorporation of (complex) events leads to more reactive and dynamic

processes. This is a core concept in event-driven architectures (EDA) [6, 18] or event-

driven SOA [16]. However, event streams do not have explicit representations in BPMN

or EPCs. Currently, event streams have to be modeled explicitly as multiple events,

e.g., using loops that process events. Such explicit modeling of complex events and

event processing is for example presented in [2, 3, 5, 9, 26]. The problem is, that pro-

cess models are often created by business experts without detailed knowledge about

technical details of event processing. Further, to make models intuitively understand-

able, modelers should use as few elements as possible with self-explaining activity la-

bels [17]. Thus, activities should represent business functions. Services are a successful

abstraction mechanism to support this. Services represent business functions and ex-

hibit a data input/output interface [22]. Process models do not (and should not) contain

the application logic of a service; this is left to service developers who can use more

appropriate modeling notations to describe the technical details. Thus, the approach in

this work confers basic service concepts [7] to event stream processing and introduces

SPUs as an appropriate abstraction.

At the execution layer, Juric [12] presents extensions to BPEL that allow service

invocations by events. In [23], Spiess et al. encapsulate event sources as services. Both

approaches do not address event streams as input/output to/from components; rather

than a stream of events, single events are understood as business relevant.

At the technical layer, event streams are well known. CEP is supported by a variety

of tools, e.g., the Esper CEP engine [8]. CEP is also part of BP execution environ-

ments like JBoss jBPM/Drools [11]. In [15], BP modeling techniques are used to ex-

press CEP queries. Event stream processing is integrated bottom-up; CEP queries and

rules are specified at the technical layer. In contrast, we propose a top-down approach

where business entity-centric event streams are visible as input/output of ESPTs at the

15

modeling layer. Event streams can be as business relevant as, e.g., input/output data of

services. Thus, like service task input/output is explicit in models, event streams are

explicit at the modeling layer in our approach.

The event stream processing application logic inside Eventlets can be simple rules,

CEP queries, or complex event processing networks as described in [10]. While event

stream processing queries can run centralized, e.g., a single CEP query processes mon-

itoring data of all shipments, our middleware instantiates Eventlets for each entity in-

stance, e.g., one CEP query per shipment. This encapsulation of event stream process-

ing logic is related to design by units described in [24]. It improves scalability and

fosters elasticity; in [1] we show the scalability benefits of CEP query encapsulation

in Eventlets. The more process instances require entity-centric stream processing, the

more Eventlets are instantiated and vice versa.

5 Conclusion

In collaboration with Software AG, we identified the need to integrate event streams

with BP modeling and execution. Rather than single events, event streams are consid-

ered as business-relevant units in this context. We developed an approach for this inte-

gration at the modeling, execution, and IT infrastructure layer. Our approach introduces

SPUs: a consistent abstraction for event stream processing across the layers. Like ser-

vices, SPUs encapsulate business functions; they use event streams as business-relevant

data sources. This allows intuitive modeling from the business perspective. The abstrac-

tion paradigm of SPUs leads to a high coherence across the layers. This minimizes the

transition effort from the graphical model notation to the executable process description

and from the executable process description to the IT infrastructure. Our approach is a

clear separation of concerns; SPUs are declarative, the (imperative) application logic

resides solely at the technical layer inside Eventlets.

The contributions of this paper are: 1) SPUs as abstraction to encapsulate event

stream processing as business functions, 2) an extension of BPMN 2.0 with ESPTs

and ESSs to model SPUs, 3) a mapping of ESPTs and ESSs to an executable process

description, and 4) an extension of our Eventlet middleware to interface with BP execu-

tion engines. We take semantics of event processing into account and support implicit as

well as explicit instantiation and completion strategies. Event stream processing tech-

niques, like CEP, are widely adopted. Our approach encapsulates them and makes event

stream processing available coherently across the BP modeling, BP execution, and IT

infrastructure layer. We illustrate our approach with the running example of a shipment

monitoring SPU inside an order-to-delivery process.

In ongoing work we are enhancing our Eventlet middleware. We implement support

for more types of completion conditions and investigate complex expressions as triggers

for the instantiation of Eventlets. We are also working on extensions to the event-driven

process chain (EPC) notation to support SPUs in EPCs.

Acknowledgements We thank Dr. Walter Waterfeld, Software AG, Germany, for the valu-

able feedback and insights into process modeling practice. Funding by German Federal Min-

istry of Education and Research (BMBF) under research grants 01IS12054, 01IC12S01V, and

01IC10S01. The authors assume responsibility for the content.

16

References

1. S. Appel, S. Frischbier, T. Freudenreich, and A. Buchmann. Eventlets: Components for the

integration of event streams with SOA. In SOCA, Taiwan, 2012.

2. A. Barros, G. Decker, and A. Grosskopf. Complex events in business processes. In BIS,

Poland, 2007.

3. B. Biörnstad, C. Pautasso, and G. Alonso. Control the flow: How to safely compose stream-

ing services into business processes. In SCC, USA, 2006.

4. A. Buchmann, S. Appel, T. Freudenreich, S. Frischbier, and P. E. Guerrero. From calls to

events: Architecting future bpm systems. In BPM, Estonia, 2012.

5. A. Caracaş and T. Kramp. On the expressiveness of BPMN for modeling wireless sensor

networks applications. In BPMN, Switzerland, 2011.

6. P. Chakravarty and M. Singh. Incorporating events into cross-organizational business pro-

cesses. IEEE Internet Computing, 12(2):46 –53, 2008.

7. A. Elfatatry. Dealing with change: components versus services. Communications of the

ACM, 50(8):35–39, 2007.

8. EsperTech Inc. Esper Complex Event Processing Engine, 2013.

9. A. Estruch and J. Heredia Álvaro. Event-driven manufacturing process management ap-

proach. In BPM, Estonia, 2012.

10. O. Etzion and P. Niblett. Event processing in action. Manning Publications Co., 2010.

11. JBoss.com. Drools - The Business Logic integration Platform, 2013.

12. M. B. Juric. WSDL and BPEL extensions for event driven architecture. Information and

Software Technology, 52(10):1023 – 1043, 2010.

13. G. Keller, A.-W. Scheer, and M. Nüttgens. Semantische Prozeßmodellierung auf der Grund-

lage ”Ereignisgesteuerter Prozeßketten (EPK)”. Inst. für Wirtschaftsinformatik, 1992.

14. R. Khalaf, D. Karastoyanova, and F. Leymann. Pluggable framework for enabling the exe-

cution of extended BPEL behavior. In ICSOC/WESOA, Austria, 2007.

15. S. Kunz, T. Fickinger, J. Prescher, and K. Spengler. Managing complex event processes with

business process modeling notation. In BPMN, Germany, 2010.

16. O. Levina and V. Stantchev. Realizing event-driven SOA. In ICIW. Italy, 2009.

17. J. Mendling, H. Reijers, and W. van der Aalst. Seven process modeling guidelines (7pmg).

Information and Software Technology, 52(2):127 – 136, 2010.

18. B. M. Michelson. Event-driven architecture overview. Patricia Seybold Group, 2006.

19. OASIS Web Services Business Process Execution Language (WSBPEL) TC. Web services

business process execution language (BPEL), version 2.0, April 2007.

20. Object Management Group (OMG). Business process model and notation (BPMN), version

2.0, January 2011.

21. C. Ouyang, M. Dumas, W. van der Aalst, A. ter Hofstede, and J. Mendling. From busi-

ness process models to process-oriented software systems. ACM Transactions on Software

Engineering and Methodology, 19(1):2:1–2:37, Aug. 2009.

22. M. Papazoglou. Service-oriented computing: concepts, characteristics and directions. In

WISE, Italy, 2003.

23. P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza, and V. Trifa. SOA-

based integration of the internet of things in enterprise services. In ICWS, USA, 2009.

24. S. Tai, P. Leitner, and S. Dustdar. Design by units: Abstractions for human and compute

resources for elastic systems. IEEE Internet Computing, 16(4):84 –88, 2012.

25. W. van der Aalst. Formalization and verification of event-driven process chains. Information

and Software Technology, 41(10):639 – 650, 1999.

26. M. Wieland, D. Martin, O. Kopp, and F. Leymann. SOEDA: A method for specification

and implementation of applications on a service-oriented event-driven architecture. In BIS,

Poland, 2009.

