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ABSTRACT

Motivation: In molecular biology, molecular events describe observ-

able alterations of biomolecules, such as binding of proteins or RNA

production. These events might be responsible for drug reactions or

development of certain diseases. As such, biomedical event extrac-

tion, the process of automatically detecting description of molecular

interactions in research articles, attracted substantial research interest

recently. Event trigger identification, detecting the words describing

the event types, is a crucial and prerequisite step in the pipeline pro-

cess of biomedical event extraction. Taking the event types as

classes, event trigger identification can be viewed as a classification

task. For each word in a sentence, a trained classifier predicts whether

the word corresponds to an event type and which event type based on

the context features. Therefore, a well-designed feature set with a

good level of discrimination and generalization is crucial for the per-

formance of event trigger identification.

Results: In this article, we propose a novel framework for event trigger

identification. In particular, we learn biomedical domain knowledge

from a large text corpus built from Medline and embed it into word

features using neural language modeling. The embedded features are

then combined with the syntactic and semantic context features using

the multiple kernel learning method. The combined feature set is used

for training the event trigger classifier. Experimental results on the

golden standard corpus show that 42.5% improvement on F-score

is achieved by the proposed framework when compared with the

state-of-the-art approach, demonstrating the effectiveness of the

proposed framework.

Availability and implementation: The source code for the proposed

framework is freely available and can be downloaded at http://cse.seu.

edu.cn/people/zhoudeyu/ETI_Sourcecode.zip.

Contact: d.zhou@seu.edu.cn

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

In molecular biology, molecular events describe observable alter-
ations of biomolecules, such as binding of proteins or RNA

production. These molecular events influence the formation of

a phenotype, which may be responsible for drug reactions or

development of certain diseases. However, knowledge about

these events is scattered in the scientific literature with continuing

fast growth. Tremendous systematic and automated efforts are

required to use the underlying information. As such, biomedical

event extraction attracted much research interest recently.

Several evaluation tasks, such as BioNLP’09 (Kim et al., 2009),

BioNLP’11 (Kim et al., 2012) and BioNLP’13 (Nédellec et al.,

2013) shared tasks, have been held in recent years to allow re-

searchers to develop and compare their methods for biomedical

events extraction.
In general, each biomedical event consists of a trigger and one

or more arguments. For example, ‘. . . inhibiting tyrosine phos-

phorylation of STAT6 . . .’ describes two events, one is the phos-

phorylation event and the other is the negative regulation event,

which is signaled by the word ‘inhibiting’ and takes the first

phosphorylation event as its argument. In a typical biomedical

event annotation, these two events are represented as follows:

E1 (Event Type:Phosphorylation, Theme:STAT6, ToLoc:

tyrosine)

E2 (Event Type: Negative_regulation:inhibiting Theme:E1)

Biomedical event extraction aims to extract such event informa-

tion from biomedical literature and reformats this extracted

information in structures as represented by the two annotations

presented above. By extracting detailed behaviors of biomol-

ecules, biomedical event extraction can be used to support the

development of biomedical-related databases.
To extract events from texts, most systems rely on a pipeline

procedure, which usually consists of three cascaded modules

including biomedical term identification, event trigger identifica-

tion and event argument detection (Zhou and He, 2011). In such

pipeline-based approaches, it is crucial to identify event triggers

reliably, as errors in an early stage will be propagated and hurt the

performance of the subsequent module. Analysis on the event

extraction results show that460% of extraction errors are attrib-

uted to the errors of event trigger identification (Pyysalo et al.,

2012). To achieve a better performance, existing approaches to

event trigger identification are mostly based on learning classifiers

from annotated data instead of using manually constructed dic-

tionaries containing a list of trigger words or manually defined

linguistic rules. In such approaches, event types are treated as

classes, and the aim is to classify words in sentences as indicating

a particular event type or not by taking the context features

including the syntactic and semantic features into account.*To whom correspondence should be addressed.
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However, such approaches rely on abundant annotated train-

ing data and may not work well when certain event instances are

rare in the training data. For example, the word ‘proteolysis’

does not occur as an event trigger for catabolism type in the

training data of the multi-level event extraction (MLEE)

corpus (Pyysalo et al., 2012). Therefore, it is difficult to recognize

it as an event trigger in the sentence ‘The effects of IGF-1 are

mediated principally through the IGF-1R but are modulated by

complex interactions with multiple IGF binding proteins that

themselves are regulated by phosphorylation, proteolysis, poly-

merization, and cell or matrix association’, which appears in the

test set. Nevertheless, we notice that another word ‘hydrolysis’

was annotated as an event trigger in the training data as shown in

Table 1. If we search through Medline (http://www.ncbi.nlm.nih.

gov/entrez/query/static/overview.html), we can find that the two

words ‘proteolysis’ and ‘hydrolysis’ occur in similar context thus

tend to have similar meanings following the distributional hy-

pothesis (Harris, 1970). Examples of the similar context where

‘proteolysis’ and ‘hydrolysis’ occur in Medline are presented in

Table 2. If we can learn such domain knowledge and incorporate

it into trigger word identification, then ‘proteolysis’ might be

correctly identified as an event trigger even if it did not appear

in the training data at all.

In this article, we argue that biomedical domain knowledge,

such as words, tends to occur in similar context, is highly related

and this can be incorporated into the learning process of the

event trigger classifier to improve the performance of trigger

word identification. In specific, we propose a novel framework

to learn biomedical knowledge from a large text corpus built

from Medline and embed it into word features using neural lan-

guage modeling. The embedded features are further combined

with the well-designed syntactic and semantic context features

using the multiple kernel learning (MKL) method for classifier

training. We conducted extensive experiments on the MLEE

corpus (Pyysalo et al., 2012), and the results show that42.5%

improvement on F-score is achieved using the proposed frame-

work when compared with the state-of-the-art approach, demon-

strating the effectiveness of the proposed framework.

The rest of the article is organized as follows. Section 2 pre-

sents the proposed framework, which consists of three steps,

domain knowledge embedding, local context features extraction

and MKL. Experimental setup and results are discussed in

Section 3. Finally, Section 4 concludes the article.

2 OUR APPROACH

Our proposed framework for event trigger identification works

as follows, which is illustrated in Figure 1. First, scientific pub-

lications from Medline are crawled to form a corpus where

domain knowledge can be obtained. Then a neural language

model is built from such a corpus using unsupervised learning.

The distributional representation for each word is induced as the

feature of the word (word embedding). Then, for sentences in the

training and testing datasets, protein name identification, syntac-

tic parsing and dependency parsing are performed and local

context features are extracted from the parsing results. After

that, features induced by neural language model and features

extracted from syntactic and dependency parsing results are com-

bined through MKL. Finally, training and testing are conducted

on the combined feature set.
In what follows, we first describe how to formulate the task of

event trigger identification as a classification problem, in which

two sets of features, domain knowledge embedding and local

context features, are used. Then, we present how to learn the

parameters of our proposed unified classification framework

using MKL. Finally, we discuss how the two feature sets can

be constructed.

2.1 Problem definition

Event trigger identification in the biomedical domain can be seen

as the task of assigning labels to words. Existing approaches for

event trigger identification typically rely on annotated training

data where those event trigger words are labeled with their cor-

responding event types. A rich set of manually designed features

are then extracted from annotated sentences and fed into a clas-

sification algorithm such as support vector machines (SVMs) for

training. In our approach here, we adopt a similar procedure

of training a classifier from annotated data for trigger word

identification. However, apart from the annotated training

data, we additionally crawled articles from Medline to form a

corpus where domain knowledge can be extracted.
Given sentences S ¼ fsi : wi1wi2:::wini , i ¼ 1:::Lg, their corres-

ponding trigger annotations T ¼ fti : ai1ai2:::aini , i ¼ 1:::Lg
and an additional unannotated corpus where domain knowledge

can be extracted, Su ¼ fsi : wi1wi2:::wini , i ¼ ðLþ 1Þ, ðLþ 2Þ:::
ðLþULÞg where L and UL are the numbers of sentences in

the training data and the domain corpus, respectively, the object-

ive is to estimate a hypothesis f : S�T minimizing the prediction

error on unseen data. For traditional machine learning

Table 2. Examples of the similar contexts where the two words

‘proteolysis’ and ‘hydrolysis’ occur in Medline

Hydrolysis Proteolysis

An increase of the products of

casein hydrolysis, the proteose–

peptone (p–p) fraction and

minor (m) caseins

Use of indices of proteolysis of

caseins such as the proteose–

peptone, m-casein and PI

AApeptides are resistant to

enzymatic hydrolysis

With the ease of resistance to

proteolysis, the development of

sequence-specific AApeptides . . .

Table 1. The sentences in the MLEE Corpus in which ‘hydrolysis’ was

annotated as an event trigger

Sentences

1 Angiostatin inhibits both ATP synthesis and ATP hydrolysis (Moser

et al., 2001) and interferes with intracellular pH regulation (Wahl and

Grant, 2002; Wahl et al., 2002).

2 Our data suggest that VEGFR2-mediated regulation of endothelial

function is dependent on different, but specific, Rab-mediated GTP

hydrolysis activity required for endosomal trafficking.
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approaches, f is determined by minimizing the loss between the

prediction fð�ðwÞÞ for the training instance w and its actual label

aw based on some loss function Loss. Here �ðwÞ is the feature set

related to w. As will be shown in Section 2.4, local context

around w is used for constructing �ðwÞ. Moreover, to make

sure that words occurring in similar contexts share the same

class label, the loss between the prediction f2ð�ðw
0ÞÞ of w0 and

aw is also minimized, where w0 is the word that is found to have

highest contextual similarity with w from in the domain corpus

and �ðw0Þ is another type of feature set related to w0. As will be

shown in Section 2.3, contextually similar words can be modeled

using neural language modeling. Because w0 is the word with the

highest contextual similarity with w, �ðw0Þ can be approximated

as �ðwÞ. Our final objective function is

f̂ ¼ argmin
f¼ð f1, f2Þ2�

X

w

ðLossð f1ð�ðwÞÞ, awÞ þ rLossð f2ð�ðwÞÞ, awÞÞ ð1Þ

where r is a parameter controlling the trade-off between two

losses. When r¼ 0, Equation (1) reduces to the object function

for classification based on local context features only.

2.2 Parameter learning

In our framework, we use the local context features derived from

the annotated training data for � and use word embeddings

induced from the domain corpus using neural language modeling

for �. We use SVM for both f1 and f2 and f1 ¼ hw1,�ðwÞi þ b1
and f2 ¼ hw2,�ðwÞi þ b2. Therefore, the above problem can then

be solved by optimizing the parameters of w1,w2, b1, b2, r.

However, these parameters cannot be optimized directly using

the general learning approach for SVM. By considering param-

eters optimization as learning the optimal weights of different

types of features from the data automatically, the problem is

converted into to feature combination. Under kernel learning,

feature combination is translated into kernel combination by

defining two kernels K1,K2 based on �ðwÞ,�ðwÞ. There are

many possible ways for kernel combination. A simplest one is

to average several kernels by setting r¼ 1.
In our work here, we use MKL (Bach et al., 2004), which has

been shown to produce good results in object classification in

computer vision (Gehler and Nowozin, 2009). The aim of MKL

is to learn a kernel combination during the training phase of the

algorithm by optimizing jointly over a linear combination of

kernels
Pm

i¼1 �iKiðw,w
0Þ and the parameters of an SVM, where

m is the number of kernels to be combined. Under MKL, the

object function described in Equation (1) is changed to

min
�, �, b

1

2

X2

i¼1

�i�
TKi�þ C

XN

j¼1

Lðawj
, bþ

X2

i¼1

�iKiðwÞ
T�Þ ð2Þ

where N is the number of training instances, C is a predefined

positive trade-off parameter between model simplicity and clas-

sification error, typically used in SVMs, � ¼ ð�1, :::,�NÞ
T is the

vector of dual variables corresponding to each separation con-

straint, K1ðwÞ ¼ ðh�ðw1Þ,�ðwÞi, :::, h�ðwNÞ,�ðwÞiÞ
T, K2ðwÞ ¼

ðh�ðw1Þ,�ðwÞi, :::, h�ðwNÞ,�ðwÞiÞ
T, K1 ¼ ðh�ðwiÞ,�ðwjÞiÞN�N,

K2 ¼ ðh�ðwiÞ,�ðwjÞiÞN�N and Lðawj
, tÞ ¼ maxð0, 1� awj

tÞ is the

hinge loss. For efficiency and interpretability, the objection func-

tion subjects to

�1 þ �2 ¼ 1,�1 � 0,�2 � 0 ð3Þ

Here, �1 and �2 are the weighting of two features set. The prob-

lem can be solved using the SimpleMKL (Rakotomamonjy et al.,

2008) Toolbox (http://asi.insa-rouen.fr/enseignants/*arakotom/

code/mklindex.html). The decision function is of the following

form,

signð
X2

i¼1

�iðKiðxÞ
T�þ bÞÞ ð4Þ

2.3 Word embeddings learned by neural

language modeling

We use neural language modeling (Huang et al., 2012) to learn

word representations by discriminating the next word given its

local context and global context. Given a word sequence

si ¼ ðwi1,wi2, :::,winÞ and a document dj ¼ ðwj1,wj2, :::,wjmÞ,

which contain si, the goal of the model is to discriminate the

win (the correct one) from a random word w. Thus, the object

function of the model is to minimize the ranking loss for each

ðsi, djÞ:
X

i

X

j

X

w2Vnwin

maxð0, 1� fðsi, djÞ þ fðswi , djÞ, ð5Þ

where swi ¼ wi1,wi2, :::,wi, n�1,w is the sequence by changing the

last word win into w. The dataset for learning the language model

can be constructed by considering all the word sequences in the

Medline corpus. Positive examples are the word sequences from

Corpus

Medline 
Corpus

Unsupervised 
Learning

Pre-
processing Local

Context 
Features
Etraction

Neural 
LM

Kernel 
Combination

Training
Data

SVM
Classifier

Event
Triggers

Feature 
Set 1

Feature 
Set 2 Testing 

Data

Fig. 1. The system architecture of our proposed framework for event trigger identification

Event trigger identification using domain knowledge
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Medline, whereas negative examples are the same word sequence
with the last word replaced by a random one.
Instead of using only local context for language model learn-

ing, document context (or global context) is also considered.
Thus, the score function fðsi, djÞ is replaced by two functions,
scorelðsi, djÞ and scoregðsi, djÞ, which are defined to capture
local context and global context, respectively.

The score function of local context scorelðsi, djÞ is calculated by
a neural network with one hidden layer:

al1 ¼ gðWl
1X

l þ bl1Þ ð6Þ

scorel ¼Wl
2a

l
1 þ bl2 ð7Þ

where Xl ¼ ½x1, x2, :::, xn� is the concatenation of the n word
embeddings representing sequence si, g is an element-wise acti-
vation function such as tanh, al1 is the activation of the hidden

layer with hl hidden nodes, Wl
1 and Wl

2 are the first and second
layer weights of the neural network, respectively, and bl1, b

l
2 are

the biases of each layer.

The score function of global context scoregðsi, djÞ is calculated
by a two-layer neural network:

ag1 ¼ hðWg
1X

g þ bg1Þ ð8Þ

scoreg ¼Wg
2a

g
1 þ bg2 ð9Þ

where

Xg ¼ ½

Pm

t¼1

�ðwjtÞXt

Pm

t¼1

�ðwjtÞ

, xn�

which is the weighted average of all word vectors in the docu-
ment dj, � is a weighting function describing the importance of

word wjt in the document dj, h is an element-wise activation func-
tion such as tanh, ag1 2 R

hg�1 is the activation of the hidden layer
with hg hidden nodes, Wg

1 and Wg
2 are the first and second layer

weights of the neural network, respectively, and bg1, b
g
2 are the

biases of each layer. The local score preserves word order and
syntactic information, whereas the global score uses a weighted

average that is similar to bag-of-words features, capturing more
of the semantics and topics of the document.
The gradient of the objective is sampled by randomly choosing

a word from the vocabulary as a corrupted example for each
sequence–document pair ðsi, djÞ. The derivative of the ranking
loss is taken with respect to the parameters and these weights

are updated via backpropagation.

2.4 Local contexts features

The syntactic and semantic features used in the framework are

generated from the outputs of GDep (a dependency parser)
(Sagae and Tsujii, 2007) and Enju parser (a syntactic parser)
(Miyao and Tsujii, 2008).

All the features used in the framework are extracted based on
(Pyysalo et al., 2012), described as follows:

� Lexical and syntactic features of the word itself. The features
such as whether the word has a capital letter, whether it is at

the beginning of the sentences, whether it has a number,

whether it has a symbol, whether it is in a trigger word

dictionary, whether it is in a protein base form, its POS

tag and n-grams of characters (n ¼ 2, 3, 4) are extracted.

For features like whether it has certain property, boolean

value is used for the feature value. In addition, to check

whether a word is in the trigger word dictionary, we con-

structed a dictionary by collecting all the trigger words from

the training set. Triggers that contain more than one word

are filtered. Also, hyphenated compound words are added

into the dictionary if one of its words already appears in the

trigger word dictionary.

� Local context features. For the sequence of three words

before or after the candidate word, n-grams (n ¼ 1, 2, 3, 4)

are used. For example, for the word ‘retarget’ in the sentence

‘The binding of I kappa B/MAD-3 to NF-kappa B p65 is

sufficient to retarget NF-kappa B p65 from the nucleus to

the cytoplasm’, the word sequence ‘is sufficient to retarget

protein from the’ is used to generate the relevant n-grams.

Also, each word is represented by its base form, the POS tag

and the relative position (before or after) to the target word.

� Local dependency features. The two-depth path started from

the candidate word in the dependency tree generated from

the GDep parser is identified first. Features are then ex-

tracted from the path such as n-grams (n¼ 2) of dependen-

cies, n-grams (n ¼ 2, 3) of words represented by their base

forms and the POS tags and n-grams (n ¼ 2, 3, 4) of depen-

dencies and words. For word tokens not having two-depth

paths, such as the root node or the direct children of the root

node, these types of features are ignored. N-grams (n¼ 2) of

dependencies are represented as dependency1–dependency2.

Similarly, n-grams (n ¼ 2, 3) of words or n-grams

(n ¼ 2, 3, 4) of dependencies and words are represented as

word1–word2–word3 or word1–dependency1–word2 and so

on. For example, for the word ‘retarget’ in the sentence ‘the

binding of I kappa B/MAD-3 to NF-kappa B p65 is suffi-

cient to retarget NF-kappa B p65 from the nucleus to the

cytoplasm.’, its two-depth path ‘retarget! AMOD! suf-

ficient! PRD! is’ can be retrieved from the GDep par-

sing results. Its n-grams (n¼ 2) of dependencies are given as

‘AMOD PRD’.

� Shortest path features. The shortest path, a directed path

between the candidate and the closest protein, is also

retrieved from the dependency parse generated from GDep

parser. The vertex walks, edge walks, n-grams (n ¼ 2, 3, 4) of

dependencies, n-grams (n ¼ 2, 3, 4) of words represented as

base forms plus POS tags and the length of path are ex-

tracted as the path features. For example, for the word

‘retarget’ in the sentence ‘The binding of I kappa B/MAD-

3 to NF-kappa B p65 is sufficient to retarget NF-kappa B

p65 from the nucleus to the cytoplasm.’, its shortest path is

‘retarget OBJ  protein’. The length of path that is 1,

edge walks as retarget OBJ  protein, vertex walks as

OBJ can be extracted. The reason of using shortest path is

that a candidate and its closest proteins are much more

likely to be involved in a biomedical event. Thus, features

extracted from the shortest path should be useful for detect-

ing triggers in biomedical event extraction.
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3 EXPERIMENTS

In this section, we present our experiments to evaluate the effect-

iveness of the proposed framework. We will first discuss results

obtained on event trigger identification in comparison with the

best performance obtained so far. We will then present perform-

ance comparison results with or without using the MKL method

for comparison, followed by the results of using neural language

models trained under different corpora. Finally, we compare our

results with those obtained using the latent Dirichlet allocation

(LDA) model as another distributional semantics approach

instead of neural language modeling.

3.1 Experimental setup

We used MLEE corpus for our experiments on trigger words

identification. Instead of focusing exclusively on molecular-

level entities and process, MLEE corpus is extended to encom-

pass all levels of biological organization from the molecular to

the whole organism. The corpus is generated from 262 PubMed

abstracts on angiogenesis, which involves a tissue/organ-level

process closely associated with cancer and other organism-level

pathologies. Texts in that domain represent a good test case for

event extraction across multiple levels of biological organization.

The annotation follows the guideline formalized in the BioNLP

2009 Shared Task on event extraction. In this guideline, events

are n-ary associations of participants (entities or other events)

with specific role such as theme and cause. Each event is assigned

a type from a fixed set defined for the task (e.g. binding and

phosphorylation) and is associated with a specific span of text

stating the event, termed the event trigger. The events are cate-

gorized as four groups such as ‘ANATOMICAL’,

‘MOLECULAR’, ‘GENERAL’ and ‘PLANNED’, which are

further classified into 19 classes. These 19 classes are the target

classes of our trigger word classifier. It is worth noting that we

used a combination of training and development datasets of the

MLEE corpus for training, and the test set for testing.

To train a neural language model, we additionally built a

corpus from Medline because of its wide coverage of topics in

the biomedical domain. Abstracts of biomedical literature pub-

lished in 2011 and 2012 were retrieved to build the corpus.
All the sentences in the Medline corpus were preprocessed

such as lowercasing and stemming. We chose the most frequent

words in the corpus to construct vocabularies with different size

D ¼ f15, 000, 30, 000, 60, 000, 90, 000g. Words starting with

a digital number are mapped to the ‘NUMBER’ token. Words

starting with a special character are mapped to the ‘UNUSUAL’

token. Other rare words not in the dictionary are replaced with

the ‘UNKNOWN’ token. For neural language model training,

we used 50 dimensional embeddings and set the number of

hidden units to 100.

3.2 Experimental results

This section presents the evaluation results in details. In our

framework, the one-versus-rest SVMs are used for trigger word

classification. To alleviate the unbalanced classification problem,

we boosted the positive examples by placing more weights on

them during training.

3.2.1 Event trigger identification results We implemented a

baseline following the approach proposed in (Pyysalo et al.,

2012), which achieved the state-of-the-art performance on trigger

word identification using the features extracted from the syntac-

tic and semantic parsing results as described in Section 2.4. We

conducted experiments on the MLEE corpus and compared our

framework with the baseline approach. Table 3 lists the recall,

precision and F-score obtained on the test set of the MLEE

corpus. In the results reported here, we trained a neural language

model on the Medline corpus with the vocabulary size of 30 000.

Using the features induced from the learned neural language

model, the performance of event trigger identification is

improved significantly with �5% on precision. The overall im-

provement on F-score is �2.5%. To further investigate how the

improvement is achieved, we analyzed the experimental results of

the baseline approach and the proposed framework. We found

that positive instances identified correctly by the baseline ap-

proach are still identified correctly by the proposed framework

in 97.8% of cases. Out of the false-negative instances identified

by the baseline, 7.8% were correctly identified as positive in-

stances by our framework.
To further study the difference of our proposed framework

against the existing state-of-the-art approach in different event

categories, we list the detailed results in each event category in

Table 4. It can be observed from the table that of 19 event types,

our proposed framework outperforms the baseline approach on

13 event types and gives almost identical results on another 5

event types. To investigate the performance improvement under

different event types, we analyze the relationship between per-

formance improvement and the size of the training data in each

event category. The results are illustrated in Figure 2. It can be

observed that the performance improvement decreases when the

size of the training data increases. The largest improvement

(100%) is achieved in the ‘dephosphorylation’ event type when

there are only five training instances. Our approach successfully

identified the ‘dephosphorylation’ event triggers in all three in-

stances in the test set, while the baseline approach failed to iden-

tify any of them. When the training data are relatively abundant,

our approach appears to have less improvement compared with

the baseline.
From the above observations, we can speculate that our

proposed framework with domain knowledge incorporated is

particularly effective when facing with scarce training data.

The only exception is the ‘transcription’ event type with 30 train-

ing instances for which the baseline identified one event trigger

correctly from the test set, while our approach failed to recognize

any. It is shown as negative performance improvement in

Figure 2. One possible reason is that words contextually similar

to ‘transcription’ are not annotated in the training set either.

Table 3. Comparison of the performance of event trigger identification

Method Recall (%) Precision (%) F-score (%)

Baseline 81.69 70.79 75.84

Proposed 81.29 75.56 78.32
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3.2.2 Comparison of feature combination methods To investigate
the effectiveness of the feature combination method based on

MKL, experiments were conducted where MKL is replaced

with a simple averaging method. In the average method, features

induced by neural language model and features extracted from

syntactic and semantic parsing results are combined with equal

weights. Table 5 shows the comparison result of the two meth-

ods. It can be observed that the precision of event trigger iden-

tification is improved by 43% when using MKL for feature

combination. Nevertheless, its recall value slightly dropped.

The overall improvement on F-score is �1.2%. Although the

improvement appears to be marginal, the MKL method should

still be favored for feature combination when precision value

could well be regarded as much more important than recall in

the open biomedical domain.

3.2.3 Impact of dictionary size on neural language modeling The

vocabulary size D in the neural language model is set in advance.

If D is too small, some semantically important words might be

omitted. On the contrary, ifD is too big, some noisy words might

be included and it becomes expensive to train the neural lan-
guage model. To explore whether and how vocabulary size in

the neural language model impacts the trigger word identifica-

tion performance of the proposed framework, four different

vocabularies were used in neural language model learning. We

first list in Table 6 the coverage of all the distinct words and the

coverage of all the words in our crawled Medline corpus for each

vocabulary. It shows that the top most frequent words occur

most of the time. For all the vocabularies we experimented

Table 4. Performance comparison of event trigger identification in

different event types

Event

category

Event type Method Recall

(%)

Precision

(%)

F-score

(%)

Anatomical Cell proliferation B 69.77 63.83 66.67

P 67.44 78.38 72.5

Development B 83.51 68.07 75

P 81.44 69.30 74.88

Blood vessel develop B 96.33 95.70 96.01

P 97.33 98.65 97.99

Growth B 83.93 69.12 75.81

P 83.92 77.05 80.34

Death B 94.29 56.90 70.97

P 88.57 72.09 79.49

Breakdown B 34.78 80 48.48

P 34.78 80 48.48

Remodeling B 60 85.71 70.59

P 60 85.71 70.59

Molecular Synthesis B 50 33.33 40

P 50 40 44.44

Gene expression B 93.94 83.78 88.57

P 92.42 84.72 88.41

Transcription B 14.28 25 18.18

P 0 0 0

Catabolism B 0 0 0

P 33.33 16.67 22.22

Phosphorylation B 100 50 66.66

P 100 75 85.71

Dephosphorylation B 0 0 0

P 100 100 100

General Localization B 83.46 79.86 81.62

P 85.71 80.85 83.21

Binding B 76.36 84 80

P 78.18 81.13 79.63

Regulation B 60.37 46.48 52.52

P 53.05 56.49 54.72

Positive regulation B 86.73 67.85 76.14

P 86.41 71.58 78.30

Negative regulation B 77.03 74.35 75.66

P 78.83 77.09 77.95

Planned Planned process B 75 53.92 62.73

P 75.64 56.46 64.66

Note: ‘B’ denotes the baseline approach, ‘P’ denotes our proposed method in the

‘Method’ column and the better performance is shown in boldface.
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Fig. 2. Performance improvement versus size of training data in each

event category

Table 6. The coverage of all the distinct words and the coverage of all the

words in our crawled Medline corpus for each vocabulary

Size of

vocabulary

Coverage of all the

distinct words (%)

Coverage of all

the words (%)

15 000 0.84 95.07

30 000 1.68 96.57

60 000 3.36 97.56

90 000 5.04 97.98

Table 5. Event trigger identification results with or without MKL

Method Recall (%) Precision (%) F-score (%)

Averaging 82.89 72.14 77.14

MKL 81.29 75.56 78.32
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here, they cover at least 95% of word occurrences in the whole

corpus.

Table 7 lists the results obtained on the test set of the MLEE
corpus with different vocabulary size. It can be observed that the

final performance of the proposed framework outperforms the

baseline approach regardless which vocabulary was used. The

relative improvement on F-score ranges between 1.7 and 2.5%.
We also observe that increasing the vocabulary size improves the

performance with the peak reached at 30 000. Based on the above

observation, we can conclude that the choice of the vocabulary

can be made by considering its coverage of the words in the
corpus.

3.2.4 Learning neural language model from difference source To
explore the effectiveness of embedding domain knowledge into

language model, we compare the event trigger identification re-
sults with neural language model trained on Wikipedia

(Collobert et al., 2011). The Wikipedia corpus contains a wide

range of topics in general domains. The results are shown in

Table 8. Compared with the baseline approach, using the
Wikipedia corpus did not appear to improve the performance

of event trigger identification. Nevertheless, learning the neural

language model from the Medline corpus gives superior perform-

ance on event trigger identification than the baseline. Only
domain-specific knowledge can be used to improve the perform-

ance of event trigger identification.

3.2.5 Neural language model versus topic model To further in-

vestigate the effectiveness of neural language model, we compare

the event trigger identification results with word classes induced
by the LDA model, which is a generative graphical model ori-

ginally proposed for topic discovery (Blei et al., 2003). Assuming

that each document is represented as an unordered collection of

words and characterized by a particular set of topics, disregard-
ing grammar and word order, the LDA model can be used for

grouping the words in similar topics in an unsupervised way.

Each word in the LDA model is represented as probability

distribution over topics, and then combined with the features

described in Section 3.2 for training SVM classifiers for event

trigger identification. In our experiments, the LDA model by

varying the number of topics {50, 100, 150, 200, 250} using the

Stanford topic modeling toolbox (http://nlp.stanford.edu/down-

loads/tmt/tmt-0.4/). The optimal topic number is chosen using

the perplexity measure on the 10% held-out set from our

Medline corpus. The final event trigger identification results

using LDA are reported in Table 9 by setting the topic number

to 200. It can be observed that LDA only gives an almost neg-

ligible improvement of 0.24% in F-score compared with the

baseline and it performs worse than our proposed framework

using neural language modeling. Two possible reasons are (i)

LDA ignores word ordering in documents, which is important

when comparing words occurring in similar semantic context and

(ii) it is difficult to choose the proper number of topics (or word

classes) that group words into well-separated semantic clusters.

On the contrary, our proposed framework is based on neural

language modeling, which learns the distributional representa-

tion of words without the need of specifying the number of

induced word classes.

4 CONCLUSIONS AND FUTURE WORK

In this article, we have proposed a novel framework to construct

a feature set for learning classifiers for event trigger identifica-

tion. In particular, biomedical domain knowledge is learned

from a large text corpus built from Medline and embedded

into word features using neural language modeling. The

embedded features are combined with the well-designed syntactic

and semantic context features, which is further used for event

trigger classifier learning. Experimental results on the MLEE

corpus show that 42.5% improvement on F-score is achieved

by the proposed framework when compared with the state-of-

the-art feature-based approach, demonstrating the effectiveness

of our proposed framework. In future work, we will further in-

vestigate the feasibility of our proposed framework on other

corpora. Another possible future direction is to incorporate

domain-specific prior knowledge into neural language model

learning using semi-supervised learning to further improve the

performance of event trigger identification.
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Table 7. Event trigger identification performance with neural language

model with different vocabularies

Size of vocabulary Recall (%) Precision (%) F-score (%)

15 000 82.03 73.90 77.75

30 000 81.29 75.56 78.32

60 000 81.29 75 78.02

90 000 80.60 74.68 77.53

Table 9. Event trigger identification performance using neural language

modeling versus LDA

Method Recall (%) Precision (%) F-score (%)

Baseline 81.69 70.79 75.84

LDA 81.12 71.64 76.08

NLM 81.29 75.56 78.32

Table 8. Event trigger identification performance with neural language

model trained from difference sources

Method Recall (%) Precision (%) F-score (%)

Wikipedia 82.60 70.50 76.07

Medline 81.29 75.56 78.32
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