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Abstract— This paper examines event-triggered broadcasting If such coupling is not weak, then we must resort to
of state information in distributed control systems implenented  distributed feedback control laws. In a distributed netweor
over wireless communication networks. Event-riggering e-  ¢oniro| system, a given subsystem uses its state and the
quires a subsystem to only broadcast its state information fven tat fits i ’ diat iahb to det . it trol
the local state error exceeds a given threshold. The paper 5 a_es orits 'mm_e late neighbors 1o de e.rmlnell S contro
designs an event triggering scheme that assures asymptotic action. Because it uses feedback from neighboring subsys-
stability of the entire networked system. The results apply tems, decentralized control can assure asymptotic gtabili
to networks of Iinfear timg-invariant systems. We derive Iover with a higher degree of subsystem coupling. Decentral-
bounds on the estimated time to next broadcast and presentrsk ;04 controllers must exchange information between neares
ulation results showing that event triggering allows a subgstem . L . .
to adjust its broadcast frequency to the amount of activity n its nelghbors, S0 that some Cor_nmgnlcatlo_n effort is required.
immediate neighborhood. These results are significant bease ~ Provided the neighborhood size is relatively small, then th
they show how one might stabilize distributed control systsms communication effort required will scale well as the system
over ad hoc wireless networks without necessarily requirig  sjze increases.
a high degree of synchronzation within the communication The use of wireless communication raises important is-
network. sues regarding the impact that such communication has on

I. INTRODUCTION the control system’s performance. Wireless communication

A networked dynamical system consists of numerou€d" only broadcast data in discrete packets. Moreover, the
loosely coupled systems. These networked systems are folf{eless media is a resource that is usually accessed in
throughout our national infrastructure with specific exégsp & Mutually exclusive manner by neighborhood subsystems.
being the electrical power grid and transportation network 'NiS means that the throughput capacity of such networks is
In recent years, it has become popular to refer to sudinited. So one important issue in the implementation ohsuc
networked systems asber-physical systems. Increased de- distributed control systems is to identify methods for more
mands on such infrastructure due to demographic shifts af§ectively using the limited network bandwidth availakde
greater regulatory burdens have made it increasingly diffic ransmitting state information.
to reliably manage these networks in a cost effective manner ThiS paper addresses this issue through the use of an
There is, therefore, a compelling national need to develdpyént-triggered feedback scheme. Event-triggering has th
more robust and cost effective methods for controlling sucptPSystem broadcast its state information when its local
networked systems. "error” signal exceeds a given threshold. Using a Lyapunov

It is impractical to control such large-scale systems iRnalysis similar to that suggested by Tabuada et al. [1],
a centralized manner. Centralized control algorithms woulVe Show t,hat an event-triggering rule based only on the
require state information from all subsystems before confUPsystem's local state error can guarantee the asymptotic
puting the control action. This centralization requireseayy  Stability for the entire group. The analysis is valid forelar
powerful communication network to transport state informalime-invariant subsystems that have full access to theallo
tion in a timely manner and it requires extremely detaile§tate. We establish bounds on the "time to next broadcast
models of subsystem interactions. Both of these requiresnef@d use simulation results to demonstrate how the approach
can greatly limit the scalability of centralized approashe 2dapts the broadcast rate to variations in a subsystem’s
networked control systems. external disturbance environment.

For this reason, many researchers have begun investigating
either decentralized or distributed approaches to netegbrk i . . .
control. Decentralized control strategies only use a sub- 11iS paper deals with event-triggering in distributed con-
system’s local state data to control the given subsysteffo! Of loosely coupled systems that may be spread over
Such local controls can be effective provided the degre® Wide spatial domain. Such systems arise naturally in the
of coupling between subsystems is weak. Note that su@pntrol of geographically distributed systems. In [2] itsva
decentralized approaches have no run-time communicati§AOWn that optimal controllers with a quadratic objectiosp
requirements since we rely heavily on a priori system modef€SS an inherent degree of spatial localization. This sigge
to assure the robustness of the decentralized control law. that it should be possible to effectively regulate the behav

ior of distributed systems using local interactions betwee
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there are a large number of flow control applications [5]1], and self-triggered feedback [20]. All of this prior woqr
[6] which may be more appropriately viewed as infinite-however, has focused on using event-triggered feedback
dimensional networked systems. Significant progress was single processor real-time systems. This paper uses the
made toward this goal in an approach that modelled systeapproach presented in [1] to design event triggering rules
coupling using linear fractional transformations [7] [BJore  that allow agents to adapt their broadcasts to the current
recent work has used integrator backstepping to extend tlastivity level in the system.
approach to networks of nonlinear systems [9].

In all of this prior work, it is assumed that subsystem Ill. PROBLEM STATEMENT
controllers can communicate at will. In practice, however, Thijs section formally presents the assumed system model
such communication takes place over a digital networlnd establishes some of the necessary mathematical motatio
which means that information is transmitted in discreteetim  Notational Conventions: If V : ®" — % is a function
rather than continuous-time. Moreover, all real networkgen its directional derivative with respect to the diffetial
have bandwidth limitation that can cause delays in messagguationi = f(x)is
delivery [10]. Such delays can have a major impact on overall
system stability. Early work in the study of networked cohtr LV = v (x)
systems derived bounds on the maximum admissible time ' O
interval (MATI) that a message can be delayed while stillf z € R, then we let|z||2 denote the Euclidea?rnorm of
maintaining closed loop system stability [11]. This worki le this vector. IfA € > is a real matrix we lef| A|| denote
to scheduling methods [12] that were able to assure the MAThe matrix gain induced with respect to the Euclidezan
was not violated. All of this early work in networked controlnorm. We let\ denote the sef1,2,--- , N} of N integers
systems confined its attention to communication networksnd we let|\/| denote the number of elements in that set.
that are traditionally found in industrial applicationchuas The system under study is a group Of linear time-

CAN (control area network) buses. invariant systems. The local state of thk subsystem (also
In recent years there has been considerable interest dalled anagent) is a functionz; : # — R™ wheren; is
developing distributed controllers in which the communithe local state space dimension and N = {1,2,--- , N}.

cation infrastructure is realized over an ad hoc wirelesshis function satisfies the linear differential equation
network. This is usually found in sensor network applicasio

[13]. The problem faced in using wireless networks is Ti(t) = Awi(t) + Biwi(t) + Z Hij;(t)
that throughput capacity is limited[14]. As network dewnsit neN;
increases, the throughput seen by an individual agentasymp ~ 2:(0) = o (1)

totically approach zero. There is, therefore, great irsteire wherez;, € %™ is the initial state andV; A’ is the set

being able to develop networked control systems which At neighbors for agenti;. We assume that the neighborhood

extremely frugal in their use of network bgndmdth.. etsN; are such that ¢ N;. We further assume that being
One approach for reducing the bandwidth requirements : ) . N
e . IN a neighborhood is a symmetric relation in the sense that
within a networked control system is to reduce the frequenc . . X e
. . ; Y . 7€ N if and only if i € Nj. The signalu; : ® — R™
with which agents communicate. The basic intuition behin . .
) . ) . ..~ . IS the local control signal generated by agéatcontroller
this approach is that when a system is at its equilibrium : ) . " X1
) . . . ... .._wWherem; is the dimension of the control sed,; € R"i*"i,
point, there is little need for it to communicate with its

R My X Mg . M XN 1 1
neighbor. In fact, if we consider recent work in quantized,.’ < §R.  andH;; € R are matrices of appropriate
feedback control [15], it is apparent that the transmissioﬂ'menS'on'

. ’ . For eachi € A/ we assume there exigt; € R™ixX",
rates required to assure closed loop stability are weIIvbeIoP‘ € Rrixni andQ; € R X such that
those usually used in real-life computer controlled systdin ~ * ' !
should therefore be possible to adap_tively adjust trarsionis A:';;ipi + P Ak, < —Q; 2)
rates to the needs of the system in a way that only uses
channel resources when the system has been perturbed aW4gre
from its equilibrium point.

This then is the motivation of this paper. Namely we
want to adaptively adjust agent broadcasts in a manngiote that this inequality is equivalent to requiring thaé th
that is sensitive to what is currently happening within théunction V; : ®* — R define asVi(z;) = 2T Pu; is a
system. One approach for doing this is to eeent-triggered  control Lyapunov function for thelecoupled system,
broadcasts. Event-triggering has a subsystem broadsast it .
state information only when “needed”. In this case “needed” @;(t) = Aizi(t) + Biui(t).
means that some measure of the agent’s state error is above e\le're interested in controls that are generated in a dis-

§peC|fled threshold. Event-triggering was originally pysed tributed manner so that
in [16] and has appeared under a number of names thal

include interrupt-based feedback [17], Lebesgue sampling ui(t) = K@i (t) + Z Lij#;(t) 4)
[18], asynchronous sampling [19], state-triggered feellba iEN;

Ag, = A+ B;K; 3



where K is the state feedback gain satisfying the Lyapunov ~ Proof: A direct computation shows that

equation 2,L;; € &™*™ is a set ofdecoupling gains, and v .
#;(t) is the measured state for thith agent available at time 9. = w b (Aiz; + BiK;i;)
t. !
Note that we distinguish between the measured feedback T N
state and the actual state of the agent. This is because + B Xj\; BiLigj + Hijx;
a subsystem can only broadcast its state information at JEN
+ transposed terms 9)

discrete times. We model this discrete transmission by-asso
ciating a monotone increasing sequencemiadcast times,  Note thati; = x; +e; SO We can rewrite equation 9 in terms
{b;[k]}3Z, with the jth agent. The broadcast times arepf 5, ande; to obtain

increasing in the sense thiatlk] < b;[k + 1] for all k. The

time b;[k] denotes théith consecutive time instant when the ?dei = ol Pi(Ag,x; + BiK;e;)
jth agent broadcasts its local statgto all of its neighbors T
in \Vj. + > @l PAja; + ol PBiLie;
The "measured” states used by an ageimt equation 4 JEN;
are the functiong;; : ® — R wherej € N; and + transposed terms (10)
@ (t) = 2 (b;[k]) (5) whereA;; = B;L;; + H;; and Ag, = A; + B, K;.
We would like to rewrite the cross terms in equation 10
for ¢ € [b;[k], bj[k+1]) and allk = 0, - -- , 00. The measured i, terms of signal norms. This can be done through the

state, therefore, is a sampled version of the neighborte St%llowing inequality,

trajectory where the sampling instants are the broadcast

times. For simplicity we assume that all neighbors recdiee t 16z — Ry||3 >0 (11)
broadcasted state without any delay so thit) is accessible

o wherez € R,y € R™ andR € R™*™, andd is any positive
to any subsystem that lies in\;. N Y yp

real constant. If we expand equation 11, move the cross term
IV. EVENT TRIGGERING FORASYMPTOTIC STABILITY to the righthand side and divide through bywe obtain

This section derives the event-triggering rule that assure s |IRyl3 T
the entire system is asymptotically stable. The first lemma oll=13 + 5 22z Ry (12)
characterizes the directional derivative of the function Inequality 12 can be used to rewrite equation 10 as
Vi(zi) = =} P, (6) oV; P,B;K;|?
) Wi < —aTQure+ ol + LB e
where P; satisfies the Lyapunov equation 2. We use lemma Oz 52
4.1 to characterize the directional derivative of the fiorct T Z (§||1U'||2 i 2| P A || ||:v»||2)
Vi RZim — R defined as ACAE 2 5 7z
— Tp... B2
V(xlax%"' 7xN) _Z‘ri 'szl' (7) + Z §||I1||§+ 2||RB1LZJ|| Hej”g 13)
’ JEN; 2 0

which is used in theorem 4.2 to establish a condition for heres | . | Collecii h
event triggering. whered is any positive real constant. Collecting the terms

. T2 .
Lemma 4.1: Consider the system in equation 1 where in [l and recognizing that

1) the controlu; is the distributed control in equation 4 —2] Qir; < —NQ)||xill3 (14)
using measured states defined by equation 5,

2) P. K, d0; satisfy the L tion 2 yield_s equation 8. o _ _ _ I
3; ar; de-,( t?n:Qi_?; Iifyx_ (te) igatalénz\r/rsrqlljaaetl\?vr;en the  Civen the characterization of thé's directional derivative

measured state and the actual state. in equation 8, we can now state and prove the following

L o - theorem regarding the asymptotic stability of the entire
() — T P
The directional derivative o¥; (x;) = z; P,x; satisfies the system. This theorem presumes the decoupling gdins.

inequality were chosen to satisfy thematching condition, B;L;; =
g;/z Fo< = (AQ) — (IN] + 1)5) ||z 2 S—Ublsjys\:\g;;]csh essentially assures perfect decoupling of the
n ||PZ-B;K1»H2 lesll2 + Z 2||Pifi;-Lij|\2 les 2 Theorem 4.2: Assume that the matching condition,
JEN; BiLij = —Hij, (15)
+ Z 2||Pi(BiLi5J — Hy)|? [EFES (8) holds for alli and j. Under the assumptions of lemma 4.1,

JEN: the networked system in equations 1 under the control in 4

. . is asymptotically stable, if
for all : € N" whered is any positive real constant and where ymp Y

A(Q;) is the minimum eigenvalue ap; Billes )3 < pillzi(t)||3 (16)



for all i € A and all¢, where Theorem 4.3: Assume that the hypotheses in lemma 4.1

P | P,B; K2 . Z 2|\ P;B;Lji|? an are true and assume that for all
= W= S IR B Ly - ol < <290 (23)
pi < AQ) — (N[ +1)5 (18) je, 81+ NG)
5 — min AQq) (19) forallie N The networked system in equations 1 under
ieN |V +1]° the control in 4 is asymptotically stable, if
Proof: Consider the candidate Lyapunov function Y 2p Y )
Vi o) = 3 Vi) Billei(®)l2 < aillzi(t)]]z (24)
1, IN) = i(T5).
ieN for all i € A/ and all¢, where
Using lemma 4.1, its directional derivative may be written P,B;K;|? 21P;B; L;|?
s g y 8 = I : I +Z [ .75J jill (25)
JEN;
ov . o IRBK|*, o 2W;
< X (et EEEN) < - 22 )
|PBiLijl* 1o ) A@) (1 \/1
el /1 | Y P 20 - Z_ NV,
£33 el @0) 5 < ming ot (5 20+ MDY fam

Proof: The proof of this theorem is similar 'to that

Recall that neighborhood membership is a symmetrig, iheorem 4.2. We again consider the candidate Lyapunov
relation, so thatj € N; wheneveri € N;. Due to this g nction

symmetry we can redistribute the terms in the second line

of equation 20 to group together terms indexed|by| and V(zy, - en) =Y Vi) (28)
obtain ieN
ov | s |IPB:K|? 9 From lemma 4.1, the directional derivative Bf becomes
ot < = (il - e el
O , 5 oV [P B K|
N =i < =Y (pillzill; - == ]eill3
||PBL||2 817 = ‘ Pi {12 5 2112
0 D el (21) e
L 5 2||P;B; Li;||?
i€EN JEN; 11 12
| o 3 Y T el
where we used equation 18 to help simplify. ieN jeN;
Collecting terms in||e;|| in equation 21 we can rewrite 20| Pi(B:iLij — Hyj)|l
this as +> 2 S 5 13(29)
oV ) ) €N JEN;
L s - Z (pillz:llz = Billesll2) (22)  \wherep; was defined in equation 18.
N Since the neighborhood relation is symmetric, we can

where we used equation 17 to simplify. By the assumption ifedistribute the terms in the second and third lines of égnat
equation 16, we see that the righthand side of equation 22239 to obtain

negative if the requirement an(see equation 19) is satisfied, oV P B K||2
which is sufficient to establish the asymptotic stabilitytioé 55 < Z - (pillxilg _ %Wﬂ%)
equilibrium point. n v ieN

Theorem 4.2 is interesting because the error condition in n Z Z 2| P;B;Lyi|? 2
equation 16 is only dependent on what ittesubsystem can L . 5 vl2
directly measure. In other words, if all agents cooperate in IEN JEN
the sense of broadcasting their states so that the threshold + Z Z 2|15 (B; Lii — Hi)l2 [EAE:
condition in equation 16 is always satisfied, we can assure JEN FEN: 5
the entire system’s asymptotic stability. B 9 9

The inequality in equation 16 can be used as the basis B ;\:{ainiH? + ;\:/ﬁi”ei”? (30)

1€ 1€

for event-triggering the broadcast of an agent’s stateeNot
that the inequality is trivially satisfied for thih agent at Where o; and j3; are defined in equations 26 and 25,
broadcast time = b;[k]. So if we trigger the next broadcast, respectivelylV; was defined in equation 23.
bi[k+1] any time before equation 16 is violated and if we can We need to verify that the first term in equation 30 is
guarantee this behavior across all agents in the system, tHtegative definite. This will happen if
we are assured the entire networked system is asymptgticall w;
stable. a; = ANQi) — (INi] +1)d — 27 >0

The matchlng. c_ondmon assum_ed in theorem 4.2 .'S ®XVhich we can can rewrite as the quadratic inequality
ceptionally restrictive. The following theorem relaxessth
assumption. (JIN:| + 1)6% = A(Q4)d +2W; < 0



The ¢ that satisfy this inequality have the form Note that

2@) (1. T o a3 = e — (o — (I3
<|Ni|+1<2+¢4 “'M'“)Wz) D - le@l3 @)

which yields equation 27. However to be an admissible sqjgjng equation 36 in equation 35 yields the event-trigggerin
lution we also requiré to be positive. A simple substitution rg|ation (equation 16) in theorem 4.2, so we can immediately
of the assumption in equation 23 shows thas positive if  concjude the entire system is asymptotically stable. m
the inequality in equation 23 is tru_e. . u Corollary 5.1 is clearly a weaker condition than that used

Theorem 4.3 relaxes the matching condition of theorem, theorem 4.2. But we can use it to bound the broadcast
4.2. In this case, then we require that there exists symmetiiariog of a given agent. In particular, let's assume that the
matricesP; and Q; as well as control gains gain§; and v notheses of theorem 4.2 hold and let's further require
Li; such that that an agent broadcasts its state whenever the condition in

AL P+ P Ak, < —Q (31) corollary 5.1 is about to be violated. . -
AQ)) Let's assume that agentbroadcasts its state at timg.
Z | P;(B;L;i — Hji)||? W (32) Between this broadcast and the next broadcast by agént
JEN; ‘ is quite possible that agentvill receive broadcasts from any

One traditional way of interpreting these equations is t8f it neighbors. Let,,, denote thenth time when agent
assume thatP, and Q; are fixed. We would then use r_ecelvedane|ghb0r’s message. We may therefore order these
equations 31 and 32 to determine the control gdisand UMeS asro <7y <7y <---.
decoupling gainsL;;. An alternative approach assumes we Ve now study the behavior of the state erepbetween
select K, to stabilize the decoupled systems with a giver@ny two consecutive times,, andry, . To simplify nota-
level of robust stability. We would then use equations 3iion we let
and 32 to determine the matricé% and gainsL;;. In this
particular case we can vieW; as robust control Lyapunov

v

IN

zi(t) = llei(®)]l2-

functions [21] for the networked system. We can show that
V. BROADCAST PERIOD o< |eéills = il
This section presents preliminary results bounding the tim
between broadcasts when the matching condition holds. We  — || 4.4, + B, K;&; + Z (B;Lij&; + Hijx;)|(37)
define thebroadcast period of agenti as JEN ,
Bilk] = bi[k + 1] — b;[k]. (33)  Sincee; = #; — x; we can rewrite the right hand side of

The main result of this section shows that agencan nequality 37 in terms ot; andz; to obtain

communicate its expected “time” to its next broadcast in

a rather simple manner that is a function of the states s < ||Ag 2 — BiKie; — Z Hije;

in the agent’s neighborhood. This means that broadcast - ' Jen

frequency is really a function of the activity level in an 2

agent's neighborhood. Moreover, these results show tleat th < N Aw.dlly + | BiKillleills + > [1Hilllle;|(38)
time between consecutive broadcasts byitheagent should JEN:

be bounded away from zero. where we used the fact thab;L;; + H;; = 0 (i.e. the

To bound the time between broadcasts, however, we firg{atching condition).
need the following weaker version of theorem 4.2. A similar By the event-triggering rule in corollary 5.1, agegnonly
corollary can be established under the relaxed form of the5qcasts if it is about to violate the inequality
matching condition in equation 23.

Corollary 5.1: Consider the networked control system in llej ()2 < ville;(E)]l2 (39)
equation 1 using the control in equation 4. If the matching _
condition holds under the assumptions of lemma 4.1 and tf@" any j where

sequence of agent broadcasts can ensure that 0;
R Vi =4/ : (40)
(Bi + pi)llei®I3 < pillz: ()13 (34) Bi+pi
for all i and allt € [b;[k], bs[k + 1]), then the networked Between any two times (say,, andr,, 1) when a message
system is asymptotically stable. is received (or broadcast) by agenive know the measured

Proof: For notational simplicity let:;, denotex; (b;[k]), —statez; is constant for anyj € A;. Therefore equation 38
then the condition in corollary 5.1 can be rewritten as ~ can be reduced to

Billei®5 < pillasl = lles(®)]3) (35) 4t) < az(t)+p (41)



for anyt € [rp,, rm+1) Where
= | B:Kil

[0
po= A g2+ > vl Hijll 5]
JEN;

Note thatu is constant between any two consecutive recep-
tions. Moreover, note that it is a function of the systemestat
xj(rm) at timer,,. We can therefore solve the differential
inequality in equation 41 to show that

2i(t) < eo‘(tfr’”)zi(rm) + ﬁ(ea(tfrm) 1) (42) Fig. 1. Network of three inverted pendulums
«

for t € [rm, rm+1)- . _
Now it is, of course, possible that agentay broadcast Xi = [ =23 —12 ] fori =1 and3. The gain for agent
its state before it receives the next message at tipne;. 2 WasKx = [ —18 —12 |. In this problem the matching

This will happen at a timé’ that satisfies co5ndigon,BiLZ—j = —Hj;, can be used if we seledt;; =
zi(T) > 7illzi(ro)|l2 (43) The candidate control Lyapunov functidn for agenti
We can use our expression fey(t) in equation 42 to solve was chosen to be! P;x; whereP; = 1'2255 gg for all

for T"in equation 43. This yields i. The matricesP; were obtained by solving the” following

T r > 1 In (1 N villzi(ro)|l2e — zi(rm)> . (a4) Lyapunov equation
o Zi(rm) + ’u/a (Az + BiKi)TPi + PZ(AZ + B;K;)=—-1
If there were a finite number)/, of received messages

between consecutive broadcasts of agerthen clearly the
broadcast period can be bounded as

where is a2 x 2 identity matrix.
With this setup we computed the coefficierits and p;
in the event-triggering inequality 16. Our simulation then

BT i( ) triggered agent to broadcast its state whenever
i =1 —ry+ Tk = Th—1
=1 —0.5]|z[13 + Bilei]|3 > 0

This sum must be finite as long asremains bounded, so where3; = 85 = 32.7177 and 8, = 24.2812. These values
we can readily conclude that the time between consecutiv@gre obtained for & that was one half of its maximum
broadcast of the same agent must be bounded strictly awgyssible value in equation 18.

from zero. The simulation results are shown in figure 2 where the
A 3 -2
VI. SIMULATION RESULTS initial states werex,; = {_1 Toy = { 1 ] and
This section presents simulation results demonstrating 1 ) ) )
event triggering in a networked control system. The systeff®o = | ; |- The simulation ran for 16 seconds, with a
under study is a collection of three inverted pendulumiarge disturbance being applied to the third system halfway
(figure 1) whose pendulum arms are coupled together hiirough the simulation. The top plot in figure 2 is the
springs. The basic system matrices for the three pendulumsstate time history for all three inverted pendulums. Note

are that the system is stable. The bottom plot in figure 2 is
0 1 the history of broadcast periods generated by the event-
A = { g kié 0 } triggering inequality. Note that the broadcast periodsyvar

0 considerably over those intervals when the state has been
B, = { 1 } perturbed away from its equilibrium point. This shows that
mez our event triggering scheme indeed adjusts broadcastdserio
whereg = 10 is gravitational acceleratior!, = 2 is the in response to what is happening in the plant. We computed
length of the pendulumy = 1 is the mass of the pendulum the average broadcast periods;, for the three inverted
bob, andk; = ks = 5 and k, = 10 are spring constants. pendulums simulated in figure 2. The average periods for

The coupling matricest;;, have the form agentsl to 3, respectively, wer@.0929, 0.1263, and0.0913.
0 0 The average of these three period$).i5037.
H;; = { E o } Let's now compare the performance of the event-triggered
me2

system against a periodically triggered system. To make the
wherek = 0 if ¢ = j or (i,5) € {(1,3),(3,1)}. Otherwise comparison fair, we assumed that each agent attempts to
k=5. broadcast its state at a period which is one third of the
A local set of control gainsk;, were obtained to place average broadcast rate 1037) generated by event-triggered
the decoupled system’s poles-at and—2. This resulted in system. We assume that only one agent can "broadcast”



State History under Event-Triggered Broadcasts deterministic time-triggered broadcasts
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Fig. 2. Event-triggered broadcast simulation results Fig. 3. Periodically-Triggered Broadcasts versus Eveiggered Broad-

casts

at a time, so this one third rate averages to a rate that is

comparable to that found in the event-triggered simulatiolemented over ad hoc wireless networks. Broadcasts are
We considered two cases. The first case assumed that agéfiggered in a decentralized manner, so that all agents make
access the channel in a sequential fashion, where agentheir broadcast decisions solely on the basis of their own
first broadcasts, then agent 2 broadcast, and then agenfngasured states. Information from neighboring subsystems
broadcasts. This is the type of media access we'd find if used to adjust the event-triggering level. This approach
time-slotted networks using a conflict-resolution aldgurit therefore allows a subsystem to adjust its broadcast rate
to determine broadcast order. The second case assuni@dhe amount of activity in its immediate neighborhood.
that agents compete for access to the channel as might % were able to bound the time between broadcast events
found in networks using carrier sense media access (CSMARd simulation results supported our contention that event
protocols. In this case, the probability of an agent acogssi triggering provides an effective means of adapting brostica
the medium is 1/3. rates in sensor-actuator networks.

Figure 3 plots the the inverse of the broadcast period The work presented in this paper is preliminary in nature.
(what we refer to as broadcast frequency) for both of thesehere are a number of important issues that will need to
cases. The solid blue line in both plots of figure 3 ide addressed in our future work. Some of these issues are
the broadcast frequency generated by the event-triggeréemized below.

system. The yellow dots represent the broadcast frequency, |t would be valuable to see how we can take advantage
generated by the periodically triggered broadcast system. of the relaxed matching condition in controller synthe-
The dashed line shows the average broadcast interval of gjs As noted above, we can use the conditions in the-
the time-triggered system. The top figure plots data for the 5rem 4.3 1o design both the decoupling gaihs,, and
time-triggered system with sequential access to the channe  gpyst control Lyapunov functions for the networked
As expected, the average broadcast period is equal to the systems. Precisely how such distributed controllers can
average broadcast period. This average frequency islglight  pe synthesized is a topic for future study.

higher than the lowest broadcast frequencies generated by, The current work restricts its attention to linear time-
the event-triggered system. A similar result is seen in the j,yariant systems. It would be valuable to extend this
bottom plot of figure 3. This plot shows broadcast frequen- g networks of nonlinear systems. We believe this may
cies generated by a randomized time-triggered system. As  pe possible for nonlinear systems that are affine in the
expected the average broadcast frequency is somewhat highe  ontrols. Once again the matching condition becomes a
than the lowest broadcast frequencies generated by thé even major concern in such analyses.

triggered system. In both cases, we see that event-triggeri , This paper did not address the issue of message colli-
allows the system to reduce the amount of channel access sjons. In practice, such collisions will delay the delivery
during periods of low system activity. of messages in a way that can adversely effect system
stability. Our recent work [22] in self-triggered feedback
control, however, suggests it may be possible to find
This paper presented an event-triggering approach to practical bounds on these delays as a function of the
broadcasting state data in distributed control systems im- broadcast period. Bounding such delays as was done
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in [22] may help in analyzing the impact message
collisions have on overall system stability.
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