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Abstract

Grounding events into a precise timeline is im-

portant for natural language understanding but

has received limited attention in recent work.

This problem is challenging due to the inher-

ent ambiguity of language and the requirement

for information propagation over inter-related

events. This paper first formulates this prob-

lem based on a 4-tuple temporal representation

used in entity slot filling, which allows us to

represent fuzzy time spans more conveniently.

We then propose a graph attention network-

based approach to propagate temporal infor-

mation over document-level event graphs con-

structed by shared entity arguments and tempo-

ral relations. To better evaluate our approach,

we present a challenging new benchmark on

the ACE2005 corpus, where more than 78% of

events do not have time spans mentioned ex-

plicitly in their local contexts. The proposed

approach yields an absolute gain of 7.0% in

match rate over contextualized embedding ap-

proaches, and 16.3% higher match rate com-

pared to sentence-level manual event time ar-

gument annotation.1

1 Introduction

Understanding and reasoning about time is a cru-

cial component for comprehensive understanding

of evolving situations, events, trends and forecast-

ing event abstractions for the long-term. Event time

extraction is also useful for many downstream Nat-

ural Language Processing (NLP) applications such

as event timeline generation (Huang and Huang,

2013; Wang et al., 2015; Ge et al., 2015; Steen

and Markert, 2019), temporal event tracking and

prediction (Ji et al., 2009; Minard et al., 2015), and

temporal question answering (Llorens et al., 2015;

Meng et al., 2017).

*Work done prior to joining Amazon.
1The resource for this paper is available at https://gi

thub.com/wenhycs/NAACL2021-Event-Time-Ex

traction-and-Propagation-via-Graph-Atten

tion-Networks.

In order to ground events into a timeline we need

to determine the start time and end time of each

event as precisely as possible (Reimers et al., 2016).

However, the start and end time of an event is often

not explicitly expressed in a document. For exam-

ple, among 5,271 annotated event mentions in the

Automatic Content Extraction (ACE2005) corpus2,

only 1,100 of them have explicit time argument

annotations. To solve the temporal event ground-

ing (TEG) problem, previous efforts focus on its

subtasks such as temporal event ordering (Bram-

sen et al., 2006; Chambers and Jurafsky, 2008;

Yoshikawa et al., 2009; Do et al., 2012; Meng et al.,

2017; Meng and Rumshisky, 2018; Ning et al.,

2017, 2018, 2019; Han et al., 2019) and duration

prediction (Pan et al., 2006, 2011; Vempala et al.,

2018; Gusev et al., 2011; Vashishtha et al., 2019;

Zhou et al., 2019). In this paper we aim to solve

TEG directly using the following novel approaches.

To capture fuzzy time spans expressed in text, we

adopt a 4-tuple temporal representation proposed

in the TAC-KBP temporal slot filling task (Ji et al.,

2011, 2013) to predict an event’s earliest possible

start date, latest possible start date, earliest possible

end date and latest possible end date, given the

entire document. We choose to work at the day-

level and leave time scales smaller than that for

future work since, for example, only 0.6% of the

time expressions in the newswire documents in

ACE contain smaller granularities (e.g., hours or

minutes).

Fortunately, the uncertain time boundaries of an

event can often be inferred from its related events

in the global context of a document. For example,

in Table 1, there are no explicit time expressions

or clear linguistic clues in the local context to in-

fer the time of the appeal event. But the earliest

possible date of the refuse event is explicitly ex-

pressed as 2003-04-18. Since the appeal event

must happen before the refuse event, we can infer

2https://catalog.ldc.upenn.edu/LDC2006T06

https://github.com/wenhycs/NAACL2021-Event-Time-Extraction-and-Propagation-via-Graph-Attention-Networks
https://github.com/wenhycs/NAACL2021-Event-Time-Extraction-and-Propagation-via-Graph-Attention-Networks
https://github.com/wenhycs/NAACL2021-Event-Time-Extraction-and-Propagation-via-Graph-Attention-Networks
https://github.com/wenhycs/NAACL2021-Event-Time-Extraction-and-Propagation-via-Graph-Attention-Networks
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Malaysia’ s Appeal Court Friday[2003-04-18] refused to overturn the conviction and nine-year jail sentence imposed on ex-deputy
prime minister Anwar Ibrahim. Anwar now faces an earliest possible release date of April 14, 2009[2009-04-14]. The former heir
says he was framed for political reasons, after his appeal was rejected ... Mahathir’s sacking of Anwar in September 1998[1998-09]

rocked Malaysian politics ... Within weeks he was arrested and charged with ... Anwar was told Monday[2003-04-14] that he had
been granted a standard one-third remission of a six-year corruption sentence for good behavior, and immediately began to serve
the nine-year sentence ...

Event Earliest
Start Date

Latest
Start Date

Earliest
End Date

Latest End
Date

Evidence

Local
Context

sentence 2003-04-14 2003-04-14 -inf +inf
appeal -inf +inf -inf +inf

+ Sharing
Arguments

sentence 2003-04-14 2003-04-14 2009-04-14 +inf release→Anwar→sentence
appeal -inf +inf 2003-04-18 2003-04-18 refuse→Anwar→appeal

+ Temporal
Relation

sentence 2003-04-14 2003-04-14 2009-04-14 +inf
appeal 1998-09-01 +inf 2003-04-18 2003-04-18 sack→arrest→appeal

Table 1: Examples of temporal propagation via related events for two target events, sentence and appeal. By

leveraging related events with temporal relations and shared arguments, some infinite dates can be refined with

temporal boundaries. Note: The event triggers that we are focusing are highlighted in orange, time expressions in

blue, and normalized TIMEX dates in subscripts. Related events are underlined.

the earliest start and the latest end date of appeal

as 2003-04-18. However, there are usually many

other irrelevant events that are in the same docu-

ment, which requires us to develop an effective

approach to select related events and perform tem-

poral information propagation. We first use event-

event relations to construct a document-level event

graph for each input document, as illustrated in

Figure 1. We leverage two types of event-event

relations: (1) if two events share the same entity

as their arguments, then they are implicitly con-

nected; (2) automatic event-event temporal relation

extraction methods such as (Ning et al., 2019) pro-

vide important clues about which element in the

4-tuple of an event can be propagated to which 4-

tuple element of another event. We propose a novel

time-aware graph propagation framework based on

graph attention networks (GAT, Velickovic et al.,

2018) to propagate temporal information across

events in the constructed event graphs.

Experimental results on a benchmark, newly

created on top of ACE2005 annotations, show

that our proposed cross-event time propagation

framework significantly outperforms state-of-the-

art event time extraction methods using contextual-

ized embedding features.

Our contributions can be summarized as follows.

• This is the first work taking advantage of the

flexibility of 4-tuple representation to formulate

absolute event timeline construction.

• We propose a GAT based approach for time-

line construction which effectively propagates

temporal information over document-level event

graphs without solving large constrained opti-

mization problems (e.g., Integer Linear Program-

ming (ILP)) as previous work did. We propose

two effective methods to construct the event

graphs, based on shared arguments and temporal

relations, which allow the time information to be

propagated across the entire document.

• We build a new benchmark with over 6,000 hu-

man annotated non-infinite time elements, which

implements the 4-tuple representation for the

first time as a timeline dataset, and is intended to

be used for future research on absolute timeline

construction.

2 A New Benchmark

2.1 4-tuple Event Time Representation

Grounding events into a timeline necessitates the

extraction of the start and end time of each event.

However, the start and end time of most events is

not explicitly expressed in a document. To capture

such uncertainty, we adopt the 4-tuple represen-

tation introduced by the TAC-KBP2011 temporal

slot filling task (Ji et al., 2011, 2013). We define 4-

tuple event time as four time elements for an event

e → 〈τ−start, τ
+
start, τ

−
end, τ

+
end〉,

3 which indicate earli-

est possible start date, latest possible start date,

earliest possible end date and latest possible end

date, respectively. These four dates follow hard

constraints:

{

τ−start ≤ τ+start

τ−end ≤ τ+end

,

{

τ−start ≤ τ−end

τ+start ≤ τ+end

. (1)

3We use subscripts “start” and “end” to denote start and
end time, and superscripts “−” and “+” to represent earliest
and latest possible values.
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The enemy have now been flown out and we’re treating them including a man who is almost dead with a gunshot wound to the
chest after we (Royal Marines) sent in one of our companies of about 100 men in here (Umm Kiou) this morning.

sent
Movement:Transport

Agent

Royal Marines

this morning
(2003-03-29)

Umm Kiou

Destination

company

Artifact

gunshot
Conflict:Attack

Attacker

man

Target

wound
Life:Injure

Victim

Origin

BEFORE

flown out
Movement:Transport

now
(2003-03-29)

Origin

enemy

Artifact

AFTER
BEFORE

AFTER AFTER
BEFORE

Figure 1: The example event graph. The graph with solid lines is constructed from event arguments. The graph

with dash lines is constructed from temporal relations. Entities in the text are underlined and events in the text are

in boldface.

Category #

# documents 182
usenet 1
broadcast conversations 5
broadcast news 63
webblogs 26
newswire 87

# train/dev/test 92/39/51
# event mentions 2,084
# average tokens/document 436
# non-infinite elements 6,058
# infinite elements 2,278

Table 2: Data Statistics

The above temporal representation was originally

designed for entity slot filling, and we regard it

as an expressive way for describing events too as:

(1) it allows for flexible representation of fuzzy

time spans and thus, for those events that we can-

not determine the accurate dates, they can also be

grounded into a timeline; and (2) it allows for a

unified treatment of various types of temporal infor-

mation and thus makes it convenient to propagate

over multiple events.

2.2 Annotation

We choose the Automatic Content Extraction

(ACE) 2005 dataset because it includes rich anno-

tations of event types, entity/time/value argument

roles, time expressions and their normalization re-

sults. In our annotation interface, each document

is highlighted with event triggers and time expres-

sions. The annotators are required to read the whole

document and provide as precise information as

possible for each element of the 4-tuple of each

event. If there is no possible information for a

specific time, the annotators are asked to provide

+/-infinite labels.

Symbol Explanation

wi the i-th word of document D
D a document, D = [w1, . . . , wn]
ei an event trigger in D

E the event mention set of D, E =
{e1, . . . , em}

τi a time element of event i, can be
{τ−

i,start, τ
+

i,start, τ
−

i,end, τ
+

i,end}
ti a time expression in D

T the time set of D, T = {t1, . . . , tl}
ri a relation, either event argument roles or

event temporal relations
R relation set, R = {r1, . . . , rq}

Table 3: Notations

Overall, we have annotated 182 documents from

this dataset. Most of the documents are from broad-

cast news or newswire genres. Detailed data statis-

tics and data splits are shown in Table 2. We an-

notated all the documents with two independent

passes. Two experts led the final adjudication based

on independent annotations and discussions with

annotators since single annotation pass is likely to

miss important clues, especially when the event and

its associated time expression appear in different

paragraphs.

3 Approach

3.1 Overview

The input is a document D = [w1, . . . , wn], con-

taining event triggers E = [e1, . . . , em] and time

expressions T = [t1, . . . , tl], and we use gold-

standard annotation for event triggers and time ex-

pressions. Our goal is to connect the event triggers

E and time expressions T scattered in a document,

and estimate their association scores to select the

most possible values for the 4-tuple elements. At a
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high-level, our approach is composed of: (1) a text

encoder to capture semantic and narrative informa-

tion in local context, (2) a document-level event

graph to facilitate global knowledge, (3) a graph-

based time propagation model to propagate time

along event-event relations, and (4) an extraction

algorithm to generate 4-tuple output. Among these

four components, (1) and (4) build up the minimal

requirements of an extractor, which serve as our

baseline model and will be described in Section 3.2.

We will detail how we utilize event arguments and

temporal ordering to construct the document-level

event graph, namely component (2), in Section 3.3.

We will present our graph-based time propagation

model in Section 3.4, and wrap up our model with

training objective and other details in Section 3.5.

We list notations in Table 3, which will be ex-

plained when encountered.

3.2 Baseline Extraction Model

Our baseline extraction model is an event-time pair

classifier based on a pre-trained language model

(Devlin et al., 2019; Liu et al., 2019; Beltagy et al.,

2020) encoder. The pre-trained language models

allow us to have contextualized representation for

every token in a given text. We directly derive

the local representation for event triggers and time

expressions from the contextualized representation.

The representations are denoted as hei for event

trigger ei and htj for time expression tj . For events

or time expressions containing multiple tokens, we

take the average of token representations. Thus, all

hei and htj are of the same dimensions.

We pair each event and time in the document,

i.e., {(ei, tj) | ei ∈ E, tj ∈ T}, to form the

training examples. After obtaining event and

time representations, we concatenate them and

feed them into a 2-layer feed-forward neural clas-

sifier. The classifier estimates the probability

of filling tj in ei’s 4-tuple time elements, i.e.,

〈τ−i,start, τ
+
i,start, τ

−
i,end, τ

+
i,end〉. The probabilities are:

pi,j,k = σ(w2,kReLU(W 1[hei ;htj ] + b1) + b2,k)
(2)

where σ(·) is sigmoid function, and W 1,2 and b1,2
are learnable parameters. In short, we use τi,k to

represent the kth element in τi (k ∈ {1, 2, 3, 4})

and pi,j,k represents a probability that tj fills in the

kth element of 4-tuple τi. The baseline model con-

sists of 4 binary classifiers, one for each element of

the 4-tuple.

When determining the 4-tuple for each event ei,

we estimate the probability of t1 through tl. For

each element, we take the time expression with

the highest probability to fill in this element. A

practical issue is that the same time is often ex-

pressed by different granularity levels, such as

2020-01-01 and 2020-W1, following the most

common TIMEX format (Ferro et al., 2005). To

uniformly represent all the time expressions and

allow certain degree of uncertainty, we introduce

the following 2-tuple normalized form for time ex-

pressions, which indicates the time range of tj by

two dates,

ti → 〈t−i , t
+
i 〉 (3)

where t−∗ represents the earliest possible dates and

t+∗ represents the latest possible dates.

We also make a simplification that the earliest

possible values can only fill in earliest possible

dates, i.e., T− = {t−1 , . . . , t
−
l } 7→ τ−start, τ

−
end, sim-

ilarly for the latest dates, T+ = {t+1 , . . . , t
+
l } 7→

τ+start, τ
+
end. This constraint can be relaxed in fu-

ture work. Here is an example of how we de-

termine the binary labels for event-time pairs. If

the 4-tuple time for an event is 〈2020-01-01,

2020-01-03, 2020-01-01, 2020-01-07〉
and the 2-tuple for time expression 2020-W1 is

〈2020-01-01, 2020-01-07〉, then the clas-

sification labels of this event-time pair will be

〈True,False,True,True〉.

3.3 Event Graph Construction

Before we conduct the global time propagation, we

first construct document-level event graphs. In this

paper, we focus on two types of event-event rela-

tions: (1) shared entity arguments, and (2) temporal

relations.

Event Argument Graph. Event argument roles

provide local information about events and two

events can be connected via their shared arguments.

We denote the event-argument graph as Garg =
{(ei, vj , ri,j)}, where ei represents an event, vj
represents an entity or a time expression, and ri,j
represents the bi-directed edge between ei and vj ,

namely the argument role. For example, in Figure 1,

there will be two edges between the “sent” event

(e1) and the entity “Royal Marines” (v1), namely

(e1, v1, AGENT) and (v1, e1, AGENT). In addition,

we add a self-loop for each node in this graph. The

graph can be constructed by Information Extrac-

tion (IE) techniques and we use gold-standard event
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annotation from ACE 2005 dataset in our experi-

ments.

Event Temporal Graph. Event-event temporal

relations provide explicit directions to propagate

time information. If we know that an attack event

happened before an injury event, the lower-bound

end date of the attack can possibly be the start date

of the injury. We denote the event temporal graph

as Gtemp = {(ei, ej , γi,j)}, where ei and ej denote

events, and γi,j denotes the temporal order between

ei and ej . Similar to Garg, we also add a self-loop

in Gtemp and edges for two directions. For example,

for a BEFORE relation from e1 to e2, we will add

two edges, (e1, e2, BEFORE) and (e2, e1, AFTER).
We only consider BEFORE and AFTER relations

when constructing the event temporal graph. To

propagate time information, we also use local time

arguments as in event argument graphs.

We apply the state-of-the-art event temporal rela-

tion extraction model (Ning et al., 2019) to extract

temporal relations for event pairs that appear in the

same sentence or two consecutive sentences, and

we only keep the relations whose confidence score

is over 90%.

3.4 Event Graph-based Time Propagation

After obtaining the document-level graphs Garg and

Gtemp, we design a novel time-aware graph neural

network to perform document-level 4-tuple propa-

gation.

Graph neural networks (Dai et al., 2016;

Kipf and Welling, 2017; Hamilton et al., 2017;

Schlichtkrull et al., 2018; Velickovic et al., 2018)

have shown effective for relational reasoning

(Zhang et al., 2018; Marcheggiani et al., 2018).

We adopt graph attention networks (GAT, Velick-

ovic et al., 2018) to propagate time through event-

argument or event-event relations. GAT are pro-

posed to aggregate and update information for each

node from its neighbors through attention mecha-

nism. Compared to the original GAT, we further

include relational embedding for edge labels when

performing attention to capture various types of

relations between each event and its neighboring

events.

The graphs Garg and Gtemp together with the

GAT model are placed in the intermediate layer of

our baseline extraction model (Section 3.2), i.e., be-

tween the pre-trained language model encoder and

the 2-layer feed-forward neural classifier (Eq. (2)).

For clarity, we denote all events and entities as

nodes V = {v1, . . . , vn}, and we use ri,j to denote

their relation types. More specifically, we stack

several layers of GAT on top of the contextual-

ized representations of nodes hvi . And we follow

Vaswani et al. (2017) to use multi-head attention

for each layer. We use the simplified notation hvi

to describe one of the attention heads for hk
vi

.

αij =
exp(aij)

∑

k∈N (i) exp(aik)
(4)

h′
vi
= ELU





∑

j∈N (i)

αijW 5hvj



 (5)

where ELU is exponential linear unit (Clevert et al.,

2016), aij is the attention coefficient of node vi and

vj , αij is the attention weight after softmax, and

hvi and h′
vi

are the hidden states of node vi before

and after one GAT layer, respectively. We use N (i)
to denote the neighborhood of vi. The attention

coefficients are calculated through

aij = σ
(

w4

[

W 3hvi ;W 3hvj ;φri,j

])

(6)

where σ is LeakyReLU (Clevert et al., 2016) ac-

tivation function. φri,j
is the learnable relational

embedding for relation type of ri,j that we further

add compared to the original GAT.

We concatenate m different attention heads to

compute the representation of vi for the next layer

after performing attention for each head,

h′
vi
=

mn

k=1

h
′k
vi
. (7)

We stack nl GAT layers to obtain the final repre-

sentations for events and time. These representa-

tions are fed into the 2-layer feed-forward neural

classifier in Eq. (2) to generate the corresponding

probabilities.

3.5 Training Objective

Since we model the 4-tuple extraction task by four

binary classifiers, we adopt the log loss as our

model objective:

L(τi,k, tj) = ✶(τi,k = tj) log pi,j,k

+✶(τi,k 6= tj) log(1− pi,j,k)
(8)

Since the 4-tuple elements are extracted from

time expressions, the model cannot generate

+/-inf (infinite) output. To address this issue,
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we adopt another hyperparameter, inf threshold,

and convert those predicted time values with scores

lower than the threshold into +/-inf values. That

is, we regard the probability pi,j,k also as a con-

fidence score. A low score indicates the model

cannot determine the results for some 4-tuple el-

ements. Thus it is natural to set those elements

as inf. When this case happens in τ−start or τ−end,

we correct the value to be -inf, and when it is

τ+start or τ+end, we set the value to be +inf. This

threshold and its searching will be applied to both

baseline extract and GAT-based extraction systems.

The extraction model may generate 4-tuples that do

not follow the constraints on Eq. (1) and we leave

enforcing the constraints for future work.

4 Experiments

4.1 Data and Experiment Setting

We conduct our experiments on previously intro-

duced annotated data. Statistics of the dataset and

splits are shown in Table 2.

Experiment Setup. We compare our proposed

graph-based time propagation model with the fol-

lowing baselines:

• Local gold-standard time argument: The gold-

standard time argument annotation provides

the upperbound of the performance that a lo-

cal time extraction system can achieve in our

document 4-tuple time extraction task. We

map gold-standard time argument roles to

our 4-tuple representation scheme and report

its performance for comparison. Specifically,

if the argument role indicates the start time

of an event (e.g., TIME-AFTER, TIME-AT-

BEGINNING) we will map the date to τ−start

and τ+start; if the argument role indicates the

end time of an event (e.g., TIME-BEFORE)

we will map the date to τ−end and τ+end; if the

argument role is TIME-WITHIN, we will map

the date to all elements. And we will leave all

other elements as infinite.

• Document creation time: Document creation

time plays an important role in previous ab-

solute timeline construction (Chambers et al.,

2014; Reimers et al., 2018). We build a base-

line that uses document creation time as τ+start

and τ−end for all events.

• Rule-based time propagation: We also build

rule-based time propagation method on top

of local gold-standard time arguments. One

strategy is to set 4-tuple time for all events

that do not have time arguments as document

creation time. Another strategy is to set 4-

tuple time for events that do not have time

arguments as 4-tuple time for their previous

events in context.

• Baseline extraction model: We compare our

model with the baseline extraction model us-

ing contextualized embedding introduced in

Section 3.2. We use two contextualized em-

bedding methods, RoBERTa (Liu et al., 2019)

and Longformer (Beltagy et al., 2020), which

provide sentence-level4 and document-level

contextualized embeddings respectively.

For our proposed graph-based time propagation

model, we use contextualized embedding from

Longformer and consider two types of event graphs:

(1) constructed event arguments, and (2) con-

structed temporal relations and time arguments.

We optimize our model with Adam (Kingma

and Ba, 2015) for up to 500 epochs with a learning

rate of 1e-4. We use dropout with a rate of 0.5

for each layer. The hidden size of two-layer feed-

forward neural networks and GAT heads for all

models is 384. The size of relation embeddings is

50. We use 4 different heads for GAT. The number

of layers nl is 2 for all GAT models. And we use

a fixed pretrained model5 to obtain contextualized

representation for each sentence or document. We

use 10 different random seeds for our experiments

and report the averaged scores. We evaluate our

model at each epoch, and search the best threshold

for infinite dates on the development set. We use

all predicted scores from the development set as

candidate thresholds. We choose the model with

the best performance on accuracy based on the

development set and report the performance on

test set using the best searched threshold on the

development set.

Evaluation Metrics. We evaluate the perfor-

mance of models based on two different met-

rics, exact match rate and approximate match

rate proposed in TAC-KBP2011 temporal slot fill-

ing evaluation (Ji et al., 2011). For exact match

4We use RoBERTa to encode sentences instead of the en-
tire documents because many documents exceed its maximal
input length.

5We use roberta-base and longformer-base-4096 for
RoBERTa and Longformer, respectively.
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Model EM AM

Document Creation Time (DCT) 26.90 27.58
Time Argument Annotation 39.21 39.55
Rule-based Time Propagation

DCT as Default 40.63 41.54
From Previous Event 46.20 48.15

Baseline Extraction Model
RoBERTa 45.70* 49.92
Longformer 48.84* 52.41*

Temporal Relation based Propagation
GAT 53.55* 56.60*
GAT w/ relation embedding 55.56* 58.63*

Argument based Propagation
GAT 55.50* 58.79*
GAT w/ relation embedding 55.84 59.18

Table 4: System performance (%) on 4-tuple represen-

tation extraction on test set, averaged over 10 different

runs. All standard deviation values are ≤ 2%. Scores

with standard deviation values ≤ 1% are marked with

*. EM: exact match rate; AM: approximate match rate

(see Eq. (9)).

rate, credits will only be assigned when the ex-

tracted date for a 4-tuple element exactly matches

the ground truth date. The approximate match

rate Q(·) compares the predicted 4-tuple τ̂i =
〈τ̂−i,start, τ̂

+
i,start, τ̂

−
i,end, τ̂

+
i,end〉 with ground truth τi =

〈τ−i,start, τ
+
i,start, τ

−
i,end, τ

+
i,end〉 by the averaged abso-

lute difference between the corresponding dates,

Q(τ̂i, τi) =
1

4

∑

s∈{+,−},
p∈start,end

1

1 + |τ̂ si,p − τ si,p|
. (9)

In this way, partial credits will be assigned

based on how close the extracted date is to the

ground truth. For example, if a gold standard

date is 2001-01-01 and the corresponding ex-

tracted date is 2001-01-02, the credit will

be 1
1+|2001-01-01−2001-01-02| = 1

2 . If a gold

standard date is inf and the corresponding ex-

tracted date is 2001-01-02, the credit will be
1

1+|inf−2001-01-02| = 0.

4.2 Results

Our experiment results are shown in Table 4. From

the results of directly converting sentence-level

time arguments to 4-tuple representation, we can

find that local time information is not sufficient for

our document-level 4-tuple event time extraction.

And the document creation time baseline does not

perform well because a large portion of document-

level 4-tuple event time information does not coin-

cide with document creation time, which is widely

used in previous absolute timeline construction.

By comparing the performance of basic extraction

framework that uses sentence-level and document-

level contextualized embedding, we can also find

that involving document-level information from

embeddings can already improve the system per-

formance. Similarly, we can also see performance

improvement by involving rule-based time propa-

gation rules, which again indicates the importance

of document-level information for this task.

Our GAT based time propagation methods sig-

nificantly outperform those baselines, both when

using temporal relations and when using arguments

to construct those event graphs. Specifically, we

find that using relation embedding significantly im-

proves the temporal relation based propagation, by

2.01% on exact match rate and 2.03% on approxi-

mate match rate. This is because temporal labels

between events, for example, BEFORE and AFTER,

are more informative than argument roles in tasks

related to time. Although our argument-based prop-

agation model does not explicitly resolve conflict,

the violation rate of 4-tuple constraints is about 4%

in the output.

Our time propagation framework has also been

integrated into the state-of-the-art multimedia mul-

tilingual knowledge extraction system GAIA (Li

et al., 2020a,b) for NIST SM-KBP 2020 evaluation

and achieves top performance at intrinsic temporal

evaluation.

4.3 Qualitative Analysis

Table 5 shows some cases of comparison of vari-

ous methods. In the first example, our argument

based time propagation can successfully propagate

“Wednesday”, which is attached to the event “ar-

rive”, to “talk” event, through the shared argument

“Blair”. In the second example, “Negotiation” and

“meeting” share arguments “Washington” and “Py-

ongyang”. So the time information for “Negotia-

tion” can be propagated to “meeting”. In contrast,

for these two cases, the basic extraction framework

extracts wrong dates.

The third example shows the effectiveness of

temporal relation based propagation. We use the

extracted temporal relation that “rumble” happens

before “secured” to propagate time information.

The basic extraction model does not know the tem-

poral relation between these two events and thus

makes mistakes.

4.4 Remaining Challenges

Some temporal boundaries may require knowledge

synthesis of multiple temporal clues in the docu-
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... Meanwhile Blair arrived in Washington late Wednesday[2003-03-26] for two days of talks with Bush at the Camp David
presidential retreat. ...
Element: Latest Start Date Baseline Extraction: 2003-03-27 Argument based GAT: 2003-03-26
Propagation Path: Wednesday−→arrive−→Blair−→talks

... Negotiations between Washington and Pyongyang on their nuclear dispute have been set for April 23[2003-04-23] in Beijing
and are widely seen here as a blow to Moscow efforts to stamp authority on the region by organizing such a meeting. ...
Element: Latest Start Date Baseline Extraction: +inf Argument based GAT: 2003-04-23
Propagation Path: April 23−→Negotiations−→Pyongyang−→meeting

... Saturday morning[2003-03-22], American Marines and British troops rumbled along the main road from the Kuwaiti border
to Basra, Highway 80, nicknamed the “Highway of Death” during the 1991 Gulf War , when U. S. airstrikes wiped out an
Iraqi military convoy along it. American units advancing west of Basra have already secured the Rumeila oil field, whose
daily output of 1.3 million barrels makes it Iraq’s most productive. ...
Element: Earliest Start Date Baseline Extraction: 2003-03-21 Temporal based GAT w/ rel: 2003-03-22

Propagation Path: Saturday morning−→rumbled
BEFORE
−→ secured

Table 5: Comparison of different system outputs. The first two examples demonstrate the effectiveness of argument

based propagation. The third example demonstrates the effectiveness of temporal relation based propagation.

ment. For example, in Table 1, the latest end date

of the “sentence" event (2012-04-14) needs to be

inferred by aggregating two temporal clues in the

document, namely its duration as nine-year, and its

start date as 2003-04-14.

Temporal information for many events, espe-

cially major events, may be incomplete in a single

document. Taking Iraq war as an example, one doc-

ument may mention its start date and another may

mention its end date. To tackle this challenge, we

need to extend document-level extraction to corpus-

level and then aggregate temporal information for

coreferential events in multiple documents.

It is also challenging for the current 4-tuple rep-

resentation to represent temporal information for

recurring events such as paying monthly bills. Cur-

rently we consider recurring events as different

events and fill in slots separately. Besides, this

work does not capture more fine-grained informa-

tion such as hours and minutes, but it is straightfor-

ward to extend the 4-tuple representation to these

time scales in future work.

Our current annotations are done by linguistic

experts and thus they are expensive to acquire. It

is worth exploring crowd-sourcing methods in the

future to make it more scalable and less costly.

5 Related Work

Event Temporal Anchoring. Event temporal

anchoring is first introduced by Setzer (2002) us-

ing temporal links (TLINKS) to specify the rela-

tion among events and time. However, the Time-

Bank Corpus and TimeBank Dense Corpus using

TimeML scheme (Pustejovsky et al., 2003b,a; Cas-

sidy et al., 2014) is either too vague and sparse or is

dense only with limited scope. Recently, Reimers

et al. (2016) annotate the start and end time of

each event on TimeBank. We have made several

extensions by adding event types, capturing uncer-

tainty by 4-tuple representation instead of TLINKS

so that indirect time can also be considered, and

extending event-event relations to document-level.

Models trained on TimeBank often formulate the

problem as a pair-wise classification for TLINKS.

Efforts have been made to use Markov logical net-

works or ILP to propagate relations (Bramsen et al.,

2006; Chambers and Jurafsky, 2008; Yoshikawa

et al., 2009; Do et al., 2012), sieve-based classi-

fication (Chambers et al., 2014), and neural net-

works based methods (Meng et al., 2017; Meng

and Rumshisky, 2018; Cheng et al., 2020). There

are also efforts on event-event temporal relations

(Ning et al., 2017, 2018, 2019; Han et al., 2019).

Especially, Reimers et al. (2018) propose a deci-

sion tree that uses a neural network based classifier

to find start and end time on Reimers et al. (2016).

Leeuwenberg and Moens (2018) use event time to

construct relative timeline.

Temporal Slot Filling. Earlier work on extract-

ing 4-tuple representation focuses on temporal slot-

filling (TSF, Ji et al., 2011, 2013) to collect 4-tuple

dates as temporal boundaries for entity attributes.

Attempts on TSF include pattern matching (Byrne

and Dunnion, 2011) and distant supervision (Li

et al., 2012; Ji et al., 2013; Surdeanu et al., 2011;

Sil and Cucerzan, 2014; Reinanda et al., 2013;

Reinanda and de Rijke, 2014). In our work, we

directly adopt 4-tuple as a fine-grained temporal

representation for events instead of entity attributes.

Temporal Reasoning. Some early efforts at-

tempt to incorporate event-event relations to per-

form temporal reasoning (Tatu and Srikanth, 2008)

and propagate time information (Gupta and Ji,
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2009) based on hard constraints learned from an-

notated data. Our work is largely inspired from

Talukdar et al. (2012) on graph-based label propa-

gation for acquiring temporal constraints for event

temporal ordering. We extend the idea by construct-

ing rich event graphs, and proposing a novel GAT

based method to assign weights for propagation.

The idea of constructing event graph based on

sharing arguments is also motivated from Center-

ing Theory (Grosz et al., 1995), which has been

applied to many NLP tasks such as modeling local

coherence (Barzilay and Lapata, 2008) and event

schema induction (Chambers and Jurafsky, 2009).

6 Conclusions and Future Work

In this paper, we have created a new benchmark

for document-level event time extraction based on

4-tuple representation, which provides rich rep-

resentation to handle uncertainty. We propose a

graph-based time propagation and use event-event

relations to construct document-level event graphs.

Our experiments and analyses show the effective-

ness of our model. In the future, we will focus on

improving the fundamental pretraining model for

time to represent more fine-grained time informa-

tion and cross-document temporal aggregation.
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