
Event Structure Semantics For CCS and Related

Languages

Glynn Winskel

April 1983∗

Abstract

We give denotational semantics to a wide range of parallel programming lan-
guages based on the idea of Milner’s CCS [Mil80a], that processes communicate
by events of mutual synchronization. Processes are denoted by labeled event
structures. Event structures represent concurrency rather directly, as in net the-
ory [Bra80]. The semantics does not simulate concurrency by non-deterministic
interleaving.

We first define a category E of event structures [NPW79, NPW81, Win80]
appropriate to synchronized communication. The category bears a natural rela-
tion to a subcategory of trees though an interleaving functor; so results transfer
to trees neatly. Then we introduce the concept of a synchronization algebra
(S.A.) on labels by adopting an idea of Milner [Mil80b]. An S.A. specifies how
two processes synchronize via labels on their events. From each S.A., L, we
derive a category EL of labeled event structures with natural operations for

composing labeled event structures. In particular the parallel composition L

is derived from the product in E. We obtain semantics for a class of CCS-like
languages by varying the S.A.. Synchronization algebras are very general so the
class is very broad, handling synchrony and asynchrony in a common framework.

As a corollary we get an event structure semantics for CCS. When inter-
leaved our semantics is Milner’s synchronization/communication tree seman-
tics [Mil80a]. However our semantics distinguishes more terms as it reflects
concurrency. Event structure semantics is at a rather basic level of abstrac-
tion but should support all abstract notions of equivalence (see [Mil80a] for
examples), including those which take concurrency into account.

∗Typed up in LATEX by Alexander Katovsky, April 2011

page 1 of 56

Contents

0 Introduction 3

1 Event Structures 7

2 A “CPO” Of Event Structures 15

3 A Category of Event Structures 22

4 Two Subcategories, Prime Event Structures and Trees 30

5 A Semantics for Communicating Processes 36

Conclusion 45

A Sets and partial functions 46

B Domains of configurations 47

Acknowledgments 54

References 55

page 2 of 56

0 Introduction

We consider languages which are related to Robin Milner’s “Calculus of Com-
municating Systems” – CCS, described in [Mil80a]. The most important feature
of the languages is the form of parallel composition. The idea is that two pro-
cesses communicate by events of mutual synchronization which we illustrate by
a simple example. (The reader familiar with [Mil80a] is warned that our ap-
proach is not quite the same as Milner’s; we do not serialize, or interleave, event
occurrences. We promise a neat connection with Milner’s synchronization trees
later.)

Consider a simple reading machine M capable of performing only two events
e0 – the event of accepting a coin – and e1 – the event of delivering an item. By
event we mean what others might call an event occurrence, so the machine is
really quite short-lived; it accepts one coin and delivers one item. Naturally it
only delivers the item after accepting a coin. We can represent the machine as
all the sets of events it can have performed up to various stages. We call each
set a configuration. Ordered by inclusion the configurations are:

∅ ⊆ {e0} ⊆ {e0, e1}

Initially M has performed no events of interest, the configuration ∅; then it can
perform e0 to realize the configuration {e0} and afterwards e1 to realize the
configuration {e0, e1}. Notice how the machine’s behaviour in time is reflected
by the inclusion relation on configurations; configurations of events which have
occurred later include those which have occurred earlier. Such diagrams can
be simplified by using the covering relation. In a partial order ⊑ one point x
is covered by another y if x and y are distinct and no point can be inserted in
between. Formally, x is covered by y is written x ⊂ y and defined by:

x ⊂ y ≡ (x ⊏ y) ∧ (∀z . (x ⊑ z ⊑ y) =⇒ (x = z ∨ z = y))

For the above partial order of inclusion, if one point covers another it just means
one action event has occurred so we can draw

∅ ⊆ {e0} ⊆ {e0, e1} equivalently as ∅

• ⌣e0
••

⌣e1
•

specifying the extra event that occurs at each covering.
To be of use the machine will be set in an environment consisting perhaps

of other machines and possible customers. To the environment the events e0, e1

are not generally of interest in themselves. Rather it is their nature, what kinds
of event they are, that determines how, for instance, a customer interacts with
the machine. The machine M performs two kinds of events, accepting a coin,
abbreviated to α, and delivering an item abbreviated to ι. We label e0 by α
and e1 by ι to indicate their kind, so:

∅

• ⌣e0:α

••

⌣e1:ι

• (M)

Imagine our single machine in use. It relates to customers by accepting a coin
from them. At the very least a customer should be able to perform an event of

page 3 of 56

inserting a coin. This kind of event is, in a sense, complementary to accepting
a coin so we label it by α. A typical customer C is modeled by:

∅

• ⌣e2:α
• (C)

Recall this is really just an abbreviation for ∅ ⊆ {e2} where e2 is an event of
kind α. A customer can do one event of the kind insert a coin.

Now M can accept a coin from its environment and C can insert a coin to
theirs. In particular, when they are set together M can accept a coin from C.
This produces a new kind of event, an event of synchronization between M and
C, which we label by τ . In the world of just customers that can only insert coins
and machines that can only accept coins and deliver – we would not expect this
new event to synchronize further. In a more varied world it might. Of course,
the synchronized event need not occur; quite possibly M could accept a coin
from elsewhere, perhaps from another customer, just as C could spend their
coin differently. How are we to model this parallel composition of M and C?

Firstly it is natural to take the synchronization event as a combination of the
event e0 of M , accepting a coin, and the event e2 of C, inserting a coin. Name
the synchronized event by a pair (e0, e2) because to M the event looks like e0

and to C the event looks like e2. As explained we label it by τ . What about a
name for the event where M accepts a coin from its environment other than C?
To M the event looks like e0 while to C, who is only sensitive to having their
coin accepted, it is invisible. We introduce ∗, a sort of undefined, and name the
event (e0, ∗). Clearly, it is the same kind of event as e0 so we label it the same
by α. Similarly there is an event (∗, e2) labeled α corresponding to C inserting
their coin into something other than M and an event (e1, ∗) labeled ι.

What form do the configurations of the parallel composition of M and C
take? Suppose first M and C do not synchronize. Then M can deliver an item
(e1, ∗) only after accepting a coin (e0, ∗) and both events are independent of C
inserting a coin, (∗, e2). All these events are performed with the environment
and not with each other. Alternatively together they synchronize to perform
the event (e0, e2) whereupon M can do (e1, ∗). It is not possible for (e0, ∗) and
(e0, e2) to occur together. This informal argument should convince the reader
that the parallel composition M |C of M and C has the following configurations

∅
•

⌣

(
∗

,
e
2
)

•

• ⌣

(e0,∗)
••

⌣

(e1,∗)
•

• ⌣(e0,∗)
••

⌣(e1,∗)
•

•

⌣

(
∗

,
e
2
)

•

•

⌣

(
∗

,
e
2
)

•

•

⌣

(e
0

,e
2
)

••

⌣(e1,∗)
•

(M |C)

There are several points to note about this diagram. Notice that intuitively
the events (e0, ∗) and (∗, e2) (and similarly (e1, ∗),(∗, e2)) are concurrent in that

page 4 of 56

they can occur independently, and this fact is reflected by the little commuting
square

•

⌣
••

⌣•

•

⌣••

⌣
•

Notice too there are obvious projections from the parallel composition M |C
back to the component processes M and C; for example the configuration
{(e0, e2), (e1, ∗)} in M |C projects to the configuration {e0, e1} of M and to
the configuration {e2} of C. This is natural and expresses the intuition that the
behaviour of a compound process should be consistent with the behaviours of its
processes. Interestingly we shall derive parallel composition from a product, in
a category suitable for synchronized communication, thus giving mathematical
leverage to the idea of projecting down to a subprocess.

The category will have event structures as its objects; an event structure
consists of a pair, a set of events and a set of configurations, satisfying suitable
axioms. Processes will be denoted by labeled event structures where the labels
specify the kinds of events. In the machine-customer example it is intuitively
clear how two events of certain kinds may or may not combine to form syn-
chronized events. But of course it can all be done more abstractly. We just
need a general way to say when and how pairs of labeled events can combine to
form synchronized events and what labels such combinations carry. We shall do
this by using synchronization algebras on labels. The idea is to have a binary
composition operation, •, on a set of labels. When a pair of events of which
two labels do not synchronize we make the composition of the labels give 0. For
example we would make α •α = 0 and α • ι = 0 for our machine and customer.
When two labeled events can combine we make the labeled compositions give
the new kind of the synchronized event e.g. in our example α • α = τ . Our
machine-customer example also makes clear that there may be some asynchrony
in the parallel composition. In fact there, every event of M and C could occur
asynchronously in the parallel composition; every event of M need not be syn-
chronized with an event of C and visa-versa, reflected by all those events of the
form (e0, ∗), (e1, ∗) and (∗, e2) in the parallel composition. To allow asynchrony
we introduce another constraint ∗ into the algebra. Then for example, α•∗ = α
shows an event of kind α can occur asynchronously in a parallel composition
and that its new kind in the parallel composition is still the same, viz. α. Our
machine-customer example would have this synchronization algebra:

• ∗ α α ι τ 0
∗ ∗ α α ι τ 0
α α 0 τ 0 0 0
α α τ 0 0 0 0
ι ι 0 0 0 0 0
τ τ 0 0 0 0 0
0 0 0 0 0 0 0

page 5 of 56

The parallel composition M |C consists of events determined by the synchroniza-
tion algebra and configurations which are subsets of these events which “project
down” to configurations of M and C.

This gives a rough idea of how we shall model the parallel composition of
two processes. Of course we shall model other operations on processes and need
techniques for defining infinite event structures recursively. Then we can give
denotational semantics to a range of such languages of which CCS is typical.
Of course we also want methods for relating our semantics to others especially
Milner’s. The details follow.

page 6 of 56

1 Event Structures

Processes are modeled by event structures. An event structure consists of a set
of possible event occurrences together with a family of configurations; a configu-
ration is a set of events which occur by some stage in the process, possibly after
infinite time. To define operations on event structures neatly we modify the def-
inition of [NPW79, NPW81] so that an event can occur in several incompatible
ways. The definition is motivated further in proposition 1.8

Notation 1.1. Let F be a family of subsets of a set E. Let X ⊆ F . We write
X ↑F for ∃y ∈ F . ∀x ∈ X . x ⊆ y and say X is compatible. When x, y ∈ F we
write x ↑F y for {x, y}↑F

Definition 1.1 (event structure). An event structure is a pair (E, F), where E
is a set of events and F ⊆ P(E) is a family of configurations , which is:

∀X ⊆ F . (∀x, y ∈ X . x ↑F y) =⇒
⋃

X ∈ F (coherent)

∀X ⊆ F . (X 6= ∅ ∧ X ↑F) =⇒
⋂

X ∈ F (stable)

∀x ∈ F . ∀e, e′ ∈ x . e 6= e′ =⇒

∃y ∈ F . y ⊆ x ∧ (e ∈ y ⇔ e′ /∈ y) (coincidence-free)

∀x ∈ F . ∀e ∈ x . ∃y ∈ F . e ∈ y ∧ y ⊆ x ∧ |y| < ∞ (finitary)

In addition, we say an event structure is full when E =
⋃

F .

Example 1.2. Let E = {0, 1, 2} and F be

∅

{0}
⊃

{0, 1}
⊃

⊃
{1}

⊃
{0, 2}

⊃
{1, 2}

⊃

or equivalently

∅
•

⌣
0

••

⌣

1

•

•

⌣

1

••

⌣
0

•

•

⌣
2

•

•

⌣
2

•

where ⊂ is the covering relation representing an occurrence of one event. Then
(E, F) is an event structure. The events 0 and 1 are concurrent, neither depends
on the occurrence or non-occurrence of the other to occur (see [NPW79, NPW81]
and [Bra80]). The event 2 can occur in two incompatible ways, either through
event 0 having occurred or event 1 having occurred. This possibility makes
event structures of 1.1 easier to work with than those of [NPW79, NPW81].

Example 1.3 (ticking clock). Let Ω consist of events ω and configurations
the sets ∅, {0}, {0, 1} . . . , {0, . . . , n}, . . . , ω. Then Ω is an event structure which
models a clock ticking 0, 1, 2,

Example 1.4 (Coincidence-freeness). Let E = {0, 1} and F = {∅, {0, 1}}.
Then (E, F) is not an event structure. It is not coincidence-free. The “events”
0 and 1 are coincident in that together they behave like a single event with
respect to F .

page 7 of 56

Example 1.5 (Finite causes). Let E = ω ∪ {∞} and

F = {∅, {0}, . . . , {0, 1, . . . , n}, ω, ω ∪ {∞}}

Then (E, F) is an event structure which is not finitary. The event ∞ can only
occur after the infinite set of events ω. Nor is the event structure

(E,P(ω) ∪ {ω ∪ {∞}})

finitary. Such processes are unnatural in computer science because they require
an infinite set of events to occur in a finite time.

Example 1.6 (fullness). The event structure ({e}, {∅, {e}}) is full while the
event structure ({e}, {∅}) is not full. For convenience we do not assume all event
structures are full. Clearly any event structure (E, F) determines a full event
structure (

⋃
F, F) with the same configurations. With trivial modifications all

our results hold with the assumption of fullness.

The next proposition motivates the axioms of 1.1. It shows that event struc-
tures possess an intrinsic causal dependency relation local to each configuration.
The stability axiom ensures that when an event is in some configuration its oc-
currence has depended on a unique set of events. The set on which the event
depends will be finite because of the finitary axiom and the dependency rela-
tion will be a partial order because of coincidence-freeness. The ways in which
events can occur correspond to complete primes of configurations ordered by
inclusion; they form a subbasis making the domain of configurations prime al-
gebraic [NPW79, NPW81].

Definition 1.7. Let (D,⊑) be a partial order. Let p ∈ D. Say p is a complete
prime iff for all X ⊆ D when the least upper bound

⊔
X exists and p ⊑

⊔
X

then p ⊑ x for some x ∈ X . Say D is prime algebraic iff

∀x ∈ D . x =
⊔

{p ⊑ x | p is a complete prime}

Proposition 1.8. Let E be a set and F ⊆ P(E). For x ∈ F define the causal
dependency relation ≤x on x by

e ≤x e′ ≡ ∀y ∈ F . y ⊆ x =⇒ (e′ ∈ y =⇒ e ∈ y)

and for e ∈ x define [e]x ≡ {e′ ∈ x | e′ ≤x e}. We have that ≤x is a preorder
on x and

[e]x =
⋂

{z ∈ F | e ∈ z ⊆ x} (1)

and

i. (E, F) is coherent according to 1.1 iff (F,⊆) is a coherent cpo such that
for all X ⊆ F if the lub of X exists it is

⋃
X. (Thus ∅ ∈ F .)

ii. If (E, F) is coherent then (E, F) is stable according to 1.1 iff

page 8 of 56

(a) ∀x ∈ F . ∀e ∈ x . [e]x ∈ F

(b) ∀x, y ∈ F . ∀e ∈ x ∩ y . x ↑F y =⇒ [e]x = [e]y

iii. (E, F) is coincidence-free according to 1.1 iff ≤x is a partial order for all
x ∈ F

iv. If (E, F) is stable then (E, F) is finitary according to 1.1 iff

∀x ∈ F . ∀e ∈ x . |[e]x| < ∞

v. Suppose (E, F) is coherent and stable. Then

(a) (F,⊆) is a coherent prime algebraic partial order [NPW79, NPW81]

(b) the complete primes of (F,⊆) are of the form [e]x for x ∈ F and
e ∈ x

(c) (E, F) is finitary iff each isolated element of the domain (F,⊆) dom-
inates only a finite number of elements.

Proof. Let E be a set and F ⊆ P(E) as above.
These two facts follow from the definitions of ≤x and [e]x: For x ∈ F the

relation ≤x defined above is a preorder on x and for e ∈ x we have (1), a more
workable characterization of [e]x than its definition.

i. is obvious.

ii. Assume (E, F) is coherent.

⇒ Suppose (E, F) is stable. Let e ∈ x and x ∈ F . Then as

{y ∈ F | e ∈ y ⊆ x}↑F

we have
[e]x =

⋂
{y ∈ F | e ∈ y ⊆ x} ∈ F

Let x, y ∈ F and x ↑F y and e ∈ x ∩ y. Then [e]x, [e]y ∈ F and
[e]x ↑F [e]y so e ∈ [e]x∩[e]y ⊆ x with [e]x∩[e]y ∈ F . Thus [e]x ⊆ [e]y,
and similarly [e]y ⊆ [e]x. Therefore, [e]x = [e]y as required.

⇐ Suppose iia and iib. Let ∅ 6= X ⊆ F and X ↑F . Choose x ∈ X . Let
e ∈

⋂
X . Then [e]x = [e]y for all y ∈ X . Thus

⋂
X =

⋃

e∈
T

X

[e]x

Now by coherence
⋂

X ∈ F . As required, (E, F) is stable.

iii. Follows directly from the definitions of ≤x and coincidence-freeness.

iv. Assume (E, F) is stable.

page 9 of 56

⇒ Suppose (E, F) is finitary. Let e ∈ x and x ∈ F . Then for some finite
z ∈ F we have e ∈ z ⊆ x. By (1) it must also be finite.

⇐ Let e ∈ x ∈ F . Then as (E, F) is stable [e]x ∈ F and clearly
e ∈ [e]x ⊆ x. Thus if [e]x is finite for all x ∈ F and e ∈ x we get that
(E, F) is finitary.

v. Assume (E, F) is coherent and stable. Let y ∈ F and e ∈ y. Then as
(E, F) is stable [e]y ∈ F . We show [e]y is a complete prime. Let X ⊆ F
and X ↑F . Suppose [e]y ⊆

⋃
X . Then for some x ∈ X we have e ∈ x.

Also as [e]y ↑F x we have e ∈ [e]y ∩ x ⊆ y with [e]y ∩ x ∈ F . Thus by (1)
we have [e]y ⊆ [e]y ∩ x so [e]y ⊆ x. Thus [e]y is a complete prime.

Clearly for x ∈ F we have x =
⋃

e∈x[e]x. Thus each element of F is the
lub of the complete primes it dominates. This means (F,⊆) is a prime
algebraic partial order. It is obviously coherent.

Suppose (E, F) is also finitary. Let x be an isolated element of (F,⊆).
Take S to be the directed set of all finite unions of complete primes below
x. Then x =

⋃
S and as x is isolated x ⊆ s for some s ∈ S. This x is

a finite union of finite sets and so finite. Conversely as complete primes
are isolated assuming isolated elements are finite implies that (E, F) is
finitary. This means (E, F) is finitary iff each isolated element dominates
only a finite number of elements.

As a corollary to 1.8(ii) we can relate the stability axiom of 1.1 to the con-
cept of stable function due to Gérard Berry (see [Ber79] and [BC]). It is thus
axiom (ii) of 1.1 derives its name.

Corollary 1.9. Let E be a set and F ⊆ P(E) satisfy the coherence axiom. Let
Φ be the two element cpo ⊥ ⊑ T . For each e ∈ E define χe : (F,⊆) → Φ by

χe(x) =

{
T if e ∈ x
⊥ otherwise

Then (E, F) is stable according to 1.1 iff for all e ∈ E the function χe is stable
in the sense of Berry [Ber79].

Proof. Recall the definition of a stable function. Let A, B be cpos. Let f : A →
B be continuous. Then f : A → B is stable iff

∀x ∈ A . ∀y ∈ B . y ⊑ f(x) =⇒ (∃Mf,x,y ∈ A . ∀z ⊑ x . (y ⊑ f(z) ⇔ Mf,x,y ⊑ z))

Hence Mf,x,y is the least element z less than x such that y ⊑ f(z). Clearly χe

above is continuous as (E, F) satisfies the coherence axiom. If (E, F) is stable
in addition then take Mχe,x,T = [e]x to show χe is a stable function. Conversely
supposing each χe is stable if e ∈ x ∈ F we have

Mχe,x,T =
⋂

{z ∈ F | e ∈ z ⊆ x} = [e]x

page 10 of 56

so [e]x ∈ F , while if e ∈ x∩ y for x ↑F y we have [e]x = Mχe,x∪y,T = [e]y. Then
by 1.8(ii) we have (E, F) is stable.

Example 1.10. Let (E, F) be the event structure of example 1.2. Let x = {0, 2}
and y = {1, 2}. Then [2]x = x and [2]y = y correspond to the two ways the
event 2 can occur.

Proposition 1.8 suggests a subclass of event structures for which each event
can occur and always causally depends on the same set of events, no matter in
what configuration it occurs; so then events correspond to complete primes.

Definition 1.11. Let (E, F) be an event structure. Say (E, F) is prime iff it
is full and ∀x, y ∈ F . ∀e ∈ x ∩ y . [e]x = [e]y.

For prime event structures the local causal dependency relations (≤x for
configurations x) are restrictions of one global causal dependency (≤) and in-
compatibility of configurations stems from a pairwise incompatibility, or conflict
(#), between events. In accord with intuitions the configurations are the pre-
cisely the left-closed consistent subsets (w.r.t. ≤ and #).

Definition 1.12. Let (E,≤, #) be a set E with partial order ≤ and binary
symmetric relation #. Define the left-closed consistent subsets of E, LE,≤,#, by

x ∈ LE,≤,# ⇔ x ⊆ E

and ∀e, e′ . e′ ≤ e ∈ x =⇒ e′ ∈ x (left-closed)

and ∀e, e′ ∈ x . ¬(e#e′) (consistent)

Proposition 1.13. Let (E, F) be a prime event structure. Define the relation
≤ (called the causal dependency relation) and # (called the conflict relation)
on E by

e′ ≤ e ⇔ ∀x ∈ F . e ∈ x =⇒ e′ ∈ x

e#e′ ⇔ ∀x ∈ F . e ∈ x =⇒ e′ /∈ x

Then ≤ is a partial order such that [e] ≡ {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E
and # is a binary irreflexive symmetric relation such that

∀e, e′, e′′ ∈ E . e#e′ ≤ e′′ =⇒ e#e′′ (2)

Further the configurations F are precisely the left closed consistent subsets LE,≤,#.
Conversely, suppose (E,≤, #) consists of a partial order ≤ and binary sym-

metric relation # such that ∀e ∈ E . |[e]| < ∞ and (2). Then (E,LE,≤,#) is a
prime event structure.

Proof. Let (E, F) be a prime event structure. Take ≤ and # as defined above.
From 1.8 clearly they satisfy the properties stated above and any configuration
is a left closed consistent subset w.r.t. ≤ and #. Also any left-closed consistent
subset is a configuration by the coherence of (E, F).

Let (E,≤, #) consist of a partial order ≤ and symmetric relation # such
that |[e]| < ∞ and e#e′ ≤ e′′ =⇒ e#e′′ for events e, e′, e′′. Then it is easily
verified that (E,LE,≤,#) is a prime event structure.

page 11 of 56

Example 1.14. We show the configurations of a prime event structure along-
side its causal dependency ≤ and conflict relation #. Its events are {0, 1, 2}.

∅
•

⌣
0

••

⌣

2

•

•

⌣

2

••

⌣
0

•

•

⌣
1

• •

•

#

1

2

•

•

≤

0

Consequently prime event structures are in 1-1 correspondence with struc-
tures (E,≤, #) which consist of a set of events with causal dependency and
conflict relations satisfying simple axioms. They give a simple, intuitive model
of concurrent processes related to net theory in [NPW79, NPW81] and [Win80].
In fact any event structure of 1.1 determines a prime event structure with an
isomorphic domain of configurations by taking the complete primes as the new
events.

Definition 1.15. Let (E, F) be an event structure. Define Pr(E, F) to consist
of events P = {[e]x | e ∈ x ∈ F} and configurations FP where

z ∈ FP ⇔ ∃x ∈ F . z = {[e]x | e ∈ x}

Proposition 1.16. Let (E, F) be an event structure. Then Pr(E, F) is a prime
event structure; its events are the complete primes P of (F,⊆), its causal de-
pendency relation is ⊆↾ P and its conflict relation is �F ↾ P

There is an isomorphism (F,⊆) ∼= (FP ,⊆) where FP are the configurations
of Pr(E, F); it is given by x 7→ {[e]x | e ∈ x} with inverse y 7→

⋃
y.

Proof. Let (E, F) be an event structure. Take P = {[e]x | e ∈ x ∈ F} – then P
is the set of complete primes of (F,⊆) by proposition 1.8. Take ≤ = ⊆↾ P and
=�F ↾ P as above. Certainly (P,LP,≤,#) is a prime event structure. For any
configuration x of Pr(E, F) we have x ∈ LP,≤,#. Conversely if y ∈ LP,≤,# then
by coherence

⋃
y ∈ F . But then

y = {p ⊆
⋃

y | p is a complete prime}

(The inclusion “⊆” is obvious. Suppose p ∈ r.h.s. Then p ⊆ p′ ∈ y as p is a
complete prime, which as y is left closed means p ∈ y.) Thus

y = {[e]S y | e ∈
⋃

y}

and y is a configuration of Pr(E, F).
Isomorphism follows directly from algebraicity.

We work with more general event structures because it is difficult to define
parallel composition directly on prime event structures; for prime event struc-
tures events correspond to the ways they can occur so to compose them in par-
allel we must duplicate as many copies of an event as there are ways introduced

page 12 of 56

for it to occur. In the more general class we avoid a messy inductive naming of
events, and can “tap out” prime event structures by the construction Pr.

Trees are another simple kind of event structure.

Definition 1.17. An event structure (E, F) is a pre-tree iff

∀x, y ∈ F . x ↑F y =⇒ x ⊆ y ∨ y ⊆ x

A tree is an event structure which is prime and a pre-tree.

Example 1.18. The event structure with events {0, 1, 2} and configurations

∅
•

⌣
0

•

•

⌣

1

••

⌣
2

•

•

⌣
2

•

is a pre-tree but not a tree.
The event structure with events {0, 1, 2, 3} and configurations

∅
•

⌣
0

•

•

⌣

1

••

⌣
3

•

•

⌣
2

•

is a tree, with configurations clearly order isomorphic to those of the pre-tree.

The reader may check that the configurations of a pre-tree are isomorphic
to sequences of events ordered by extension – so configurations correspond to
partial and maximal branches – and that for a tree the events correspond to
arcs. For this reason we shall often write a tree as (A, B) consisting of events
A – for “arcs” – and configurations B – for “branches”. By insisting a tree is
prime we have “abstracted away” from the events of which it is built. (This is
justified formally when morphisms are introduced; then the tree and pre-tree
above will not be isomorphic.)

To sum up we have a class of event structures which includes trees and
those event structures of [NPW79, NPW81] which satisfy a simple finiteness
restriction.

With an eye to possible generalizations we note: The coherence axiom is
rather strong, too strong for the event structures of 1.1 to model processes such
as “fair merge” in a natural way; not all infinite configurations would correspond
to a possible infinite behaviour of a fair merge. Perhaps there is an appropriate
weaker substitute for which much of the following work still goes through. One
advantage of the coherence axiom, however, is that it allows a smooth connection

page 13 of 56

with Petri nets via the work of [NPW79, NPW81]. The stability axiom would
go if one wished to model processes which had an event which could be caused
in several compatible ways – see [KP79] and [Win80] for examples; then I expect
complete irreducibles would play a similar role to complete primes here. The
axioms in 1.1 are like those for a topology. Possibly they can be modified to
model continuous processes but, of course, then the finiteness axiom should be
dropped.

Those familiar with [KP79], [BC], or [Win80] may wonder why we do not
work with event structures (E,⊢, #) where E is a set of events, ⊢ ⊆ P(E) × E
is an enabling relation and # is a conflict relation. The main reason is that our
morphisms will only be interested in events and configurations, not the exact
nature of ⊢ and #. Besides the complete primes (the [e]x’s) give us an enabling
relation, a rather special one because in a configuration an event is enabled in
a unique way, a property unfortunately called “deterministic” in [BC]. (Note
incidentally that because of example 1.2 configurations and events are a bit more
general than those of “deterministic” event structures (E,⊢, #) with a binary
conflict relation.)

page 14 of 56

2 A “CPO” Of Event Structures

By restricting the configurations of an event structure (E, F) to those inside a
subset E′ of E a new event structure is formed.

Definition 2.1. Let (E, F) be an event structure. Let E′ ⊆ E. Define the
restriction (E, F) ↾ E′ to be (E′, F ′) where F ′ = {x ∈ F | x ⊆ E′}.

Lemma 2.2. The restriction (E, F) ↾ E′ above is an event structure.

Proof. All the properties (i)-(iv) of 1.1 required for (E, F) ↾ E′ to be an event
structure follow directly from the corresponding properties of (E, F).

Such restriction accompanies an idea of substructure – the relation E below.

Definition 2.3. Let (E0, F0), (E1, F1) be events structures. Define

(E0, F0) E (E1, F1) iff E0 ⊆ E1

and F0 ⊆ F1

and ∀x ⊆ E0 . x ∈ F1 =⇒ x ∈ F0

Lemma 2.4. Let (E0, F0), (E1, F1) be events structures. Then (E0, F0) E

(E1, F1) iff E0 ⊆ E1 and (E0, F0) = (E1, F1) ↾ E0

Proof. Directly from the definitions.

Example 2.5. Let (E0, F0), (E1, F1) be event structures with events E0 =
{0, 1}, E1 = {0, 1, 2} and configurations as shown:

F0 :

∅

{0}
⊃

{0, 1}
⊃

F1 :

∅

{0}
⊃

{0, 1}
⊃

∅

{2}
⊃

{2, 1}
⊃

In (E0, F0) the event 1 can only occur after the event 0. In (E1, F1) the event 1
can occur in two ways, either after event 0 or after event 2. So (E1, F1) intro-
duces a new way for the event 1 to occur even though (E0, F0) E (E1, F1).

The relation E specifies the sense in which one event structure approximates
another. Our semantics for recursively defined processes is based on the relation
E. Event structures ordered by E almost form a cpo. The ordering is not a cpo
merely because event structures form a class and not a set. (The same kind of
situation occurs in [Sco80] and [BC].)

Theorem 2.6. i. The relation E is a partial order on event structures with
least event structure (∅, {∅}). Let

(E0, F0) E . . . E (En, Fn) E . . .

page 15 of 56

be an ω-chain of event structures. Then it has a lub with respect to E.
The lub is (E, F) where E =

⋃
n∈ω En and

x ∈ F iff (x ⊆ E ∧ (∀n ∈ ω . xn ∈ Fn) ∧ x =
⋃

n∈ω

xn)

in which
xn ≡

⋃
{z ∈ Fn | z ⊆ x}

ii. Let A be a set. Define EA to be the set of event structures (E, F) with
E ⊆ A. Then (EA, E) is a c.p.o with bottom element (∅, {∅}) and l.u.b.s
of chains given as above in (i).

Proof. i. Let (E0, F0) E . . . E (En, Fn) E . . . be an ω-chain of event struc-
tures. Take (E, F) as defined above. As above, for x ⊆ E we take
xn =

⋃
{z ∈ Fn | z ⊆ x}. Note for x ⊆ E we have xn ⊆ xm if n ≤ m.

Firstly we check that (E, F) is an event structure.

Coherent. Suppose X ⊆ F and ∀x, y ∈ X . x ↑F y. If x, y ∈ X then
x, y ⊆ z for some z ∈ F . Thus xn, yn ⊆ zn where xn, yn, zn ∈ Fn for
n ∈ ω. Consequently {xn | x ∈ X} is pairwise compatible in (Fn,⊆). Thus⋃

x∈X xn ∈ Fn. We show (
⋃

X)n =
⋃

x∈X xn; then clearly (
⋃

X)n ∈ Fn

and ⋃
X =

⋃
{xn | x ∈ X ∧ n ∈ ω} =

⋃

n

(⋃
X
)

n

so
⋃

X ∈ F as required. The inclusion
⋃

x∈X ⊆ (
⋃

X)n is obvious. To
show the converse inclusion suppose e ∈ (

⋃
X)n. Then as (En, Fn) is

finitary for some finite z ∈ Fn we have e ∈ z ⊆
⋃

X . For each e′ ∈ z
there is some x ∈ X with e′ ∈ x. Thus as x ∈ F there is some m ∈ ω for
which e′ ∈ xm. However as z is finite we can choose some m, uniformly,
so that z ⊆

⋃
x∈X xm. Now by the definition of E, z ∈ Fm and, as above,⋃

x∈X xm ∈ Fm. Thus for each x ∈ X , z ↑Fm xm so z ∩ xm ∈ Fm. This
implies z ∩ xm ∈ Fn by the definition of E. Therefore

e ∈ z = z ∩
⋃

x∈X

xm =
⋃

x∈X

(xm ∩ z) ⊆
⋃

x∈X

xn

We have shown the required converse inclusion (
⋃

X)n ⊆
⋃

x∈X xn.

Stable. Suppose ∅ 6= X ⊆ F and X ↑F . Clearly (
⋂

X)n =
⋃

x∈X xn for
n ∈ ω. As {xn | x ∈ X}↑Fn we get (

⋂
X)n ∈ Fn. Noting

⋂
X =

⋂

x∈X

⋃

n∈ω

xn =
⋃

n

(⋂
X
)

n

we have
⋂

X ∈ F .

Coincidence-free. Let e, e′ ∈ x ∈ F and e 6= e′. Then e, e′ ∈ xn for some
n ∈ ω. As (En, Fn) is coincidence-free e ∈ z ⇔ e′ /∈ z for some z ∈ Fn s.t.
z ⊆ xn. But it is easily checked that z ∈ F so (E, F) is coincidence-free.

page 16 of 56

Finitary. Suppose e ∈ x ∈ F . Then e ∈ xn for some n. Then e ∈ z ⊆ xn

for some finite z ∈ Fn. This gives z ∈ F and e ∈ z ⊆ x as required.

Therefore, (E, F) is an event structure. We now show it is the lub of the
chain (E0, F0) E . . . E (En, Fn) E

For (E, F) to be an upper bound we require (En, Fn) E (E, F) for all
n ∈ ω. Clearly En ⊆ E. From the definition of E it follows that Fn ⊆ F .
Suppose x ⊆ En and x ∈ F . Then x =

⋃
m∈ω xm with xm ∈ Fm for all

m ∈ ω. However, xm ⊆ En so by the definition of E we get xm ∈ Fn for
each m ∈ ω. As (En, Fn) is coherent and x0 ⊆ · · · ⊆ xm ⊆ . . . is a chain
in Fn we have x =

⋃
m xm ∈ Fn. Thus (En, Fn) E (E, F) for all n ∈ ω so

(E, F) is an upper bound of the chain.

To see (E, F) is the least upper bound of the chain, let (E′, F ′) be an event
structure which is an upper bound of the chain. Then certainly E ⊆ E′

and
⋃

n∈ω Fn ⊆ F ′. Let x ∈ F . Then the chain x0 ⊆ · · · ⊆ xn ⊆ . . . is
included in F ′. As (E′, F ′) is coherent x =

⋃
n xn ∈ F ′. Thus F ⊆ F ′.

Suppose now y ∈ F ′ and y ⊆ E. We have

yn =
⋃

{z ∈ Fn | z ⊆ y} ∈ F ′

so as (En, Fn) E (E′, F ′) we get yn ∈ Fn. Clearly
⋃

n yn ⊆ y. To show
the converse inclusion, take e ∈ y. Then as (E′, F ′) is finitary e ∈ z ⊆ y
for some finite z ∈ F ′. As z is finite z ⊆ En for some n. But (En, Fn) E

(E′, F ′) so z ∈ Fn. Evidently z ⊆ yn. Thus e ∈
⋃

n yn. Therefore
y =

⋃
n yn. So (E, F) E (E′, F ′) and (E, F) is the least upper bound of

the chain of event structures.

ii. Obvious by (i).

The naturalness of E and its lubs is easier to see on prime event structures
because then the way an event can occur stays fixed in a E-chain.

Proposition 2.7. i. Let (E0, F0), (E1, F1) be prime event structures with
causal dependency relations ≤0, ≤1, and conflict relations #0, #1. For
e ∈ Ei write

[e]i ≡ {e′ ∈ Ei | e′ ≤i e} for i = 0, 1

Then

(E0, F0) E (E1, F1) iff E0 ⊆ E1 ∧ (∀e ∈ E0 . [e]0 = [e]1) ∧ #0 = #1 ↾ E0

iff F0 ⊆ F1 ∧ ∀x ∈ F1 . x ∩ E0 ∈ F0

Let (E0, F0) E . . . E (En, Fn) E . . . be an ω-chain of prime event struc-
tures. Let (En, Fn) have causal dependency and conflict relations ≤n, #n.
Then the lub of the chain is (E, F) where E =

⋃
n∈ω En and x ∈ F iff

∀n ∈ ω . x ∩ En ∈ Fn; the lub (E, F) is prime with causal dependency
relations ≤=

⋃
n∈ω ≤n and conflict relation # =

⋃
n∈ω #n.

page 17 of 56

ii. Let (A0, B0), (A1, B1) be trees. Then (A0, B0) E (A1, B1) iff B0 ⊆ B1.
Let (A0, B0) E . . . E (An, Bn) E . . . be an ω-chain of trees. Then its lub
is a tree (A, B) where A =

⋃
n∈ω An and x ∈ B iff ∀n ∈ ω . x ∩ An ∈ Bn.

Proof. i. Let (E0, F0), (E1, F1) be prime event structures with causal depen-
dency and conflict relations as above. Suppose (E0, F0) E (E1, F1). Then
E0 ⊆ E1. Let e ∈ E0. Then [e]0 ∈ F1 so [e]1 ⊆ [e]0. However then by the
definition of E, e ∈ [e]1 ∈ F0. This implies [e]0 = [e]1. Now let e, e′ ∈ E0.
Then

e#0e
′ ⇔ [e]0 �0 [e′]0

⇔ [e]0 ∪ [e′]0 ∈ F0

⇔ [e]1 ∪ [e′]1 ∈ F1

⇔ [e]1 �1 [e′]1
⇔ e#1e

′

using properties of E. Thus

(E0, F0) E (E1, F1) =⇒ E0 ⊆ E1 ∧ (∀e ∈ E0 . [e]0 = [e]1) ∧ #0 = #1 ↾ E0

To show the converse implication assume the r.h.s.. Then E0 ⊆ E1 and

x ∈ LE0,≤0,#0 ⇔ x ⊆ E0 ∧ x ∈ LE1,≤1,#1

This gives (E0, F0) E (E1, F1).

We show the second equivalent. Suppose (E0, F0) E (E1, F1). Then F0 ⊆
F1. Also if x ∈ F1, then x ∈ LE1,≤1,#1 . Thus by the first equivalent
x ∩ E0 ∈ LE0,≤0,#0 = F0. Conversely suppose F0 ⊆ F1 and ∀x ∈ F1 . x ∩
E0 ∈ F0. Then by fullness E0 ⊆ E1. Also if x ⊆ E0 and x ∈ F1, then
x = x ∩ E0 ∈ F0. This gives (E0, F0) E (E1, F1).

Now let (E0, F0) E . . . E (En, Fn) E . . . be a chain of prime event struc-
tures so (En, Fn) is associated with the relations ≤n, #n. Take ≤=

⋃
n ≤n

and # =
⋃

n #n. Define (E, F) by E =
⋃

n En and F = LE,≤,#; it is a
prime event structure. Then by the definition of E as Fn = LEn,≤n,#n

we get (En, Fn) E (E, F). This means (E, F) is an upper bound of the
chain. By theorem 2.6 the lub of the chain is (E, F ′) for some set of con-
figurations F ′. Thus (E, F ′) E (E, F). However by the definition of E we
then have F ′ = F . Thus (E, F) is the lub. Clearly x ∈ LE,≤,# = F iff
x ∩ En ∈ LEn,≤n,#n

= Fn for all n.

ii. Let (A0, B0), (A1, B1) be trees. Obviously (A0, B0) E (A1, B1) implies
B0 ⊆ B1. Suppose conversely that B0 ⊆ B1. Then A0 ⊆ A1 by fullness.
Let a ∈ A0. Then [a]1 ⊆ [a]0 where [a]i is the smallest configuration
in Bi containing a. Let a′ ∈ [a]0 and a′ 6= a. Then a /∈ [a′]0 ∈ B1

and [a′]0 ↑B1 [a]1 so [a′]0 ⊆ [a]1 as (A1, B1) is a tree. Thus [a]0 ⊆ [a]1.
Therefore [a]0 = [a]1.

Remembering for trees that compatible configurations are comparable we
get [a]0 ↑B0 [a′]1 iff [a]1 ↑B1 [a′]1 for a, a′ ∈ A0. Thus a#0a

′ ⇔ a#1a
′

where #0, #1 are the conflict relations of (A0, B0), (A1, B1) respectively.

page 18 of 56

By (i) we have (A0, B0) E (A1, B1).

The recursive definition of a process will be associated with an operation
continuous w.r.t. E. The denotation of the recursively defined process will be
the least fixed point of the operation.

Definition 2.8. Let op be an n-ary operation on the class of event structures.
Say op is monotonic iff when for event structures we have

E1 E E′1, . . . , En E E′n then op(E1, . . . , En) E op(E′1, . . . , E
′
n)

op is continuous iff for all countable chains

E11 E E12 E . . . E E1i E . . .
...

En1 E En2 E . . . E Eni E . . .

we have

op

(
⊔

i

E1i, . . . ,
⊔

i

Eni

)
=
⊔

i

op(E1i, . . . , Eni)

where
⊔

denotes the lub with respect to E.

As is well known (see [Sco80]) an operation is continuous iff it is continuous
in each argument separately. Given this the following lemma provides simple
necessary and sufficient conditions for an operation to be continuous on event
structures; it should be monotonic and act continuously on the component sets
of events ordered by inclusion.

Lemma 2.9. Let op be a unary operation on E. Then op is continuous iff (i)
op is monotonic and (ii) if (E0, F0) E . . . E (En, Fn) E . . . is a chain in E then
each event of op(

⊔
n(En, Fn)) is an event of

⊔
n op(En, Fn).

Proof. ⇒ obvious.

⇐ Suppose (i) and (ii) above. Let (E0, F0) E . . . E (En, Fn) E Then as
op is monotonic the event structure

⊔
n op(En, Fn) exists and

⊔

n

op(En, Fn) E op

(
⊔

n

(En, Fn)

)

Now by (ii),
⊔

n op(En, Fn) and op(
⊔

n(En, Fn)) have the same events.
From the definition of E they have the same configurations. Thus

⊔

n

op(En, Fn) = op

(
⊔

n

(En, Fn)

)

Therefore op is continuous.

page 19 of 56

As an example we show how the operation Pr is continuous. Recall from 1.15
and 1.16 that from an event structure Pr constructs a prime event structure with
an isomorphic domain of configurations. This will mean Pr commutes with the
operation of defining event structures recursively.

Theorem 2.10. The operation Pr defined in 1.15 is E-continuous.

Proof. We use lemma 2.9.
We first show Pr is monotonic w.r.t. E. Suppose (E0, F0) E (E1, F1) for

event structures (E0, F0) and (E1, F1). We require Pr(E0, F0) E Pr(E1, F1).
Let Pr(Ei, Fi) = (Pi, Πi) for i = 0, 1, so Pi is the set of complete primes of
(Fi,⊆). Suppose p0 ∈ P0. As (E0, F0) E (E1, F1) we have p0 ∈ F1. Assume
Y ⊆ F , Y ↑F1 and p0 ⊆

⋃
Y . Then p0 = (

⋃
Y) ∩ p0 =

⋃
y∈Y y ∩ p0 where

y ∩ p0 ∈ F1 and y ∩ p0 ⊆ E0 so y ∩ p0 ∈ F0 for each y ∈ Y . Thus as p0 is a
complete prime of F0, p0 ⊆ y for some y ∈ Y . Therefore p0 is a complete prime
of F1. Consequently P0 ⊆ P1. Now from the definitions of Π0 and Π1 – see 1.15
– as (E0, F0) E (E1, F1) we get z ∈ Π1, and z ⊆ P0 ⇔ z ∈ Π0. This means
Pr(E0, F0) E Pr(E1, F1).

We now show Pr is continuous on event sets. Let

(E0, F0) E . . . E (En, Fn) E . . .

be a chain of event structures with lub (E, F). Let p be an event of Pr(E, F),
so p is a complete prime of (F,⊆). To use lemma 2.9 we require that p is an
event of Pr(En, Fn) for some n. However p is finite so p ⊆ En for some n (we
have E =

⋃
n En). Now p ∈ Fn as (En, Fn) E (E, F). Also as p is a complete

prime of (E, F) it must be a complete prime of (En, Fn). Thus p is an event of
Pr(En, Fn) as required.

Applying 2.9 gives Pr is continuous.

As a corollary we can give another characterization of the lub of an ω-chain
of event structures ordered by E. The lub is simple to define for prime event
structures in terms of their causal dependency and conflict relations. So, we
first convert an ω-chain of arbitrary event structures to a chain of prime event
structures using Pr, find its lub and then image back using Proposition 1.16
which shows the isomorphism between configurations of an event structure and
its image under Pr.

Corollary 2.11. Let (E0, F0) E . . . E (En, Fn) E . . . be an ω-chain of event
structures. It has lub (E, F) where E =

⋃
n∈ω En and

x ∈ F ⇔ ∃z ∈ LP,⊆,� . x =
⋃

z

where
P =

⋃

n∈ω

{[e]x | e ∈ x ∈ Fn} and �=
⋃

n∈ω

�Fn

page 20 of 56

Proof. From the E-continuity of Pr we have

Pr(E, F) =
⊔

n∈ω

Pr(En, Fn)

From Proposition 1.16 we know F is the image of the configurations of Pr(E, F)
under

⋃
.

page 21 of 56

3 A Category of Event Structures

We define a rather basic class of morphisms on event structures. They are partial
functions between event-sets which respect events and configurations. An event
is imagined to synchronize with its image event whenever this is defined. One
notable example of morphism will be a projection from the compound process
of an event structure put in parallel with another back to the original event
structure – see the product of event structures 3.5. Refer to the appendix for
our treatment of partial functions – we use ∗ to represent undefined – and
a formal definition of the ·̂ operator which extends a function on events to a
function on subsets.

Definition 3.1. Let (E0, F0), (E1, F1) be event structures. A (partially syn-
chronous) morphism θ : (E0, F0) → (E1, F1) is a partial function θ : E0 →∗ E1

such that

∀x ∈ F0 . θ̂(x) ∈ F1 (i)

and ∀x ∈ F0 . ∀e, e′ ∈ x . θ(e) = θ(e′) 6= ∗ =⇒ e = e′ (ii)

A morphism θ is synchronous iff θ is a total function.

Note that condition (ii) above says no two distinct events are together syn-
chronized with a common image event. Notice if we have (E0, F0) E (E1, F1), for
two event structures (E0, F0) and (E1, F1), then the inclusion map i : E0 →֒ E1

is a morphism, in fact a rather special one, so î is a rigid embedding in the sense
of Kahn and Plotkin [KP79].

Example 3.2. Let (E0, F0), (E1, F1) be event structures with E0 = {a0, a1, b0, b1},
E1 = {a, b} and configurations

∅

F0

•

⌣
a0

••

⌣
b1

•

•

⌣

b0

••

⌣

a1

•

∅

F1

•

⌣
a

••

⌣

b

•

•

⌣

b

••

⌣
a

•

Then θ defined so θ(a0) = θ(a1) = a and θ(b0) = θ(b1) = b is a (synchronous)
morphism. (Incidentally this morphism, although total, cannot be induced
on event structures by a net morphism on Petri nets – see [Bra80], [NPW79,
NPW81].)

It is easy to check that the morphisms defined above give a category of
event structures with the usual composition of partial functions and identity
morphisms the identity functions on sets of events.

Definition 3.3. Define E to consist of objects event structures and morphisms
as defined in 3.1 with composition that of partial functions in SET∗ defined
in the appendix. Define Esyn to consist of event structures and synchronous
morphisms with the usual composition of functions.

page 22 of 56

Proposition 3.4. Both E and Esyn are categories with identity morphisms the
identity functions. We have Esyn is a proper sub-category of E. Both categories
E and Esyn have the null event structure (∅, {∅}) as initial object. The null event
structure is also the terminal object of E (but not Esyn).

Let θ : (E0, F0) → (E1, F1) be a morphism in E. Then θ is an isomorphism

iff θ is a total 1-1 and onto function such that x ∈ F0 ⇔ θ̂(x) ∈ F1. θ is a
monomorphism in E (Esyn) iff θ is a monomorphism in SET∗ (SET). θ is an
epimorphism in E (Esyn) iff θ is an epimorphism in SET∗ (SET).

The category E has products and coproducts characterized, to within iso-
morphism, by the following constructions. They provide a basis for defining,
and proving relations between, different semantics of CCS and its variants.

The parallel composition of two processes will be denoted by a restriction of
the product. The product corresponds to a very loose synchronization discipline
between processes; any event of one may or may not synchronize with an event
of the other. A configuration of the product of two event structures E0 and E1

may contain events of synchronization between E0 and E1 and must project to
configurations of E0 and E1 by natural projection morphisms.

Definition 3.5 ((Partially synchronous) product). Let (E0, F0), (E1, F1) be
event structures. Define their product (E0, F0) × (E1, F1) to be (E, F) where
E = E0 ∗× E1, the product in SET∗ with projections π0, π1, and F is given by:

x ∈ F iff x ⊆ E0 ∗× E1

and π̂0(x) ∈ F0 ∧ π̂1(x) ∈ F1 (a)

and ∀e, e′ ∈ x . ((π0(e) = π0(e
′) 6= ∗) ∨ (π1(e) = π1(e

′) 6= ∗)) =⇒ e = e′

(b)

and ∀e, e′ ∈ x . e 6= e′ =⇒ ∃y ⊆ x . π̂0(y) ∈ F0 ∧ π̂1(y) ∈ F1 ∧ (e ∈ y ⇔ e′ /∈ y)
(c)

and ∀e ∈ x∃y ⊆ x . π̂0(y) ∈ F0 ∧ π̂1(y) ∈ F1 ∧ e ∈ y ∧ |y| < ∞ (d)

Note how (a) and (b) express that the projections are morphisms while (c)
and (d) say the structure (E, F) is coincidence-free and finitary respectively.

Example 3.6 (product). Let

(E0, F0) ≡ ({0}, {∅, {0}}) and (E1, F1) ≡ ({1}, {∅, {1}})

Then their product (E0, F0) × (E1, F1) consists of events

E0 ∗× E1 = {(0, ∗), (0, 1), (∗, 1)}

page 23 of 56

with configurations

∅
•

⌣

(0,∗)

••

⌣

(∗,1)

•

•

⌣

(∗,1)

••

⌣
(0,∗)

•

•

⌣

(0,1)

•

Intuitively (E0, F0), (E1, F1) can proceed asynchronously or alternatively com-
municate through synchronizing events 0 and 1 to form the event (0, 1) (c.f.
(α NIL | α NIL) in Milner’s CCS – see section 5).

It is useful to also define a product in the category Esyn of event structures
with synchronous morphisms, induced by just total functions.

Definition 3.7 (Synchronous product). Let (E0, F0), (E1, F1) be event struc-
tures. Define their synchronous product (E0, F0)⊗ (E1, F1) to be (E, F) where
E = E0 × E1, the product in SET with projections π0, π1, and F is given by:

x ∈ F iff x ⊆ E0 × E1

and π̂0(x) ∈ F0 ∧ π̂1(x) ∈ F1 (a)

and ∀e, e′ ∈ x . ((π0(e) = π0(e
′)) ∨ (π1(e) = π1(e

′))) =⇒ e = e′ (b)

and ∀e, e′ ∈ x . e 6= e′ =⇒ ∃y ⊆ x . π̂0(y) ∈ F0 ∧ π̂1(y) ∈ F1 ∧ (e ∈ y ⇔ e′ /∈ y)
(c)

and ∀e ∈ x∃y ⊆ x . π̂0(y) ∈ F0 ∧ π̂1(y) ∈ F1 ∧ e ∈ y ∧ |y| < ∞ (d)

Note that the synchronous product is the restriction of the product to the
events E0 × E1 ⊆ E0 ∗× E1 i.e.

(E0, F0) ⊗ (E1, F1) = (E0, F0) × (E1, F1) ↾ E0 × E1

Notice how in the above definition an event of E0 must synchronize with
some event of E1 if it is to occur. We use the synchronous product to de-
fine an interleaving operator on event structures. The operator synchronizes
occurrences of events one at a time with the ticking of a clock.

Proposition 3.8. Let Ω be the event structure of example 1.3 – the “ticking
clock”. Let (E, F) be an event structure. The synchronous product (E, F)⊗Ω is
a pre-tree which consists of events E ×ω and configurations all finite or infinite
sequences

{(e0, 0), (e1, 1) . . . , (en, n), . . . } (3)

such that ei = ej =⇒ i = j and {e0, e1, . . . , en} ∈ F for all i, j, n at which the
sequence is defined.

page 24 of 56

Proof. Obviously from the definition of ⊗ the events of (E, F) ⊗ Ω are E × ω.
Let x be a configuration of (E, F) ⊗ Ω. Then x ⊆ E × ω and by condition (a)
and (b) x is a “sequence”, either null or of the form 3. Condition (c) now
implies {e0, . . . , en} ∈ F for any n at which en exists – if n marks the end
of the sequence use (a), otherwise separate (en, n) and (en+1, n + 1) using (c).
Clearly any sequence satisfying the conditions stated in the proposition is a
configuration of (E, F) ⊗ Ω.

A simpler construction is that of coproduct which is essentially the disjoint
union of event structures.

Definition 3.9 (Coproduct). Let (E0, F0), (E1, F1) be event structures. Define
their coproduct (E0, F0)+ (E1, F1) to be (E, F) where E = {0}×E0∪{1}×E1

and F = {{0} × x | x ∈ F0} ∪ {{1} × x | x ∈ F1}. (Note the evident injections
i0 : E0 → E and i1 : E1 → E.)

Example 3.10 (coproduct). Let (E0, F0) = ({a}, {∅, {a}}) and (E1, F1) =
({b}, {∅, {b}}). Then (E0, F0) + (E1, F1) has events {(0, a), (1, b)} and configu-
rations

∅
•

⌣

(0,a)

•

•

⌣

(1,b)

•

Example 3.11 (the necessity of (c) in definitions 3.5 and 3.7). Let (E0, F0) =
({0, 1}, {∅, {0}, {0, 1}}) and (E1, F1) = ({a, b}, {∅, {a}, {a, b}}). Then without
the restriction (c) in 3.5 and 3.7 both “products” would not be coincidence-free.
They would have “configuration” x = {(0, b), (1, a)} so that

(0, b) �x (1, a) �x (0, b)

– a non-trivial loop in the local causality relation.

Example 3.12 (the necessity of (d) in definitions 3.5 and 3.7). The necessity
of (d) is best shown using the representation of [NPW79, NPW81] – see proposi-
tion 1.9. Without (d) the “product” of two (finitary) event structures need not
be finitary. Let E0 consist of events 0, 0′, 1, 1′, . . . , n, n′, . . . with no conflict, and
causal dependency given by the partial order {(n, n′), (n, n), (n′, n′) | n ∈ N}.

Let E1 be an isomorphic partial order with events 0, 0
′
, . . . , n, n′. Both partial

orders determine prime event structures by taking their left closed subsets as
configurations. However omitting (d) from the restructions defining configura-
tions of product would allow the “configuration” consisting of the synchronized
events

x = {(0, 0
′
), (0, 1′), (1, 1

′
), . . . , (n, n′), (n, (n + 1)′), . . . }

which has an infinite descending chain with respect to the local causality rela-
tion ≤x.

page 25 of 56

Now we verify that the constructions ×,⊗, + always give event structures
characterizing the categorical product, synchronous product and coproduct. To
show × gives an event structure we need a lemma.

Lemma 3.13. Let θ : E0 →∗ E1 be a partial function between sets E0 and E1.
Let X ⊆ P(E0). Then if

∀e, e′ ∈
⋃

X . θ(e) = θ(e′) 6= ∗ =⇒ e = e′

then θ̂(
⋂

X) =
⋂

θ̂X.

Proof. Suppose θ(e) = θ(e′) 6= ∗ implies e = e′ for every e, e′ ∈
⋃

x. Clearly

θ̂ is monotonic w.r.t. ⊆ so θ̂(
⋂

X) ⊆
⋂

θ̂X . Take e ∈
⋂

θ̂X and x ∈ X . For
some e′ ∈ x we have θ(e′) = e. Take y ∈ X . Then for some ey ∈ y we have
θ(ey) = e. However ey, e ∈

⋃
X and θ(ey) = θ(e′). Thus by hypothesis ey = e′.

Therefore e′ ∈
⋂

X so e ∈ θ̂(
⋂

X). This establishes the converse inclusion; so

θ̂(
⋂

X) =
⋂

θ̂X as required.

The following theorem shows the above constructions were already deter-
mined to within isomorphism by our choice of morphism. However our rather
concrete constructions do give continuous operations on event structures ordered
by E, so they can be used in recursive definitions.

Theorem 3.14. Let (E0, F0), (E1, F1) be event structures. Then

i. (E0, F0)×(E1, F1), π0, π1 as defined in 3.5 is their categorical product in E.

ii. (E0, F0) ⊗ (E1, F1), π0, π1 as defined in 3.7 is their categorical product
in Esyn.

iii. (E0, F0) + (E1, F1) as defined in 3.9 is their categorical coproduct in E

and Esyn.

Further, each operation ×,⊗ and + is continuous w.r.t. E.

Proof. i. Let (E, F) be (E0, F0) × (E1, F1) and π0, π1 be as defined in 3.5.

Suppose x ⊆ E0 ∗× E1 and e, e′ ∈ x. We shall say “y is a separating set
for e, e′ in x” when y ⊆ x and π̂i(y) ∈ Fi for i = 0, 1 and e ∈ y ⇔ e′ /∈ y.

We first check (E, F) is an event structure.

Coherent. Suppose X ⊆ F and ∀x, y ∈ X . x ↑ y. We require
⋃

X
satisfies (a)-(d) of 3.5.

(a) Clearly π̂i(
⋃

X) =
⋃

π̂iX . As X is pairwise compatible in F so is
π̂iX in Fi. This π̂i(

⋃
X) ∈ Fi.

(b) By the pairwise compatibility of X , if e, e′ ∈
⋃

X and πi(e) =
πi(e

′) 6= ∗ for i = 0 or 1 then e = e′.

page 26 of 56

(c) Suppose e, e′ ∈
⋃

X and e 6= e′. Then ∃x, y ∈ X . e ∈ x ∧ e′ ∈ y. If
either e /∈ y or e′ /∈ x we have respectively either y or x is a separating
set for e, e′ in

⋃
X . Otherwise e, e′ ∈ x or e, e′ ∈ y. Then as both x

and y satisfy (c) we obtain the required separating set.

(d) is obvious as e ∈
⋃

X means e ∈ x for some x ∈ X where x satis-
fies (d).

Stable. Suppose ∅ 6= X ⊆ F and X ↑. We require X satisfies (a)-(d) of 3.5.

(a) By lemma 3.13, π̂i(
⋂

X) =
⋂

π̂iX . But
⋂

π̂iX ∈ Fi as π̂iX is a
compatible set in Fi we have π̂i(

⋂
X) ∈ Fi.

(b) As any x ∈ X satisfies (b) and
⋂

X ⊆ x certainly
⋂

X satisfies (b).

(c) Suppose e, e′ ∈
⋂

X and e 6= e′. Choose x ∈ X . Because x ∈ F
there is a separating set y for e, e′ in x. Take v = y ∩

⋂
X . Clearly

y,
⋂

X ⊆ x so because (Ei, Fi) is stable, by lemma 3.13 π̂i(v) =
π̂i(y)∩ π̂i(

⋂
X) ∈ Fi. This makes v a separating set for e, e′ in

⋂
X .

(d) is like (c) above.

Coincidence-free. Suppose e, e′ ∈ x ∈ F and e 6= e′. As x satisfies (c) there
is a separating set y for e, e′ in x. We further require y ∈ F . Clearly y
satisfies (a), (b). To Show y satisfies (c), assume ǫ, ǫ′ ∈ y and ǫ 6= ǫ′. Take
a separating set v for ǫ, ǫ′ in x. Take u = v ∩ y. Then, just as in the proof
of stability part (c), we get u is a separating set for ǫ, ǫ′ in x. Property (d)
for y follows from property (d) holding for x, using lemma 3.13.

Thus we have shown (E0, F0) × (E1, F1) is an event structure. It remains
to show that with projections π0, π1 it forms the categorical product in E.
First note π0 and π1 are morphisms by (a), (b) of 3.5. Suppose there are
morphisms θi : (E′, F ′) → (Ei, Fi) in E for i = 0, 1. We require a unique
morphism φ such that the following diagram commutes:

(E0, F0) × (E1, F1)

π1π0

(E0, F0) (E1, F1)

(E′, F ′)

θ1θ0

φ

Take φ = θ0 ∗× θ1 i.e.

φ(e) =

{
(θ0(e), θ1(e)) if θ0(e) 6= ∗ or θ1(e) 6= ∗
∗ otherwise

Obviously πi ◦ φ = θi in SET∗ for i = 0, 1 so provided φ is a morphism
in E it is unique so the diagram commutes. To show φ is a morphism we

page 27 of 56

need:

∀x ∈ F ′ . φ̂(x) ∈ F (I)

∀x ∈ F ′∀e, e′ ∈ x . φ(e) = φ(e′) 6= ∗ =⇒ e = e′ (II)

We prove (II) first:

Suppose e, e′ ∈ x ∈ F ′. Then if φ(e) = φ(e′) 6= ∗ then θi(e) = θi(e
′) 6= ∗

for either i = 0 or i = 1. As each θi is a morphism e = e′ as required to
prove (II).

Now we prove (I). Let x ∈ F ′. We need φ̂(x) satisfies (a)-(d) of 3.5. Both
(a) and (b) follow from the commutations πi ◦ φ = θi using the morphism

properties of θ0 and θ1. To prove (c), suppose e, e′ ∈ φ̂(x) and e 6= e′.
Then e = φ(ǫ) and e′ = φ(ǫ′) for some ǫ, ǫ′ ∈ x. We must have ǫ 6= ǫ′. Thus
as (E′, F ′) is coincidence-free we have some y ∈ F ′ such that y ⊆ x and
ǫ ∈ y ⇔ ǫ′ /∈ y. As we know φ satisfies (II) above it follows that one and

only one of e, e′ is in φ̂(y). The commutations πi ◦φ = θi give πiφ̂(y) ∈ Fi.

Thus φ̂(y) separates e, e′ in x. Property (d) follows as (E′, F ′) is finitary.

Thus finally we have shown (E0, F0)× (E1, F1) is a categorical product in
E with projections π0, π1.

ii. Clearly (E0, F0)⊗ (E1, F1) is the restriction (E0, F0)× (E1, F1) ↾ E0 × E1.
Thus by lemma 2.2 it is an event structure. In this case the projections
π0, π1 are total so synchronous and the mediating morphism (φ above)
stays in the category Esyn. This means (E0, F0) ⊗ (E1, F1), π0, π1 is a
product in Esyn.

iii. It is easily checked that (E0, F0) + (E1, F1) is an event structure. The
injections are clearly (rigid) morphisms. Suppose in E (or Esyn) we had:

(E0, F0) + (E1, F1)

(E0, F0)

i0

j0

(E1, F1)

i1

j1

(E, F)

Then define θ : E0 ⊎ E1 → E by

θ(e) =

{
j0(e0) if e = (0, e0) ∈ {0} × E0

j1(e1) if e = (1, e1) ∈ {1} × E1

Then θ is the unique morphism in E (Esyn respectively) such that the
diagram commutes. This means (E0, F0) + (E1, F1), i0, i1 is a coproduct
in E (and Esyn).

page 28 of 56

Now we show the operations product ×, synchronous product ⊗ and coprod-
uct + are continuous operations on event structures with respect to E.

Recall an operation is continuous iff it is continuous in each argument sepa-
rately. If (E0, F0) E (E1, F1) and (E, F) are event structures then by inspecting
definition 3.5 it is clear that

(E0, F0) × (E, F) = (E1, F1) × (E, F) ↾ E0 ∗× E

so × is montonoic in its first argument. Thus property (i) of lemma 2.9 holds
and property (ii) is obvious. Therefore × is continuous in its first and, by
symmetry, its second argument. Therefore × is continuous. Similarly so are ⊗
and +.

Similarly one can define infinite products, synchronous products and coprod-
ucts – left to the reader.

page 29 of 56

4 Two Subcategories, Prime Event Structures

and Trees

Importantly our work transfers over to the two subcategories of E with objects
the prime event structures and trees. In particular this means we can relate
event structure semantics to semantics based on trees using interleaving.

Definition 4.1. Define P to be the full subcategory of E with objects the prime
event structures. Define Tr to be the full subcategory of E with trees as objects.

We characterize morphisms in the two categories prime event structures P

and trees Tr.

Proposition 4.2. i. Let (E0, F0), (E1, F1) be prime event structures with
causal dependency relations ≤0,≤1 and conflict relations #0, #1. For e ∈
Ei write [e]i ≡ {e′ ∈ Ei | e′ ≤i e} for i = 0, 1. Write Wi = #i ∪ 1Ei

. Let
θ : E0 →∗ E1 be a partial function. Then θ is a morphism iff

∀e ∈ E0 . θ(e) 6= ∗ =⇒ [θ(e)]1 ⊆ θ̂([e]0)

and ∀e, e′ ∈ E0 . (θ(e) 6= ∗ ∧ θ(e′) 6= ∗ ∧ θ(e)W1θ(e
′)) =⇒ eW0e

′

ii. Let (A0, B0), (A1, B1) be trees. Let ⊂i be the covering relation in (Bi,⊆).
Write ⊂i= ⊂i ∪1Bi

. Let f : (B0 ⊆) → (B1,⊆) be a continuous func-
tion. Then there is a unique morphism θ : (A0, B0) → (A1, B1) with

f = θ̂ ⇔ f(∅) = ∅ and ∀b, b′ ∈ B0 . b ⊂0 b′ =⇒ f(b) ⊂1 f(b′)

Proof. i. ⇒ Suppose θ is a morphism. Assume θ(e) 6= ∗ for e ∈ E0. Then

θ̂[e] ∈ F1. Therefore θ̂[e] is left closed. Therefore [θ(e)]1 ⊆ θ̂[e]0.

Let e, e′ ∈ E0. Assume θ(e), θ(e′) 6= ∗ and θ(e)W1θ(e
′). Suppose

¬e#0e
′. Then e, e′ ∈ x for some x ∈ F0. As θ is a morphism

θ̂(x) ∈ F1. Thus ¬θ(e)#1θ(e
′). But then as θ is a morphism e = e′.

⇐ Suppose θ satisfies the r.h.s. conditions of (i) above. We require that
θ is a morphism.

Let x ∈ F0. Assume e′1 ≤1 e1 ∈ θ̂(x). Then e1 = θ(e) for some

e ∈ E0. By assumption e′1 ∈ [θ(e)]1 ⊆ θ̂[e]0 ⊆ θ̂(x). Thus θ̂(x) is left-

closed. Assume e1, e
′
1 ∈ θ̂(x). Suppose e1#1e

′
1. Then e1 = θ(e) and

e′1 = θ(e′) for some e, e′ ∈ x. However then by assumption eW0e
′.

This yields a contradiction as neither e#0e
′ (they are both in x) nor

e = e′ (as e1 6= e′1 by supposition). Thus ¬(e1#1e
′
1). Consequently

θ̂(x) is consistent. Therefore x ∈ F0 =⇒ θ̂(x) ∈ F1.

We also need e, e′ ∈ x and θ(e) = θ(e′) 6= ∗ =⇒ e = e′ for θ to
be a morphism. Assume e, e′ ∈ x and θ(e) = θ(e′) 6= ∗. Then by
assumption eW0e

′. However as e, e′ ∈ x we have ¬(e#0e
′) so e = e′

as required.

page 30 of 56

ii. Let θ : (A0, B0) → (A1, B1) be a morphism between trees. Then as θ̂ is

additive it is continuous and θ̂(∅) = ∅. If b ⊂0 b′ for b, b′ ∈ B0, then

there is a unique event a ∈ A0 s.t. a ∈ b′ \ b. Then clearly θ̂(b) ⊂1 θ̂(b′)

if θ(a) 6= ∗ and θ̂(b) = θ̂(b′) if θ(a) = ∗. Conversely given a function
f : B0 → B1 satisfying the conditions above we define θ : A0 →∗ A1 as
follows. For a ∈ A0 there are unique b, b′ ∈ B0 s.t. b′ \ b = {a}. Then
b ⊂0 b′. If f(b) ⊂1 f(b′) take θ(a) to be the unique event in f(b′)\f(b).
Otherwise f(b) = f(b′) so take θ(a) = ∗. The partial function θ checks to

be a morphism so f = θ̂.

The inclusion function P →֒ E has as right adjoint Pr (see 1.16) which to an
event structure associates a prime event structure with an isomorphic domain of
configurations. Intuitively the operation Pr renames events of a process so each
event has a unique causal history. Similarly the inclusion functor Tr →֒ E has a
right adjoint I which is an interleaving operation defined with the synchonous
product ⊗ and “ticking clock” of 3.8. These adjunctions determine the form of
products and coproducts in P and Tr (see [Mac71]). Both operations Pr and I
are E-continuous so a fixed point semantics based on event structures will image
under Pr to a semantics based directly on prime event structures, or under I to
one based directly on trees.

Theorem 4.3. Let (E, F) be an event structure.

i. Define Pr(E, F) to consist of events P = {[e]x | e ∈ x ∈ F} and configu-
rations FP where z ∈ FP iff ∃x ∈ F . z = {[e]x | e ∈ x}. Then Pr(E, F)
is a prime event structure. There is a morphism ev(E,F) : Pr(E, F) →
(E, F) given by ev(E,F)([e]x) = e for e ∈ x ∈ F . In fact Pr(E, F),
ev(E,F) is cofree over (E, F) i.e. for any morphism θ : (E′, F ′) → (E, F)
with (E′, F ′) a prime event structure, there is a unique morphism Ψ :
(E′, F ′) → Pr(E, F) such that θ = ev(E,F)Ψ.

ii. Define I(E, F) = Pr((E, F) ⊗ Ω). Then I(E, F) is a tree. There is
a morphism π(E,F) : I(E, F) → (E, F) given by π(E,F) = π0ev(E,F)⊗Ω

where π0 : (E, F) ⊗ Ω → (E, F) is the projection morphism. In fact
I(E, F), π(E,F) is cofree over (E, F).

Further, both operations Pr and I are E-continuous.

Proof. Let (E, F) be an event structure.

i. By Proposition 1.16 Pr(E, F) is a prime event structure. We require that
ev(E,F) : Pr(E, F) → (E, F) above is a morphism. First we need ev is
well-defined as a function ev : P → E where P = {[e]x | e ∈ x ∈ F}.
Suppose [e]x = [e′]y for e ∈ x and x ∈ F and e′ ∈ y and y ∈ F . Then by
the coincidence-freeness of (E, F) we have e = e′, giving ev well-defined as
a (total) function. From the definition if z is a configuration of Pr(E, F)

page 31 of 56

then z = {[e]x | e ∈ x} for some x ∈ F ; thus êv(z) =
⋃

z = x ∈ F . Let
z be a configuration of Pr(E, F) so p, p′ ∈ z and ev(p) = ev(p′) = e say.
Then p = p′ = [e]S z. Thus ev is a morphism.

We show Pr(E, F), ev(E,F) is cofree over (E, F). Let θ : (E′, F ′) → (E, F)
be a morphism from a prime event structure (E′, F ′). We require a unique
morphism Ψ : (E′, F ′) → Pr(E, F) s.t. the following diagram commutes:

(E, F) Pr(E, F)
ev

(E′, F ′)

θ
Ψ

Define Ψ : E′ → P by

Ψ(e) =

{
[θ(e)]

bθ([e]) if θ(e) 6= ∗

∗ otherwise

where [e] is the smallest configuration of F ′ containing e (possible because
(E′, F ′) is prime). Let x ∈ F ′. Then

Ψ̂(x) = {[θ(e)]
bθ([e]) | e ∈ x ∧ θ(e) 6= ∗}

= {[e′]
bθ(x) | e′ ∈ θ̂(x)}

so Ψ̂(x) is a configuration of Pr(E, F). If e, e′ ∈ x and Ψ(e) = Ψ(e′) 6= ∗
then θ(e) = θ(e′) 6= ∗ so e = e′, as θ is a morphism. Thus Ψ is a morphism.
Clearly evΨ = θ so Ψ makes the diagram commute.

Let φ : (E′, F ′) → Pr(E, F) be a morphism such that the diagram com-
mutes i.e. evφ = θ. We require φ = Ψ. Let e ∈ E′. Firstly note if
θ(e) 6= ∗ then because ev is a total function we must have φ(e) = ∗ which
agrees with Ψ. So suppose that θ(e) 6= ∗. Then φ(e) is a complete prime
of (F,⊆) s.t. ev(φ(e)) = θ(e). Now êv is just union so using the assumed
commutation we get

φ(e) ⊆
⋃

φ̂([e]) = êvφ̂([e]) = θ̂([e])

As φ(e) is a complete prime in θ̂([e]) and ev(φ(e)) = θ(e) we have φ(e) =
[θ(e)]

bθ([e]), i.e. φ(e) = Ψ(e).

Consequently Ψ is the unique morphism making the diagram commute.

ii. We have already show ⊗ is an operation on event structures and by (i) so
is Pr. Thus I(E, F) = Pr((E, F) ⊗ Ω) is an event structure. Clearly also
π(E,F) : I(E, F) → (E, F) is a morphism.

We show I(E, F), π is cofree over (E, F). Let θ : (A, B) → (E, F) be a
morphism from a tree (A, B). We require a unique morphism Ψ : (A, B) →

page 32 of 56

I(E, F) s.t. the following diagram commutes:

(E, F) I(E, F)
π

(A, B)

θ
Ψ

Recall from proposition 3.8 that the configurations of (E, F) ⊗ Ω are se-
quences {(e0, 0), (e1, 1), . . . , (en, n), . . . } for distinct en’s s.t.

{e0, e1, . . . , en} ∈ F

for each n at which en is defined. It is convenient to write

(e0, e1, . . . , en, . . .) for {(e0, 0), (e1, 1), . . . , (en, n), . . . },

a configuration of (E, F) ⊗ Ω. The complete primes of such configura-
tions are finite non-null sequences (e0, e1, . . . , en). The map π acts as
π((e0, e1, . . . , en)) = en.

As (A, B) is a tree each event a ∈ A corresponds 1-1 to a unique finite
non-null sequence (a0, a1, . . . , an) s.t. a = an and

{a0}, . . . , {a0, . . . , am}, . . . , {a0, . . . , an} ∈ B

Thus it is sufficient to define Ψ on such sequences by the following induc-
tion: If n = 0 and θ(a0) 6= ∗ define Ψ((a0)) = (θ(a0)) and otherwise ∗.
For n > 0, define

Ψ((a0, . . . , an−1, an)) =

{
Ψ((a0, . . . , an−1))

aθ(an) if θ(an) 6= ∗
∗ otherwise

(We use a to represent concatenation of a value to the end of a sequence.)

We write Ψ for the function determined on A, too. Clearly Ψ is the unique
partial function s.t. πΨ = θ. It is a morphism by the above identifications
of configurations as particular kinds of sequences.

Finally we note Pr and I are continuous by theorems 2.10 and 3.14.

We observe some intuitive properties of Pr and I.

Lemma 4.4. i. If (E, F) is a prime event structure then Pr(E, F) ∼= (E, F).

ii. Let (E0, F0), (E1, F1) be event structures. Then

Pr(E0, F0) ∼= Pr(E1, F1) ⇔ (F0,⊆) ∼= (F1,⊆)

iii. Let (E, F) be an event structure and Pr(E, F) = (P, FP). Then (FP ,⊆) ∼=
(F,⊆).

page 33 of 56

iv. If (A, B) is a tree then I(A, B) ∼= (A, B).

Proof. Details are left to the reader.

i. follows because for a prime event structure events correspond to primes.

ii. follows because Pr(E0, F0), Pr(E1, F1) are built from the complete primes
of (F0,⊆), (F1,⊆) respectively, just using their order theoretic properties.

iii. is just 1.16.

iv. Events a of (A, B) correspond to finite non-null sequences

{(a0, 0), (a1, 1), . . . , (an, n)}

s.t. a = an and {a0}, {a0, a1} . . . , {a0, . . . , an} ∈ B.

Corollary 4.5. i. Let (E0, F0), (E1, F1) ∈ P. Their product in P is

Pr((E0, F0) × (E1, F1))

Their coproduct in P is (E0, F0) + (E1, F1).

ii. Let (A0, B0), (A1, B1) ∈ Tr. Their product in Tr is I((A0, B0)×(A1, B1)).
The coproduct in Tr is (A0, B0) + (A1, B1).

(Note × and + stand for product and coproduct in E.)

Proof. The right adjoints Pr and I preserve limits [Mac71], in particular prod-
ucts giving the form of products in P and Tr by 4.4 (i), (iv). The inclusion
functors are left-adjoints so preserve coproducts. Thus coproducts in P and Tr

coincide with those of E.

Another characterization of product ×Tr in Tr relates it to Milner’s parallel
combinator on synchronization trees [Mil80a]. When labels are introduced his
combinator is just a restriction of the product of trees.

Definition 4.6. Let (E, F) ∈ E and ǫ /∈ E. Define ǫa(E, F) = (E ∪ {e}, Fǫ)
where z ∈ Fǫ iff z = ∅ or (ǫ ∈ z ∧ z \ {ǫ} ∈ F)

Proposition 4.7. Let the trees T , S be coproducts T = �a∈A
aaTa and S =�b∈B

baSb. Then

T ×Tr S ∼= �
a∈A

(a, ∗)aTa ×Tr S + �
(a,b)∈A×B

(a, b)aTa ×Tr Sb + �
b∈B

(∗, b)aT ×Tr Sb

Proof. We give the idea. Using proposition 3.8 and definition 3.5, characterizing
product in E one shows the configurations of both the l.h.s. and r.h.s. are
isomorphic when ordered by inclusion to sequences of events of T×S, ordered by
extension, of the form (e0, e1, . . . , en, . . .) s.t. π̂0({e0, . . . , en}) is a configuration
of T and π̂1({e0, . . . , en}) is a configuration of S for all n at which en is defined.
As both the l.h.s. and r.h.s. are trees, so prime, isomorphism of configurations
implies isomorphism of the event structures l.h.s. and r.h.s..

page 34 of 56

Example 4.8. Let a, b, c be distinct events. Let T be the tree ab(∅, ∅) and S
the tree c(∅, ∅). We show their products in E, P and Tr. We label coverings and
events to show how they project to T and S. Note how the events of T ×P S are
the complete primes of the configurations of T × S. See how the interleaving
makes branches out of ⊂-chains of the original configurations.

∅
•

⌣

c

•

• ⌣

a
••

⌣

b
•

• ⌣a

••

⌣b
•

•

⌣

c

•

•

⌣

c

•

•

⌣
(a

,c
)

••

⌣b
•

•

⌣

(b,c)
•

T × S

•

•

#

•

•

#

•

•

#

•

•

#

•

•
≤

• •≤

• •≤(a,c) b

c

a b

(b,c)

T ×P S

∅
•

⌣

c

•
• ⌣

a
••

⌣

b
•

•

⌣

a ••

⌣

b •

•

⌣

c

••

⌣

b

•

•

⌣

c

•

•

⌣

(a
,c
)

••

⌣

b
•

•

⌣

(b,c)
•

T ×Tr S

page 35 of 56

5 A Semantics for Communicating Processes

Now we label the events of processes. Possible synchronizations between two
processes set in parallel are determined by a synchronization algebra (S.A.). An
S.A. specifies how, depending on their labels, pairs of events are combined to
form synchronized events and what labels such combinations carry. We adopt
an idea from [Mil80b] and present an S.A. as a binary operation on labels.
Unlike [Mil80b] our algebra is not necessarily a monoid (it may not have 1) and
has two distinguished constants ∗ and a zero 0.

The constant ∗ still represents undefined, exactly as it does for morphisms
and is important for handling asynchrony. No real event is ever labeled ∗.
However when two processes are set in parallel, an event of one process may
be left to occur asynchronously, unsynchronized with any event of the other.
Then it is enormously convenient to pretend, mathematically, that the event
is synchronized with the unreal “event” ∗ labeled by ∗ – just as we did in the
product 3.5.

The constant 0 is another fictitious label; no real event is labeled 0. We have
λ • λ′ = 0, for two labels λ, λ′, when two events labeled λ and λ′ cannot be
synchronized. The introduction of 0 saves us from a partial operation on labels.

Definition 5.1. A synchronization algebra (S.A.) is a quadruple (L, ∗, 0, •)
where L is a set of labels, containing ∗ and 0 with L \ {∗, 0} 6= ∅ and • is a
binary associative, commutative operation on L which satisfies:

∀λ ∈ L . λ • 0 = 0 (i)

∗ •∗ = ∗ and ∀λ, λ′ ∈ L . λ • λ′ = ∗ =⇒ λ = λ′ = ∗ (ii)

An S.A. determines a “divides” relation as follows. It says when one label
is a divisor, or factor, of another.

Definition 5.2. Let (L, ∗, 0, •) be an S.A. For α, β ∈ L define

α div β ≡ (α = β ∨ ∃γ ∈ L . α • γ = β)

Thus condition (ii) in the definition of an S.A. says ∗ is the unique divisor
of ∗.

Lemma 5.3. Let (L, ∗, 0, •) be an S.A. Then

i. The relation div is reflexive and transitive.

ii. For λ ∈ L, if λ div ∗ then λ = ∗.

iii. For λ ∈ L, if 0 div ∗ then λ = 0.

iv. Let α0, α1, β0, β1 ∈ L. If α0 div β0 and α1 div β1 then α0 •α1 div β0 • β1.

Proof. i. by associativity.

ii. by property (ii) in the definition of an S.A.

page 36 of 56

iii. as 0 is a zero.

iv. by commutativity and associativity.

Example 5.4 (The S.A. for CCS). Without value passing. Recall that in
CCS [Mil80a] there are three kinds of (non∗, 0) labels; labels α, β, . . . , their
complementary labels α, β, . . . and the label τ . Only pairs of events with com-
plementary labels can synchronize to produce a τ -labeled event. Thus we get
the following S.A. table and division relation for CCS. In this case ∗ behaves
like an identity – this is not true in general (see ex. 5.6).

• ∗ τ α α β . . . 0
∗ ∗ τ α α β 0
τ τ 0 0 0 0 0
α α 0 0 τ 0
α α 0 τ 0 0
β β 0 0 0 0

. . .
0 0 0

0

τ . . .

α α β β . . .

∗ . . .

With value passing. Suppose values v ∈ V are passed during synchronization.
Take labels of the form ∗, 0, αv (receiving the values v labeled by α), αv (sending
of value v labeled by α), with an S.A. like above but now with αv the complement
of αv.

An S.A. determines a category of labeled event structures. Morphisms are
event structure morphisms such that the label of the image of an event divides
the event’s label.

Definition 5.5. Let (L, ∗, 0, •) be an S.A. Define the category EL to consist
of objects (E, F, l) where (E, F) ∈ E and l : E → L \ {∗, 0}, and morphisms
θ : (E0, F0, l0) → (E1, F1, l1) where θ : (E0, F0) → (E1, F1) is a morphism of E

and ∀e ∈ E0 . l1θ(e) div l0(e); composition is that of E. Define PL and TrL to
be the full subcategories of labeled prime event structures and trees respectively.

Note in the above definition that the composition lθ is understood to be in
SET∗. If θ(e) = ∗ for some e ∈ E0 then lθ(e) = ∗. Then for θ to be a morphism
in E we would require ∗ div l0(e). Thus an S.A. can specify whether morphisms
are partial or total functions. For example the categories E and Esyn arise from
very simple S.A.s.

Example 5.6 (The S.A.s for E and Esyn). Take the S.A.s A, S to be given by

A

• ∗ T 0
∗ ∗ T 0
T T T 0
0 0 0 0

S

• ∗ T 0
∗ ∗ 0 0
T 0 T 0
0 0 0 0

page 37 of 56

Notice how morphisms in EA may be partial functions as ∗ div T . We get
EA

∼= E. However morphisms in ES must be total functions as ∗ does not divide
T . We get ES

∼= Esyn.

We now define the parallel composition of two labeled event structures as a
restriction of the product in E. Only pairs of events (one of which may be the
fictitious event ∗) whose labels have a non-zero composition can be synchronized.
(See definition 3.5 of product; π0, π1 below are the projection morphisms).

Definition 5.7. Let L be an S.A. Let (E0, F0, l0), (E1, F1, l1) ∈ EL. Define
their parallel composition

(E0, F0, l0) L (E1, F1, l1) = ((E0, F0) × (E1, F1) ↾ E, l)

where

E = {e ∈ E0 ∗× E1 | l0π0(e) • l1π1(e) 6= 0} and l(e) = l0π0(e) • l1π1(e)

Example 5.8. Let L be the S.A. for CCS without value passing – refer to 5.5.
Suppose (E0, F0, l0), (E1, F1, l1) ∈ EL. Then their parallel composition is their
product in E restricted to the events

{(e0, ∗) | e0 ∈ E} ∪ {(∗, e1) | e1 ∈ E1}∪

{(e0, e1) ∈ E0 × E1 | l0(e0), l1(e1) are complementary}

with a subsequent labeling l(e0, ∗) = l0(e0), l(∗, e1) = l1(e1), l(e0, e1) = τ .

Example 5.9 (“Broadcasting”). Let L be the S.A. with labels ∗, 0, α, τ satis-
fying laws of the form α • α = α, α • ∗ = α • τ = 0 and τ • ∗ = τ . Then the
parallel composition of several processes must synchronize on α while τ -labeled
events occur asynchronously (such multiway synchronization is used in [Hoa78],
[Mil79], [LTS79] – see [Mil80b] too).

• ∗ α τ 0
∗ ∗ 0 τ 0
α 0 α 0 0
τ τ 0 0 0
0 0 0 0 0

Example 5.10. The following S.A. ensures all events occur asynchronously in a
parallel composition (c.f. S of 5.6 which ensures all events occur asynchronously)

• ∗ T 0
∗ ∗ T 0
T T 0 0
0 0 0 0

There are obvious projection functions for a parallel composition which sug-

gests L is a product. Although, in fact, the operation L is associative and

does extend to a functor it is not always a product. It is however when the
operation • behaves like the operation of least common multiple (l.c.m).

page 38 of 56

Proposition 5.11. Let L be an S.A.

i. The operation L extends to a functor E2
L → EL: For morphisms θ0, θ1

in EL define θ0 L θ1 = θ0 ∗× θ1. The functor is associative i.e. for

E0, E1, E2 ∈ EL there is a natural isomorphism E0 L (E1 L E2) ∼=

(E0 L E1) L E2.

ii. Let (E0, F0, l0), (E1, F1, l1) ∈ EL. Then (E0, F0, l0) L (E1, F1, l1), with

the obvious projections, is their categorical product in EL iff

∀γ ∈ L∀α ∈ l0E0, β ∈ l1E1 . (α div γ ∧ β div γ) =⇒ (α • β) div γ

iii. The parallel composition L with the evident projections always gives a

categorical product in EL iff

∀α, β, γ ∈ L . (α div γ ∧ β div γ) =⇒ (α • β) div γ

Proof. i. Let θi : (Ei, Fi, li) → (E′i, F
′
i , l
′
i) be morphisms in EL for i = 0, 1.

Let e be an event of (E0, F0, l0) L (E1, F1, l1) i.e. e ∈ E0 ∗× E1 s.t.

l0π0(e) • l1π1(e) 6= 0. As θ0, θ1 are morphisms l′iθiπi(e) div liπi(e) for
i = 0, 1. Then by lemma 5.3 (iv),

l′0θ0π0(e) • l′1θ1π1(e) div l0π0(e) • l1π1(e)

By 5.3 (iii), l′0θ0π0(e) • l′1θ1π1(e) 6= 0 so (θ0π0(e), θ1π1(e)) is an event of

(E′0, F
′
0, l
′
0) L (E′1, F

′
1, l
′
1).

The functor laws and associativity of L follow as it is a restriction of ×,

the product functor on E.

ii. The “if” part follows as the condition stated above ensures the mediating

morphism for × exists and, because L is a restriction of the product in

E. The “only if” part relies on event structures not having to be full: Take
α ∈ l0E0, β ∈ l1E1 so α div γ and β div γ. Take ({e}, ∅, {(ǫ, γ)}) and
morphisms θ0 : ǫ 7→ e0 where l0(e0) = α and θ1 : ǫ 7→ l1 where l1(e1) = β.

Assuming L is the product there is a mediating morphism ǫ → (e0, e1)

where the event (e0, e1) must be labeled α • β and must divide γ.

iii. The “if” part follows as in (ii). The “only if” part would be true even
if the event structures had to be full. Suppose α and β divide γ. Take
E0 = ({ǫ0}, {∅, {ǫ0}}, {(ǫ0, α)}) and E1 = ({ǫ1}, {∅, {ǫ1}}, {(ǫ1, β)}). The

product is E0 L E1 with the obvious projections, by assumption. Let

E2 = ({ǫ2}, {∅, {ǫ2}}, {(ǫ2, γ)}) and θ0 : ǫ2 → ǫ0 and θ1 : ǫ2 → ǫ1 – both
θ0, θ1 are morphisms. Because the mediating morphism exist α • β div γ

page 39 of 56

Example 5.12. i. Let L be the S.A. for CCS. Then L does not coincide

with product: We may have α div τ and β div τ and α • β = 0 so α • β
cannot divide τ (6= 0).

ii. For the S.A.s A and S of E and Esyn it may be checked that • does satisfy
the condition in proposition 5.11 (ii). As we know they do have products

given by L0 and L1 . More generally for S.A.s L of the following forms

L coincides with products:

• ∗ α β . . . 0
∗ ∗ α β . . . 0
α α α 0 . . . 0
β β 0 β . . . 0
... · · ·
0 0 0 0 . . . 0

• ∗ α β . . . 0
∗ ∗ 0 0 . . . 0
α 0 α 0 . . . 0
β 0 0 β . . . 0
... · · ·
0 0 0 0 . . . 0

Before giving the programming language based on an S.A. we present a few
extra much simpler operations on labeled event structures based on [Mil80a,
Mil80b].

In the following definitions, let L be an S.A. Define the following operations
on EL. Let (E, F, l), (Ei, Fi, li) ∈ EL for i = 0, 1.

Definition 5.13 (Lifting). Suppose λ ∈ L\{∗, 0}. Define λ(E, F, l) = (E′, F ′, l′)
where E′ = {0} ∪ ({1} × E) and

x ∈ F ′ ⇔ x ⊆ E′ ∧ (x = ∅ ∨ (0 ∈ x ∧ {e | (1, e) ∈ x} ∈ F))

l(e′) = λ if e = 0, l(e) if e′ = (1, e) for e′ ∈ E′

Definition 5.14 (Sum). Define (E0, F0, l0)+(E1, F1, l1) = ((E0, F0)+(E1, F1), l)
where + is the coproduct of 3.9 and l((0, e)) = l0(e) and l((1, e)) = l1(e).

Definition 5.15 (Restriction). Let λ ∈ L \ {∗, 0}. Define

(E, F, l) \ λ = ((E, F) ↾ E′, l′)

where E′ = {e ∈ E | l(e) 6= λ} and l′ = l ↾ E′.

Definition 5.16 (Relabeling). Let S be an endomorphism on L (i.e. S preserves
∗, 0 and • and ∀λ ∈ L . (S(λ) = 0 =⇒ λ = 0) ∧ (S(λ) = ∗ =⇒ λ = ∗)). Define
(E, F, l)〈S〉 = (E, F, Sl).

Apart from restriction, the above operations extend to functors on EL in an
obvious way. Sum is coproduct in EL. They are all continuous with respect to
EL, the labeled version of E. Thus we can take fixed points of them and their
compositions.

page 40 of 56

Proposition 5.17. Let L be an S.A. For (E0, F0, l0), (E1, F1, l1) ∈ EL define
(E0, F0, l0) EL (E1, F1, l1) iff (E0, F0) E (E1, F1) and l0 = l1 ↾ E0. Then

i. EL has lubs of all ω-chains ordered by EL.

ii. Each operation above is continuous with respect to EL i.e. they preserve
lubs of ω-chains ordered by EL.

iii. Let Γ be a continuous operation on Er
L → EL. Let

⊥ = ((∅, {∅}, ∅), . . . , (∅, {∅}, ∅)) ∈ Er
L

Define fix(Γ) to be the lub of ⊥ EL Γ⊥ EL . . . EL Γn⊥ EL Then
Γ(fix(Γ)) = fix(Γ).

Proof. (i) follows from the corresponding property of E. (ii) In particular L , +

are continuous because ×, + are. For the remaining operations use Lemma 2.9.
(iii) is well known see [Sco80].

Given L, an S.A., we define a language for communicating processes called
ProcL. Each term of ProcL denotes an event structure in EL.

Definition 5.18 (The syntax of ProcL). Assume an infinite set of process
variables x ∈ X . Define a term of ProcL by:

t ::= NIL | x | λt | t + t | t \ λ|t〈S〉 | t L t | x isrec t

where x ∈ X , λ ∈ L \ {∗, 0} and S is an endomorphism of L.

Definition 5.19 (The semantics of ProcL). Define an environment to be a
function ρ : X → EL from process-variables to labeled event structures. For
a term t and an environment ρ, define [[t]]ρ, the event structure t denotes with
respect to ρ, by the following structural induction. (Note, that syntactic opera-
tors occur on the left and their semantic counterparts, operations on EL, occur
on the right.)

[[NIL]]ρ = (∅, {∅}, ∅)

[[x]]ρ = ρ(x)

[[λt]]ρ = λ([[t]]ρ)

[[t1 + t2]]ρ = [[t1]]ρ + [[t2]]ρ

[[t \ λ]]ρ = [[t]]ρ \ λ

[[t〈S〉]]ρ = ([[t]]ρ)〈S〉

[[t1 L t2]]ρ = [[t1]]ρ L [[t2]]ρ

[[x isrec t]]ρ = fix(Γ)

where Γ : EL → EL is given by Γ(E) = [[t]]ρ[x←E]. A structural induction shows
that Γ is indeed continuous so the above definition is justified by Proposition 5.17

page 41 of 56

In a similar way one can obtain semantics in PL and TrL; define parallel
composition in either category as a restriction of × the product of section 3 and
take environment into the categories. Equivalently one obtains semantics in PL

and TrL by composing the above semantics with Pr and I extended to cope
with labels.

Definition 5.20. i. Define PrL : EL → PL by

PrL(E, F, l) = (Pr(E, F), lev(E,F))

– refer to 4.3. For ρ : X → PL and t ∈ ProcL define [[t]]Pρ = PrL([[t]]ρ).

ii. Define IL : EL → TrL by

IL(E, F, l) = (I(E, F), lπ(E,F))

– refer to 4.3. For ρ : X → TrL and t ∈ ProcL define [[t]]Tr

ρ = IL([[t]]ρ).

When L is the S.A. for CCS our interleaved semantics in TrL agrees with
Milner’s synchronization/communication tree semantics because of the follow-
ing fact. (Our treatment of recursion is more general than Milner’s so our
denotations as trees may be ℵ0-branching when recursion is not “guardedly
well-defined”.)

Proposition 5.21. Let L be an S.A. Write the parallel composition operation

in TrL as L
Tr

so T L
Tr

S = IL(T L S). Suppose T, S ∈ TrL are sums

of the form T ∼=�i
λiTi and S ∼=�j

µjSj for labels λi, µj ∈ L\{∗, 0} indexed

by i and j. Then T L
Tr

S is given recursively by

T L
Tr

S ∼= �
λi•∗6=0

(λi•∗)Ti L
Tr

S+ �
λi•µj 6=0

(λi•µj)Ti L
Tr

Sj+ �
∗•µj 6=0

(∗•µj)T L
Tr

Sj

Proof. From 4.7 by restricting the product of trees.

Isomorphism in each category EL, PL, TrL induces a congruence on closed
terms of ProcL, where L is an S.A.

Definition 5.22. Let L be an S.A. For closed terms t, t′ ∈ ProcL and any
environment ρ define

t ∼ t′ iff [[t]]ρ
∼= [[t′]]ρ

t ∼P t′ iff [[t]]Pρ
∼= [[t′]]Pρ

t ∼Tr t′ iff [[t]]Tr

ρ
∼= [[t′]]Tr

ρ

Proposition 5.23. The relations ∼, ∼P, ∼Tr define congruences on the closed

terms ProcL w.r.t. L , +, λ−, − \ λ, −〈S〉. We have ∼⊆∼P⊆∼Tr.

Proof. Each operation on EL respects isomorphism.

page 42 of 56

Generally because the event structures of EL and PL reflect concurrency
their congruences are strictly included in that for TrL.

Example 5.24. Let L be the S.A. for CCS. We look at denotations of the

terms αβNIL L αNIL in the categories EL, PL, TrL (obtained by restricting

the products drawn in Example 4.8). We have labeled events and coverings.

∅
•

⌣

α

•

• ⌣

α
••

⌣

β
•

• ⌣α

••

⌣β

•

•

⌣

α

•

•

⌣

α

•

•

⌣

τ

••

⌣β
•

in EL

•

•

#

•

•

#

• •≤

• •≤τ β

α

α β

in PL

∅
•

⌣

α

•
• ⌣

α
••

⌣

β
•

•

⌣

α ••

⌣

β •

•

⌣

α

••

⌣

β

•

•

⌣

α

•

•

⌣

τ

••

⌣

β
•

in TrL

Clearly in TrL we have

αβNIL L αNIL ∼Tr ααβNIL + τβNIL + α(αβNIL + βαNIL)

which does not hold for the other two congruences.

This strict inclusion fails in an interesting special case where communication
is purely synchronous, when no asynchrony is allowed because L satisfies a strict
synchronous law:

Definition 5.25. Let L be and S.A. Say L is synchronous iff

∀λ ∈ L \ {∗} . λ • ∗ = 0

When an S.A. is synchronous parallel composition is purely synchronous,
if an event is to occur in a parallel composition it must synchronize, no event
can occur asynchronously. Then parallel composition is a restriction of the
synchronous product ⊗. The synchronous product ⊗ is based on SET so parallel
composition inherits some nice properties from product in SET.

page 43 of 56

Proposition 5.26. Let L be an S.A. Then the following are equivalent

i. L is synchronous

ii. NIL is an L -zero i.e. t L NIL ∼ NIL for all terms t ∈ ProcL.

iii. Parallel composition L distributes over sum i.e.

t0 L (t1 + t2) ∼ t0 L t1 + t0 L t2

for all terms t0, t1, t2 ∈ ProcL.

When L is synchronous denotations of closed terms in PL are isomorphic to
those in TrL so ∼P=∼Tr.

This indicates how assumptions on L determine laws on proof rules for con-
gruences on terms.

Milner’s synchronous calculi [Mil80b] can be based on synchronous S.A.s as
the following proposition shows:

Proposition 5.27 (The synchronous calculi of [Mil80b]). Any Abelian monoid
(M, •, 1) extends to an S.A. (L, ∗, 0, •) simply by adjoining elements ∗ and 0 to
M and extending composition so ∗ • ∗ = ∗ and ∗ • λ = 0 for all λ ∈ L. The
language ProcL includes the synchronous calculus associated with the monoid

M in [Mil80b]. In the parallel composition E0 L E1 every event e0 ∈ E0 is

synchronized with an event e1 ∈ E1; the event may be labeled by 1 when it
represents a delay or idle action. Denotations of closed terms of ProcL are
pre-trees in EL and trees in PL.

page 44 of 56

Conclusion

Thus we have a framework in which to give denotational semantics to a wide
range of parallel programming languages. But more, the framework makes con-
nections between different kinds of semantics and different approaches. Milner’s
synchronization trees are a special kind of labeled event structure. Thus we link
up to the work in [Mil80a]. (Notice incidentally that Milner’s idea of “sequential
observer” is embodied in the interleaving operator.) Then the synchronous cal-
culi of Milner [Mil80b] arise once synchronization algebras satisfy a strict law,
which essentially bans all synchrony. Unlike Milner in [Mil80b] we do not model
asynchrony in a synchronous framework but rather allow a free-mix of syn-
chrony and asynchrony, depending on the synchronization algebra. Prime event
structures correspond to intuitive and simple structures of events with a causal
dependency and conflict relation. We automatically get semantics in terms of
these structures. This is important because for example Mogens Nielsen and
Torben Fogh of Aarhus [Fog81] and Ugo Montanari and coworkers of Pisa (see
e.g. [MS80]) have given semantics in terms of such structures, and also because
the works [NPW79, NPW81], [Win80] establish links between such structures
and Petri nets. Net semantics like that in [LTS79] translates to prime event
structure semantics by the techniques of [NPW79, NPW81] and [Win80]. (In
fact there is a more direct connection between Petri nets and event structures.
A condition event system [Bra80] with initial marking, which is contact-free
and such that every condition occurs at most once in playing the token game,
determines an event structure as follows: Take the configurations to be those
sets of events which have occurred by some stage possibly infinite in playing
the token game.) Then, event structures represent Scott domains and partially
synchronous and synchronous morphisms induce rather special continuous func-
tions between domains – see appendix B.

Clearly we have several loose ends like:

• How to go from our semantics to proof rules.

• How to go from our rather basic semantics to more abstract semantics.

• How to give an operational semantics which justifies denotations which are
sensitive to concurrency (the most philosophical and probably the most
difficult loose end to tidy up);

• How to generalize event structures and still keep a useful category (for
example are there more general event structures which model continuous
processes or express “fairness” in some way? Then our present definition
of morphisms should still be useful.).

• How to define homomorphisms of synchronization algebras and use the
attendant algebraic constructions.

page 45 of 56

A Sets and partial functions

We take SET to be the category of sets with usual function composition. To
cope with partial functions, we take SET∗ to have sets as objects but morphisms
are now functions which may take the value ∗ (representing “undefined”). A
morphism in SET∗ is drawn as θ : X →∗ Y . The morphisms θ : X →∗ Y and
φ : Y →∗ Z compose to φθ(x) = φ(θ(x)) if θ(x) 6= ∗ and ∗ otherwise. Morphisms
in SET (total functions) correspond to those morphisms of SET∗ which never

yield ∗. For θ : X →∗ Y and A ⊆ X define θ̂(A) = {θ(e) | e ∈ A ∧ θ(e) 6= ∗}.
For us, a notable fact about SET∗ is the nature of its products. If X and Y

are sets their categorical product in SET∗ takes the form

X ∗× Y ≡ {(x, ∗) | x ∈ X} ∪ {(∗, y) | y ∈ Y } ∪ {(x, y) | x ∈ X ∧ y ∈ Y }

with the obvious projections.

page 46 of 56

B Domains of configurations

Here we show the relation between our categories of event structures and cate-
gories of Scott-domains.

Definition B.1. Let (D,⊑) be a partial order.
A directed subset of D is a non-null subset S ⊆ D such that

∀s, t ∈ S∃u ∈ S . s ⊑ u ∧ t ⊑ u

The p.o. D is a complete partial order (cpo) iff there is a least element ⊥ ∈ D
and all directed subsets S have a least upper bound (lub)

⊔
S.

If D is a cpo, an element x ∈ D is isolated (= finite = compact) iff for all
directed subsets S, if x ⊑

⊔
S then x ⊑ s for some s ∈ S. A cpo D is said to be

algebraic iff for each x ∈ D the set S of isolated elements below x is directed and
x =

⊔
S. (An algebraic cpo is generally called a domain though some authors

insist it also be consistently complete – see below.)
Let X ⊆ D. Then X is said to be pairwise compatible iff

∀x, y ∈ X∃d ∈ D . x ⊑ d ∧ y ⊑ d

The po (D,⊑) is coherent iff every pairwise compatible subset has a lub. (Clearly
every coherent po is a cpo.) Similarly a subset X is said to be finitely compat-
ible iff every finite subset X has an upper bound in D. Then a po (D,⊑) is
consistently complete iff every finitely compatible subset has a lub. (Clearly
coherence implies consistent completeness.)

By proposition 1.8 an event structure (E, F) represents a domain (F,⊆)
of configurations satisfying rather special properties. Such domains are coher-
ent, prime algebraic and so that every isolated element dominates only a finite
number of elements. Conversely any such domain is represented, to within iso-
morphism, by an event structure, in fact a prime event structure, in the following
way: Take the complete primes as events and all the sets of complete primes
below some element as configurations.

Definition B.2. Let (D,⊑) be a prime algebraic coherent partial order satis-
fying the property that every isolated element dominates only a finite number
of elements. Then define p(D) ≡ (P, F) where P = complete primes of D and
x ∈ F iff ∃z ∈ D . x = {p ∈ P | p ⊑ z}.

Lemma B.3. In the above definition p(D) is a prime event structure so (D,⊑) ∼=
(F,⊆) under x 7→ {p ∈ P | p ⊑ x} with inverse X 7→

⊔
X.

Proof. Directly from the definitions.

The concept of prime algebraicity was introduced in [NPW79]. There Petri
net concepts were related to Scott-domain concepts. In particular an event
occurrence in a net showed itself as a complete prime in a domain of event
configurations associated with the net. The complete primes formed a subbasis

page 47 of 56

giving rise to the concept of prime algebraic domain. Now it turns out that
saying a domain is prime algebraic is just the same as saying it is completely
distributive and algebraic, so really the concept is well known (see [GHK+80]).
We present the proof for lattices and its corollaries for domains.

It will follow that domains of configurations are, to within isomorphism,
precisely the distributive, algebraic coherent partial orders which satisfy the
finiteness property that every isolated element dominates only a finite number
of elements.

Definition B.4. Let (D,⊑) be a partial order with meets of all non-null subsets.
Say (D,⊑) is distributive iff x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z) for all x, y, z ∈ D so
y⊔ z exists. Say (D,⊑) is completely distributive iff (

d
X)⊔ y =

d
x∈X x⊔ y for

subsets X ⊆ D s.t. x ⊔ y exists for all x ∈ X and (
⊔

X) ⊓ y =
⊔

x∈X x ⊓ y for
non-null subsets X ⊆ D s.t.

⊔
X exists.

Theorem B.5. Let (D,⊑) be a complete lattice. Then (D,⊑) is prime algebraic
iff (D,⊑) is completely distributive and algebraic.

Proof. It is easy to show a prime algebraic lattice is completely distributive and
algebraic (or see [NPW79, NPW81]). Conversely suppose (D,⊑) is completely
distributive and algebraic. Algebraicity expresses a kind of discreteness, it will
mean:

(i) ∀x, y ∈ D . x ⊏ y =⇒ ∃z, z′ ∈ D . x ⊑ z ⊂ z′ ⊑ y where ⊂ is the
covering relation.

Complete distributivity will mean that each covering interval determines a com-
plete prime, so:

(ii) Let x ⊂ x′ in D. Then pr(x, x′) ≡
d
{y ∈ D | x′ ⊑ x ⊔ y} is a complete

prime of D.

To show (i), suppose x, y ∈ D and x ⊏ y. By algebraicity there is an isolated
element a s.t. ¬(a ⊑ x) and a ⊑ y. By Zorn’s lemma there is a maximal chain
C of elements above x and strictly below x ⊔ a. As a is algebraic from the
constriction of C we must have x ⊑

⊔
C ⊂ x ⊔ a ⊑ y.

To show (ii), let x, x′ ∈ D and x ⊂ x′. Suppose p ≡
d
{y ∈ D | x′ ⊑ x⊔y}.

Note first that x⊔ p =
d
{x⊔ y | x′ ⊑ x⊔ y} = x′ using complete distributivity.

Now suppose p ⊑
⊔

Z for some subset Z ⊆ D. Then x′ = x ⊔ p ⊑ x ⊔ (
⊔

Z) =⊔
z∈Z(x⊔ z). However as x ⊂ x′ we must then have x′ ⊑ x⊔ z for some z ∈ Z.

But then p ⊑ z. Thus p is a complete prime of D.
Let z ∈ D. Then we require z =

⊔
{pr(x, x′) | x ⊂ x′ ⊑ z} in order to

make D prime algebraic. Write w =
⊔
{pr(x, x′) | x ⊂ x′ ⊑ z}. Clearly w ⊑ z.

Suppose w ⊏ z. Then w ⊑ x ⊂ x′ ⊑ z for some x, x′ ∈ D. Write p = pr(x, x′).
Then p ⊑ w making x ⊔ p = x, a contradiction as x ⊔ p = x′. Thus D is prime
algebraic as required.

It is easy to see that a more general version of the above theorem also holds.
The proof would work if the partial order (D,⊑) were coherent or consistently

page 48 of 56

complete (sets with upper bounds have least upper bounds), and not necessarily
a lattice.

As a corollary we obtain a representation theorem for completely distributive
algebraic lattices; a completely distributive algebraic lattice is isomorphic to the
left-closed subsets ordered by ⊆ of some partial order. The converse is clear.

Corollary B.6. i. Let (P,≤) be a partial order. Then the left closed subsets
(L(P,≤),⊆) form a completely distributive algebraic lattice with complete
primes of the form [p] ≡ {p′ ∈ P | p′ ≤ p} for p ∈ P .

ii. Let (D,⊑) be a completely distributive algebraic lattice. Let (P,≤) be
the complete primes ordered by ≤=⊑↾ P . Then (D,⊑) ∼= L(P,≤) under
x 7→ {p ∈ P | p ⊑ x}.

Proof. By the above theorem and the properties of prime algebraic lattices
spelled out in [NPW79, NPW81] or [Win80].

Proposition 1.8 shows configurations of event structures give coherent prime
algebraic domains satisfying the finiteness restriction that every isolated element
dominates only a finite number of elements. In the presence of algebraicity and
the finiteness restriction, complete distributivity is equivalent to the generally
more humble distributivity. This gives the following characterization of the
domains of configurations.

Proposition B.7. Ordered by inclusion the configurations of an event struc-
ture form a distributive, algebraic coherent partial order in which every isolated
element dominates only a finite number of elements. Moreover any such par-
tial order can be represented, to within isomorphism, by the configurations of a
prime event structure.

Proof. Domains of configurations clearly satisfy the above properties. To show
the converse, we need only show that a distributive algebraic coherent par-
tial order satisfying the above finiteness restriction is necessarily completely
distributive. Let (D,⊑) be such a p.o. Then this distributive law follows:
x ⊔ (y ⊓ z) = (x ⊔ y) ⊓ (x ⊔ z) for x, y, z ∈ D in which x ⊔ y and x ⊔ z exist.
(See [Bir67] or [KP79] for details). Incidentally, because we do not work with
lattices the two distributive laws are not equivalent. Now we show the two
infinite distributivities hold.

a. Let X ⊆ D s.t.
⊔

X exists and y ∈ D. Clearly then
⊔

x∈X(x ⊓ y) ⊑
(
⊔

X) ⊓ y. To show the converse inequality, suppose a is isolated and
a ⊑ (

⊔
X) ⊓ y. Then as a ⊑

⊔
X and as a is isolated for some finite

X ′ ⊆ X we have a ⊑
⊔

X ′. Then

a ⊑
(⊔

X
)
⊓ y =⇒ a ⊑

(⊔
X ′
)
⊓ y

=⇒ a ⊑
⊔

x∈X′

(x ⊓ y) by distributivity

=⇒ a ⊑
⊔

x∈X

(x ⊓ y)

page 49 of 56

Thus as D is algebraic we have the converse inequality so
⊔

x∈X(x⊓ y) =
(
⊔

X) ⊓ y.

b. We require in addition that (
d

X) ⊔ y =
d

x∈X(x ⊔ y) for y ∈ D and
∅ 6= X ⊆ D s.t. x⊔y exists for all x ∈ X . Clearly (

d
X)⊔y ⊑

d
x∈X x⊔y.

Suppose a is isolated and a ⊑
d

x∈X x ⊔ y. Then

a =

(
l

x∈X

(x ⊔ y)

)
⊓ a =

l

x∈X

((x ⊔ y) ⊓ a)

Now a dominates only a finite number of elements. Thus for some finite
X ′ ⊆ X we must have a =

d
x∈X′((x ⊔ y) ⊓ a).

Then by distributivity a = ((
d

X ′) ⊓ a) ⊔ (y ⊓ a) ⊑ (
d

X) ⊔ y. By
algebraicity we have

d
x∈X(x⊔y) ⊑ (

d
X)⊔y and so the required equality.

Thus event structures represent a natural class of domains. Similarly mor-
phisms on event structures induce morphisms on domains. Here are the prop-
erties that they satisfy.

Definition B.8. Let (D0,⊑0), (D1,⊑1) be partial orders. Let f be a function
f : D0 → D1. Say f is

i. conditionally additive (c.a.) iff ∀X ⊆ D0 . X ↑=⇒ f(
⊔

X) =
⊔

fX

ii. conditionally multiplicative (c.m.) iff

∀X ⊆ D0 . X 6= ∅ ∧ X ↑=⇒ f(
l

X) =
l

fX

iii. (a) ⊂-preserving iff

∀x, x′ ∈ D0 . x ⊂ x′ =⇒ f(x) ⊂ f(x′)

(b) ⊂-preserving iff

∀x, x′ ∈ D0 . x ⊂ x′ =⇒ f(x) ⊂ f(x′)

(we use ⊂ to mean ⊂∪1.)

Lemma B.9. i. Let θ : (E0, F0) → (E1, F1) be a morphism of event struc-

tures. Then θ̂ : F0 → F1 is c.a., c.m. and ⊂-preserving. If θ is syn-
chronous then θ̂ is ⊂-preserving

ii. Let (E0, F0), (E1, F1) be prime event structures. Let f : (F0,⊆) → (F1,⊆)
be c.a., c.m. and ⊂-preserving. Then there is a unique event structure
morphism θ : (E0, F0) → (E1, F1) s.t. f = θ̂. If further f is ⊂-preserving
then θ is synchronous.

page 50 of 56

Proof. i. needs a routine verification.

ii. Let (E0, F0), (E1, F1) be prime event structures. Let f : F0 → F1 be a c.a.,
c.m. and ⊂-preserving function with respect to the inclusion ordering on
configurations. We show how f is induced by an event structure morphism
θ : E0 →∗ E1 so f = θ̂.

Recall some basic facts explained more fully in [NPW79, NPW81]: A
prime interval is a pair (x, x′) where x ⊂ x′. Define a relation � between
prime intervals by (x, x′) � (y, y′) iff x = x′ ⊓ y and y′ = x′ ⊔ y. Form an
equivalence relation ∼ as the symmetric transitive closure∼= (� ∪ �−1)∗.
In fact, for a prime event structure, events are in 1-1 correspondence with
∼-equivalence classes of prime intervals in the configurations because there
(x, x′) ∼ (y, y′) iff x′ \ x = y′ \ y.

These facts make it easy to define the required event structure morphism
θ. Let x ⊂ x′ and y ⊂ y′ in (F0,⊆) and (x, x′) � (y, y′). Then because
f is c.a. and c.m. we get

f(x) = f(x′ ⊓ y) = f(x′) ⊓ f(y)

f(y′) = f(x′ ⊔ y) = f(x′) ⊔ f(y)

Because f is ⊂-preserving too the above equations make f(x) ⊂ f(x′)
iff f(y) ⊂ f(y′).

It follows that if (x, x′) ∼ (y, y′) and f(x) ⊂ f(x′) then (f(x), f(x′)) ∼
(f(y), f(y′)).

Thus the following definition of θ : E0 →∗ E1 is well-defined: for e ∈ E0

take x, x′ ∈ F0 s.t. x′ \ x = {e}; then if f(x) ⊂ f(x′) take θ(e) to be the
unique event of f(x′) \ f(x), and otherwise set θ(e) = ∗.

A simple induction on the size of x shows that for all finite x ∈ F0 we have
θ̂(x) = f(x). Thus as θ̂ and f are c.a. we have θ̂ = f . From the fact that
f is a c.m. it follows that θ(e) = θ(e′) 6= ∗ for e, e′ ∈ x, a configuration
in F0, implies e = e′. Thus θ is an event structure morphism inducing f .
Any other event structure morphism inducing f must act like θ on prime
intervals and so on events, making θ unique.

Clearly event structure morphisms which are total correspond to ⊂-
preserving functions as (i) and (ii) specialize to synchronous morphisms.

As a corollary we can exhibit a natural equivalence between a category of
domains and the category of prime event structures.

Definition B.10. Let D be the category of coherent distributive algebraic do-
mains with morphism functions which are c.a., c.m. and ⊂-preserving. Let
Dsyn be the subcategory with morphisms which are ⊂-preserving.

page 51 of 56

Proposition B.11. Taking ·̂ : P → D to act on objects by (E, F) 7→ (F,⊆) and
on morphisms by

(E0, F0)

(E1, F1)

θ

(F0,⊆)

(F1,⊆)

θ̂

defines a functor which is a natural equivalence of categories. It restricts to a
natural equivalence ·̂ : Psyn → Dsyn.

Proof. It is easy to check that ·̂ is a functor. In [Mac71] (theorem 1, page 91) it
is shown that a functor is an equivalence of categories iff it is full, faithful and
dense (i.e. every object in the codomain category is isomorphic to an object in
the range of the functor) – all of which hold for ·̂.

This means that all the categorical properties of P, Psyn transfer to D, Dsyn

respectively. For example we know there are products in D and Dsyn and what
form they take. It is hard to see how one could confirm the existence of products
in D and Dsyn without the aid of an event structure representation.

Viewed abstractly in the category D the approximation relation E corre-
sponds to a special type of morphism on domains – the rigid embeddings of
Kahn and Plotkin (see [KP79]).

Definition B.12. Let D0, D1 be two cpos. Let f : D0 → D1 be a continuous
function. Say f is an embedding iff there is a continuous function g : D1 → D0

called a projection such that

g(f(x)) = x for all x ∈ D0

and f(g(y)) ⊑ y for all y ∈ D1

Say f is a rigid embedding iff it is an embedding with projection g such that
y ⊑ f(x) =⇒ fg(y) = y for all x ∈ D0 and y ∈ D1.

Theorem B.13. i. Let (E0, F0) E (E1, F1) for two event structures. Let ι
be the inclusion ι : E0 → E1. Then ι is a morphism of event structures
such that ι̂ : (F0,⊆) → (F1,⊆) is a rigid embedding.

ii. The categories D and Dsyn have colimits of ω-chains of rigid embeddings.

Proof. i. routine verification.

ii. Let D0
f0

D1
. . . Dn

fn . . . be an ω-chain of rigid em-
beddings. By induction, there is a chain

(E0, F0) E (E1, F1) E . . . E (En, Fn) E . . .

page 52 of 56

of (prime) event structures with (Fn,⊆) ∼= Dn so

Dn

fn

∼=

Dn+1

∼=

(Fn,⊆)
bιn

(Fn+1,⊆)

commutes for each n, where ιn is the inclusion map ιn : En →֒ En+1. Let
(E, F) be its E-lub. Then (F,⊆) is easily seen to be the colimit of the
chain

(F0,⊆)
bι0

(F1,⊆)
bι1 . . . (Fn,⊆)

bιn . . .

Thus (F,⊆) is a colimit of

D0
f0

D1 . . . Dn

fn . . .

Thus we see event structure concepts in a domain setting. The categories E

and P of event structures represent the category D of domains.
One can base semantics for synchronized communication directly on D,

though this will be essentially the same as a semantics based on prime event
structures P because D and P are equivalent categories. One obtains labeled
domains DL by labeling prime intervals by elements of a synchronization al-
gebra L but in a ∼-respecting way (the same relation ∼ as above). We leave
the detailed definition of DL to the reader; it should be equivalent to PL. The
treatment of recursion can be based on rigid embeddings. One expects a recur-
sive definition to correspond to an ω-cocontinuous functor, for which we shall
seek the “least fixed point”. Starting with the null event structure repeated
application of the functor will yield an ω-chain of rigid embeddings. The least
fixed point will be its colimit (see [KP79], [Fog81], [Plo78]). There may be
some lessons to be learned from the categories DL because they are closely akin
to labeled transition systems often used to give operational semantics (used in
e.g. [Mil80a, Mil80b]).

By the way the categories D and Dsyn do not have exponentiations so are not
cartesian closed; however a larger category in which morphisms are merely c.m.
is cartesian closed and in fact is a full subcategory of Gérard Berry’s dI-domains
with stable functions (see [Ber79]).

page 53 of 56

Acknowledgments

I am grateful for discussions with Mogens Nielsen. Mogens has previously given
a prime event structure semantics to CCS. Thanks to Gordon Plotkin for en-
couraging morphisms even when they were quarter-baked. The stability axiom
is essentially Gérard Berry’s “deterministic” condition [BC]. Related ideas ap-
pear in [Fog81] and [MS80]. Many thanks to Karen Møller and Angelika Paysen
for typing a symbol-laden paper. The work was supported in part by an SRC
grant directed by Robin Milner and Gordon Plotkin and in part by the Royal
Society.

page 54 of 56

References

[BC] G. Berry and P.L. Curien. Sequential algorithms on concrete data
structures. to appear in TCS.

[Ber79] G. Berry. Modèles complement adéquats et stables des λ-calculus
typés. Thèse de Doctorat d’Etat, Université Paris VII, 1979.

[Bir67] G. Birkhoff. Lattice theory. volume 25. Amer. Math. Soc., Provi-
dence, R.I., 3rd edition, 1967.

[Bra80] W. Brauer, editor. Net Theory and Applications, volume 84 of
LNCS. Springer-Verlag, 1980.

[Fog81] T Fogh. En semantik for synkroniserede parallelle processer. Mas-
ter’s thesis, Aarhus University, 1981.

[GHK+80] G. Gierz, K.H. Hoffman, K. Keimal, J.D. Lawson, M. Mislove, and
D.Scott. A Compendium of Continuous Lattices. Springer-Verlag,
1980.

[Hoa78] C.A.R. Hoare. A Model for Communicating Sequential Processes.
Programming Research Group, Oxford University, 1978.

[KP79] G. Kahn and G. Plotkin. Structures de Données concrètes. IRIA-
Laboria Report 336, 1979.

[LTS79] P.E. Lauer, P.R. Torrigiani, and M.W. Shields. COSY: A system
Specification Language based on Paths and Processes. Acta Infor-
matica, 12, 1979.

[Mac71] S. Maclane. Categories for the working mathematician. Springer-
Verlag, 1971.

[Mil79] G.J. Milne. Synchronised Behaviour Algebras: a model for interact-
ing systems. Dept. of Comp. Sci., University of Southern California,
1979.

[Mil80a] R. Milner. A Calculus for Communicating Systems, volume 92 of
LNCS. Springer-Verlag, 1980.

[Mil80b] R. Milner. On relating Synchrony and Asynchrony. Dept. of Comp.
Sci., University of Edinburgh, 1980.

[MS80] U. Montanari and C. Simonelli. On distinguishing between concur-
rency and nondeterminism. In Ecole de Printemps on Concurrency
and Petri Nets, Colleville, 1980. to appear.

[NPW79] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures
and domains. In Conference on Semantics of Concurrent Computa-
tion, Evian, volume 70 of LNCS. Springer-Verlag, 1979.

page 55 of 56

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures
and domains, part I. Theoretical Computer Science, 13, 1981.

[Plo78] G.D. Plotkin. Lectures on Domains. Summerschool, Pisa, 1978.

[Sco80] D. Scott. Lectures on a Mathematical Theory of Computation. Lec-
ture notes in mathematics, University of Oxford, 1980.

[Win80] G. Winskel. Events in Computation. PhD thesis, Dept. of Comp.
Sci., University of Edinburgh, 1980.

page 56 of 56

	Introduction
	Event Structures
	A ``CPO'' Of Event Structures
	A Category of Event Structures
	Two Subcategories, Prime Event Structures and Trees
	A Semantics for Communicating Processes
	Conclusion
	Sets and partial functions
	Domains of configurations
	Acknowledgments
	References

