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Event-Triggered Control in Presence of Measurement Noise:

A Space-Regularization Approach

K.J.A. Scheres, R. Postoyan, W.P.M.H. Heemels

Abstract— In this paper, general conditions for set stabiliza-
tion of (distributed) event-triggered control systems affected by
measurement noises are presented. It is shown that, under these
conditions, both static and dynamic triggers can be designed
using a space-regularization approach such that the closed-loop
system ensures an input-to-state practical stability property.
Additionally, by proper choice of the tuning parameters, the
system does not exhibit Zeno behavior. Contrary to various
results in the literature, the noises do not have to be differen-
tiable. The general results are applied to point stabilization and
consensus problems as particular cases. Simulations illustrate
our results.

I. INTRODUCTION

For systems in which the communication energy consump-

tion, communication bandwidth or computation power is

constrained, traditional periodic sampling and/or controller

updates might require resources that are not available to

obtain the desired system performance. To this end, event-

triggered control (ETC) can be applied, see, e.g., [1] and

the references therein, to reduce computational burden and/or

the communication bandwidth of the control strategies, while

still guaranteeing important stability and performance prop-

erties.

At present, most literature on ETC assumes that perfect

state or output information is available for control, even

though in most physical systems, this is often not the

case as sensors are susceptible to measurement noises. It

is well known that in the presence of measurement noise,

the design of triggering conditions that do not exhibit Zeno

behavior is in general a hard problem, see, e.g., [2]. Several

solutions have been proposed in the literature to address

this problem, see, e.g., [3], [4]. However, these require

differentiability conditions on the noise to obtain input-to-

state stability (ISS) or Lp-stability of the closed-loop system

with respect to the noise and its time-derivative. When

dealing with real sensors, the differentiability condition and

global boundedness of the derivative of the noise may not

be natural assumptions. The observer-based approaches, see,

e.g., [5], overcome this issue, but these results only apply

to linear systems and require multiple additional internal

models, thereby requiring extra processing power and energy

to run. In [6], a periodic event-triggered controller is run

simultaneously with a continuous event-triggered controller,
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and triggering occurs when the triggering conditions of both

controllers hold. The downside to this particular method is

that close to the desired stability point, periodic sampling is

obtained, thereby not preserving the communication benefit

of ETC. The issues when dealing with measurement noise

are even harder when designing distributed event-triggered

controllers for consensus [7]. We know of only one paper

dealing with measurement noise in this distributed context,

[8], where the control input is integrated to estimate an upper-

bound for the error. Since a conservative estimate is used

and due to the absolute triggering condition, the amount of

controller updates (network bandwidth) required is relatively

high compared to other ETC consensus algorithms, see, e.g.,

[9]. As such, it is of interest to consider alternative solutions.

In this paper, we present a general framework to address

the measurement noise problem, based on space-regularized

ETC, in line with classical event generators, such as [10],

[11], [12]. For this, we present a new hybrid model, which

does not involve the derivative of the noise as opposed to,

e.g., [3], [4]. We then provide general prescriptive condi-

tions, under which both dynamic and static triggering rules

are designed to ensure an input-to-state practical stability

property, while ruling out Zeno phenomena. In particular,

we show that applying space-regularization needs to be done

with care to ensure the existence of strictly positive minimum

inter-event times. These results are written for the general

scenario where N plants, possibly physically interconnected,

are controlled by N event-triggered controllers, thereby

covering both classical point stabilization problems as in,

e.g., [10], [11], [12], [13] and consensus problems as in,

e.g., [14] in a unified way. In fact, we explain how to

modify the triggering rules presented in [10], [11] to become

robust to measurement noise. We also apply it to consensus

seeking problems, where we show that we can maintain

long inter-event times even in the presence of measurement

noise. We show this, for instance, for the methods of [9],

[15]. Lastly, we use simulations to show the effectiveness

of our technique and to demonstrate the implications of

applying space-regularization. All proofs are omitted for

space reasons.

II. PRELIMINARIES

A. Notation

The sets of all non-negative and positive integers are

denoted N and N>0, respectively. The field of all reals

and all non-negative reals are indicated by R and R>0,

respectively. The identity matrix of size N × N is denoted

by IN , and the vectors in R
N whose elements are all



ones or zeros are denoted by 1N and 0N , respectively. For

N vectors xi ∈ R
ni , the vector obtained by stacking all

vectors into one column vector x ∈ R
n with n =

∑N

i=1 ni

is denoted as (x1, x2, . . . , xN ), i.e., (x1, x2, . . . , xN ) =[
x⊤
1 x⊤

2 . . . x⊤
N

]⊤
. By 〈·, ·〉 and | · | we denote the

usual inner product of real vectors and the Euclidean norm,

respectively. For a measurable signal w : R>0 → R
nw ,

we denote by ‖w‖∞ = ess supt∈R>0
|w(t)| its L∞-norm,

provided it exists and is finite (we then write w ∈ L∞).

For any x ∈ R
N , the distance to a closed non-empty set

A is denoted by |x|A = infy∈A |x − y|. We use the usual

definitions for comparison functions.

B. Hybrid systems

We model hybrid systems using the formalism of [16],

[17]. Hence, we consider systems H(F, C, G,D) of the form
{
ξ̇ ∈ F (ξ, w) (ξ, w) ∈ C,
ξ+ ∈ G(ξ, w) (ξ, w) ∈ D,

(1)

where ξ ∈ R
nξ denotes the state, w ∈ R

nw a disturbance,

C ∈ R
nξ × R

nw the flow set, D ∈ R
nξ × R

nw the jump

set, F : Rnξ × R
nw ⇒ R

nξ the flow map and G : Rnξ ×
R

nw ⇒ R
nξ the jump map, where the maps F and G are

possibly set-valued. We are mainly interested in systems H
being persistently flowing in the sense that all its maximal

solutions are unbounded in t-direction, see [16] for more

details on the adopted hybrid terminology. We focus on the

following stability definitions in this paper.

Definition 1. When H is persistently flowing (i.e. its t-

domain is unbounded), we say that a non-empty closed set

A ⊂ R
nξ is input-to-state practically stable (ISpS) if there

exist γ ∈ K, β ∈ KL and d ∈ R>0 such that for any solution

pair (ξ, w) with1 w ∈ L∞ ∩ PC
|ξ(t, j)|A 6 β(|ξ(0, 0)|A, t) + γ(‖w‖∞) + d, (2)

for all (t, j) ∈ dom ξ. If (2) holds with d = 0, then A is

said to be input-to-state stable (ISS) for H.

III. PROBLEM FORMULATION

We consider a collection of N ∈ N>0 intercon-

nected plants P1, P2, . . . , PN . Each plant Pi, i ∈ N :=
{1, 2, . . . , N}, is equipped with a sensor that communi-

cates its state2 (with measurement noise) to the controllers

C1, C2, . . . , CN via a digital network. Plant Pi, i ∈ N , has

a state xi ∈ R
ni
x with dynamics

ẋi = fi(x, ui), (3)

where ui ∈ R
ni
u is the control input of Pi, x :=

(x1, x2, . . . , xN ) is the concatenated state variable, and

fi : R
n × R

ni
u → R

ni
x is a continuous function, with

n =
∑

i∈N ni
x. Note that fi may depend on the states

1A function w : R>0 → R
nw is said to be piecewise continuous, denoted

by w ∈ PC, if there exists a sequence {ti}i∈N with ti+1 > ti > t0 = 0
for all i ∈ N and ti → ∞ when i → ∞ such that w is a continuous
function on (ti, ti+1) with limt↓ti

w(t) = w(ti) for each i ∈ N.
2Extensions to output-feedback control can be directly envisioned.
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Fig. 1: Networked control setup with event generators (EG).

of other plants, i.e., physical couplings are allowed. The

controllers Ci, i ∈ N , take the form, in absence of noise,

ui = ki(x), with ki : Rn → R
ni
u a continuous map. We

assume that plants P1, P2, . . . , PN in closed loop with the

controllers C1, C2, . . . , CN satisfy desired control objectives

in the absence of a network, as formalized in the following.

We investigate the scenario where the values of each state

xi, i ∈ N , are broadcasted by the corresponding sensors to

the controllers C1, C2, . . . , CN , which depend on it, via a

digital network, as illustrated in Fig. 1. The corresponding

transmissions occur at some time instants tik, k ∈ N, which

are generated by a local triggering condition. Moreover, the

measurements are affected by noise. To model the obtained

feedback law in this context, we introduce x̃i, the noisy

measurement of xi, for i ∈ N , as

x̃i := xi + wi, (4)

where wi ∈ R
ni
x is an (additive) bounded piecewise con-

tinuous measurement noise, which is assumed to satisfy the

following assumption.

Assumption 1. For each i ∈ N , wi(t, j) ∈ Wi for all

(t, j) ∈ domw, where Wi :=
{
wi ∈ R

ni
x

∣∣ |wi| 6 wi

}
for

some wi ∈ R>0.

Because of the packet-based communication over the

network, the controllers, which depend on the state of Pi,

do not have access to x̃i in (4), but only to its networked

version, ̂̃xi := x̂i + ŵi, where

x̂i(t) = xi(t
i
k) for t ∈ [tik, t

i
k+1), k ∈ N,

ŵi(t) = wi(t
i
k) for t ∈ [tik, t

i
k+1), k ∈ N.

(5)

To keep the definitions consistent with the existing

literature, we define the network-induced error e =
(e1, e2, . . . , eN ) as the difference between the sampled state

x̂ := (x̂1, x̂2, . . . , x̂N ) without the measurement noise and

the current state without measurement noise, i.e., e := x̂−x.

We also introduce the measured network-induced error ẽ =
(ẽ1, ẽ2, . . . , ẽN ) as the difference between the most recently

transmitted state and the currently measured state, which

are both affected by noise, i.e., ẽ := x̂ + ŵ − x − w =
e + ŵ − w. Note that ei is not known by event generator

i, and therefore, cannot be used by the corresponding local

triggering condition for determining tik, k ∈ N. However, the

event generators do have access to ẽi.



Due to the network and the noisy measured states, the

feedback law in Ci applied to plant Pi is, for i ∈ N ,

ui = ki(x+ e+ ŵ). (6)

Our objective is to determine the transmission times tik, k ∈
N, for any i ∈ N , to ensure that:

(i) the combined closed-loop system (3), (6) satisfies an

input-to-state practical stability property in the presence

of measurement noise;

(ii) there exists a strictly positive time between any two

transmissions generated by the triggering condition of

plant Pi, i.e., for any initial condition there exists a

Ti > 0 such that tik+1 − tik > Ti for all k ∈ N, i ∈ N .

IV. GENERAL RESULTS

A. Hybrid model

We model the overall system as a hybrid system H for

which a jump corresponds to the broadcasting of one of the

noisy states x̃i, i ∈ N , over the network. We allow the local

triggering conditions to depend on a local variable denoted

ηi ∈ R>0, i ∈ N , as in the dynamic triggering of [11], [13].

However, we also consider static triggering conditions in the

sequel. We define η := (η1, η2, . . . , ηN ) ∈ R
N
>0, and stack

the “physical” variables in χ := (x, e, ŵ). The full state for

H becomes ξ := (χ, η) = (x, e, ŵ, η) and is defined as

ξ̇ = F (ξ, w), (ξ, w) ∈ C,
ξ+ ∈ G(ξ, w), (ξ, w) ∈ D,

(7)

where the flow map is given, for all (ξ, w) ∈ X × W :=
R

n×R
n×W×R

N
>0×W , where W := W1×W2×. . .×WN

and Wi comes from Assumption 1, by

F (ξ, w) := (Fχ(χ),Ψ(o)), (8)

with Ψ(o) := (Ψ1,Ψ2, . . . ,ΨN ) the to-be-designed dynam-

ics of the dynamic variables η and o := (o1, o2, . . . , oN )
collects oi ∈ R

ni
o , i ∈ N , being the information locally

available to plant i. In (8),

Fχ(χ) := (f(x, k(x+e+ŵ)),−f(x, k(x+e+ŵ)),0n), (9)

for χ ∈ R
n × R

n ×W . Let, for i ∈ N ,

Ci := {(ξ, w) ∈ X×W | ηi + θiΨi(oi) > 0} (10)

with θi ∈ R>0 a design parameter. The flow set for the

overall system is given by C := ∩i∈NCi. The jump set

corresponding to a transmission of x̃i generated by triggering

condition i ∈ N is defined as,

Di :=
{
(ξ, w) ∈ X×W | ηi + θiΨi(oi) 6 0 and

Ψi(oi) 6 0
}
.

(11)

Note that, with respect to [11], we require the additional

condition Ψi(oi) 6 0 to ensure that Zeno behavior does

not occur when θi = 0. By selecting a θi > 0, we trigger

earlier than the “pure” dynamic case (i.e., when θi = 0).

Generally, this results in faster convergence but shorter inter-

event times, which allows us to tune bandwidth usage versus

performance, see [11] for more details. The jump set for the

overall system is defined as D := ∪i∈NDi. The jump map

for triggering condition i is now defined as

Gi(ξ, w) :=

{
{(Gχ,i(χ,w), η)} , if (ξ, w) ∈ Di

∅, if (ξ, w) 6∈ Di,
(12)

where Gχ,i(χ,w) := (x,Γie,Γiŵ+Γiw), with Γi the block

diagonal matrix where the i-th block is Ini
x

and all other

blocks are 0
n
j
x×n

j
x
, j ∈ N \ {i}, and Γi := In − Γi. Map

(12) simply means that a jump due to triggering condition i

resets ei to 0 and ŵi to wi (essentially, ŵ+
i ∈ Wi), leaving

the other variables unchanged. The complete jump map is

given by G(ξ, w) := ∪i∈NGi(ξ, w). For future use we also

define the jump map for (χ,w) ∈ R
n × R

n ×W ×W as

Gχ(χ,w) :=
⋃

i∈N

Gχ,i(χ,w). (13)

Because of the selected state variables, system (7) does not

depend on the time-derivative of w as in [3], [4], which

allows us to work under more general and more natural

assumptions on the measurement noise, see Assumption 1.

The goal is to design the dynamics of ηi, Ci and Di, i.e.,

the functions Ψi, for all i ∈ N , such that a given set A is

ISpS, see Definition 1. To formalize objective (ii) stated at

the end of Section II, we introduce, for any solution (ξ, w)
to H and i ∈ N , the set

Ti(ξ, w) :=
{
(t, j) ∈ dom ξ | (ξ(t, j), w(t, j)) ∈ Di and

(ξ(t, j + 1), w(t, j + 1) ∈ Gi(ξ(t, j), w(t, j))
}
.

(14)

Hence, T i(ξ, w) contains all hybrid times belonging to

the hybrid time domain of a solution (ξ, w) at which a

jump occurs due to triggering condition i (Di and Gi). We

introduce the following definition.

Definition 2. Given a closed set A ⊂ R
2n × W , system

(7) has a semi-global individual minimum inter-event time

(SGiMIET) with respect to A, if, for all ∆ > 0 and all

i ∈ N , there exists a τ iMIET > 0 such that, for all solutions

(ξ, w) with |ξ(0, 0)|A 6 ∆, for all (t, j), (t′, j′) ∈ Ti(ξ, w),
t+ j < t′ + j′ ⇒ t− t′ > τ iMIET. (15)

If τ iMIET can be chosen independent of ∆ for all i ∈ N , then

we say that H has a global individual minimum inter-event

time (GiMIET).

Definition 2 means that the (continuous) time between two

successive transmission instants due to a trigger of condition

i are spaced by at least τ iMIET units of times, and that τ iMIET

may depend on the size of the initial conditions. Hence, the

problem formulation at the end of Section II can be formally

stated as for a given set A, synthesize the sets Ci and Di,

i ∈ N such that A is ISpS and H has a SGiMIET w.r.t. A.

B. Design and analysis

We assume that controllers Ci, i ∈ N , are designed such

that Assumption 2 below holds. For specific scenarios we

show in Section V how this assumption is naturally obtained.



Assumption 2. There exist α, α, α ∈ K∞, γ ∈ K, βi ∈ K
and δi : Rni

o → R>0 continuous for all i ∈ N , a closed

non-empty set A and a continuously differentiable function

V : R2n ×W → R>0 such that

i) for any χ ∈ R
2n ×W
α(|χ|A) 6 V (χ) 6 α(|χ|A), (16)

ii) for all χ ∈ R
2n ×W and w ∈ W ,

〈∇V (χ), Fχ(χ))〉
6 −α(|χ|A) + γ(|w|) +

∑

i∈N

βi(|ẽi|)− δi(oi),
(17)

iii) for any χ ∈ R
2n ×W , w ∈ W and g ∈ Gχ(χ,w),

V (g)− V (χ) 6 0, (18)

iv) for any ∆ > 0, there exists M∆ > 0 such that for any

χ ∈ R
2n ×W satisfying |χ|A 6 ∆,

|Fχ(χ)| 6 M∆. (19)

Assumption 2 imposes Lyapunov conditions on the χ-

system. Item i) means that V is positive definite and radially

unbounded with respect to A. Item (ii) is an input-to-state

stability property of set A for the flow dynamics, but not

the desired one as it involves the error ẽi. Item iii) implies

that the Lyapunov function does not increase at jumps

and item iv) imposes boundedness conditions on fi and

ki. Assumption 2 implies that, in the absence of a digital

network (and thus, ẽi = 0 and ŵ = w), the set A is input-

to-state stable with respect to input w. Again, examples of

systems verifying Assumption 2 are provided in Section V.

The next theorem explains how to design Ψi, i ∈ N ,

arising in the flow map, and the flow and jump set definitions

to ensure the desired objectives are met.

Theorem 3. Consider system (7) and suppose Assumptions

1 and 2 hold. We define for all i ∈ N , ξ ∈ X and w ∈ W
Ψi(oi) := δi(oi)− βi(|ẽi|)− ǫiηi + ci, (20)

with ci > βi(2wi) and ǫi ∈ R>0 tuning parameters. The set

Ad := {ξ : χ ∈ A and η = 0} is ISpS and system (7) has a

SGiMIET.

Theorem 3 provides the expressions of Ψi, i ∈ N , which

ensure that ISS of set A guaranteed by Assumption 2 in

the absence of network is approximately preserved in the

presence of the digital network. Moreover, the existence of a

strictly positive lower-bound on the inter-event time of each

triggering mechanism is guaranteed. The interest of Theorem

3 lies in its simplicity, generality and in revealing the main

concepts as a “prescriptive framework”.

The expression of Ψi in (20) is based on so-called space-

regularization, as by introducing ci, we enlarge the flow

set to ensure the existence of a SGiMIET. While space-

regularization is well known in the hybrid systems literature,

we have to be careful when designing ci, because a priori

the non-Zenoness only holds if ci satisfies the condition

mentioned in Theorem 3. The consequence of this is that we

obtain practical stability, i.e., the constant d in (2) will be

non-zero. On the other hand, Theorem 3 does not require to

make assumptions on the differentiability of wi, and a fortiori

on boundedness properties of ẇi, as in existing works in ETC

considering measurement noise such as [3], [4]. Additionally,

we may exploit the structure present in specific scenarios or

ETC mechanisms to obtain less conservative bounds for the

parameters ci and, in some cases, a GiMIET, as opposed to

semiglobal one in Theorem 3, as will be illustrated in Section

V.

V. CASE STUDIES

In this section, we investigate several existing event-

triggering techniques in the literature and show how to

modify these to handle measurement noise. We want to stress

that this is a non-exhaustive sample of techniques which

can be addressed by this method. We prove for this purpose

that Assumption 2 is verified, which allows to directly apply

Theorem 3.

A. Stabilization of a single system [10], [11]

A single plant P and a single controller C are considered

here. In particular, we assume that the plant dynamics and

feedback controller are given by

ẋ = f(x, u), u = k(x). (21)

As in [10], [11], we assume the following properties,

Assumption 3. Maps f and k are Lipschitz continuous on

compacts. Additionally, there exist α, α, α, γ ∈ K∞ and a

continuously differentiable Lyapunov function V : Rn → R

satisfying, for any x, v ∈ R
n,

α(|x|) 6 V (x) 6 α(|x|),
〈∇V (x), f(x, k(x+ v))〉 6 −α(|x|) + γ(|v|), (22)

implying that the origin of ẋ = f(x, k(x + v)) is ISS with

respect to v.

We derive the following result based on Assumption 3.

Proposition 4. Consider system (21) and suppose Assump-

tion 3 holds. Then all conditions of Assumption 2 are met

for A = {χ : x = 0} with β(s) = γ(2s) for any s > 0,

δ(o) = σα( 12 |x̃|) for any x̃ ∈ R
n and V as in Assumption

3, with σ ∈ (0, 1) a tuning parameter.

Proposition 4 implies that, for any bounded measurement

noise as defined by Assumption 1, Theorem 3 can be applied

to obtain triggers based on (20) that render the origin of the

closed-loop system ISpS with the SGiMIET property.

B. Consensus for multi-agent systems

A specific field of interest for ETC is consensus of multi-

agent systems. We study several event-triggering control

schemes in this context next. Due to limited space, we

omit commonly used definitions on consensus, which can

be found in e.g., [7]. We focus here on single integrator

systems, where each plant Pi, which we call agent in this

section, has single integrator dynamics, i.e., ẋi = ui, with



xi, ui ∈ R. However, note that the ideas of this work apply

in more general settings.

For a connected undirected graph G with Laplacian L, it

is known that agents achieve consensus when the control

law ui =
∑

j∈Vi
(xi − xj), with Vi the neighbors of agent

i, is applied, see [18]. In vector notation, this is written as

u = −Lx, where u = (u1, u2, . . . , uN ). We use the noisy

sampled states for each agent instead of the actual states,

resulting in the control law u = −L(x+ e+ ŵ). Hence, the

closed-loop system dynamics are

ẋ = −Lx− Le− Lŵ, (23)

which results in the dynamics for the hybrid system as

Fχ(χ) = (−Lx− Le− Lŵ, Lx+ Le+ Lŵ,0N ). (24)

We are interested in stability properties of the consensus set

A :=
{
χ ∈ R

2n ×W | x1 = x2 = . . . = xN

}
.

We show that our results extend the works of [15] and [9],

to render the ETC schemes robust to measurement noise.

1) Decentralized triggering of [15]:

First we consider a similar triggering style as in [15]. This

event generator is of particular interest, since the original

paper does not have a non-Zeno proof, as also noted in [7].

By applying our results, we can design two robust triggers,

one static and one dynamic, that have the SGiMIET property

and thus no Zeno behavior.

The proposition below contains the functions required to

design a trigger for (23) such that Assumption 2 holds.

Proposition 5. Assumption 2 holds for Fχ defined as in (24)

and Gχ as in (13) with βi(s) =
1
a
Nis

2 and δi(oi) = σi(1−
2aNi)u

2
i , where Ni denotes the number of neighbors of agent

i and a ∈ (0, 1
2Ni

), σi ∈ (0, 1) are tuning parameters.

Proposition 5 implies that, for any bounded measurement

noise as defined by Assumption 1, the triggers defined in

Theorem 3 render the hybrid system (7) ISpS w.r.t. Ad with

the SGiMIET property.

2) Decentralized dynamic trigger of [9]:

Next we analyze the trigger designed in [9] without transmis-

sion delays to avoid blurring the exposition with too many

technicalities. For the scheme of [9] we require that each

agent has an internal clock, τi ∈ R>0, such that τ̇i = 1 on

flows and τ+i = 0 at any triggering instant of agent i, i.e.,

we reset the clock if agent i transmits its state. We denote

the hybrid system in which these clocks are integrated in H
((7)-(13)) with Hclock.

The proposition below contains the functions required to

design a trigger for system (23) such that Assumption 2

holds.

Proposition 6. Assumption 2 holds for (13) and (24) with

A =
{
χ ∈ R

2n ×W | xi = xj for all i, j ∈ N , e = 0
}

,

βi(ẽi, τi) = (1 − ωi(τi))γ
2
i

(
1

αiσi
λ2
i + 1

)
ẽ2i and δi(oi) =

(1 − αi)σiu
2
i , where σi := (1 − ̺)(1 − 2aNi), γi :=
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Fig. 2: Evolution of the states (top) and inter-event times (bottom) of the MAS using

the dynamic trigger obtained by applying Theorem 3 to Proposition 8 with ci = 0
and initial condition x(0) = (8, 6, 4, 2,−2,−4,−8).

√
1
a
Ni + µi, di := ̺(1− 2aNi),

ωi(τi) :=





{1}, when τi ∈ [0, τ iMIET),

[0, 1], when τi = τ iMIET,

{0}, when τi > τ iMIET,

τ iMIET := −
√
αiσi

γi
arctan

(
(λ2

i − 1)
√
αiσi

λi(αiσi + 1)

)
,

with αi ∈ (0, 1), ̺ ∈ (0, 1), µi ∈ R>0 and λi ∈ (0, 1) tuning

parameters.

Proposition 6 implies that, for any bounded measurement

noise as defined by Assumption 1, the triggers defined in

Theorem 3 render the hybrid system (7) ISpS w.r.t. Ad
clock :=

{( ξ, τ) : ξ ∈ Ad and τ ∈ R
N
>0}. Let us note that, due to the

inclusion of the timer-dependent function ωi in the triggers,

the system has a GiMIET (instead of a SGiMIET) in this

particular case. Additionally, there is no requirement (i.e.,

no lower bound) on the space-regularization constants ci,

and, in fact, if ci = 0 for all i ∈ N , we obtain ISS w.r.t. Ad

(instead of ISpS).

VI. NUMERICAL EXAMPLES

In this section, we illustrate the results of Section V-B.2

with N = 8 agents that are connected as described by a

graph G with undirected edges (1, 2), (1, 8), (2, 3), (2, 7),
(3, 4), (3, 6), (4, 5), (5, 6), (5, 8) and (7, 8). Due to space

limitations, we only show simulation results for the modified

algorithm of [9]. The tuning parameters of [9] are used, i.e.,

δ = µi = ǫη,i = 0.05, a = 0.1 and αi = 0.5 for all i ∈
N . Given these tuning parameters, we obtain γi = 4.478
and σi = 0.76 for agents i ∈ N with two neighbors (i.e.,

Ni = 2, thus agents P1, P4, P6 and P7) and γi = 5.482
and σi = 0.665 for agents i ∈ N with three neighbors (i.e.,

Ni = 3, thus agents P2, P3, P5 and P8). We choose λi = 0.2
for all agents. For these values, we obtain τ iMIET = 0.1562
for agents i ∈ N for which Ni = 2 and τ iMIET = 0.1180 for

agents i ∈ N for which Ni = 3.
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Fig. 3: Evolution of the states (top) and inter-event times (bottom) of the MAS

using the dynamic trigger obtained by applying Theorem 3 to Proposition 8 with

ci = 1 · 10−5 and initial condition x(0) = (8, 6, 4, 2,−2,−4,−8).

We include uniformly distributed noise in the interval

[−1 · 10−3, 1 · 10−3] as measurement noise, hence, wi =
1 · 10−3 for all i ∈ N . The noise is sampled at a rate of

1 ·104Hz and a zero-order-hold is applied between samples.

We demonstrate the results of Theorem 3, i.e., we apply

dynamic triggering. Two cases are simulated, first with no

space-regularization for all i ∈ N , for which we obtain

ISS w.r.t. the consensus set, second with space-regularization

constant ci = 1 · 10−5 for all i ∈ N , for which we have

ISpS w.r.t. the consensus set. To compare the results to [9]

(not considering measurement noise), in all cases we select

θi = 0. In Fig. 2, the evolution of the states xi, i ∈ N , with

ci = 0 and the corresponding inter-event times are shown

for the initial condition x(0) = (8, 6, 4, 2,−2,−4,−6,−8).
Fig. 3 depicts the same simulations for ci = 1 · 10−5.

From the simulations we can make a few observations. Note

that, for ci = 0, close to the consensus set the inter-event

times are generally close to τ iMIET. This can be explained

from the observation that, in these cases, η+i = 0 and

ui is generally small, and consequently, the increase in ηi
for τ ∈ [0, τ iMIET) is limited. Additionally, we observe that

by selecting a ci > 0, the inter-event times are generally

significantly larger than the enforced minimum inter-event

time. Moreover, because there is no lower-bound on ci,

a relatively small ci is often sufficient to obtain desirable

average inter-event times. We want to stress that this is a

beneficial aspect of this particular scheme, since in general

there are constraints on the minimum size of the space-

regularization constants ci to ensure non-Zenoness.

Even though the inclusion of ci leads to ISpS instead of

ISS properties, applying space-regularization leads to trigger-

ing conditions that are not only robust to measurement noise,

but also have, on average, larger inter-event times. Since ISS

only leads to asymptotic behavior of the consensus set for

vanishing noise, and since most measurement noise is non-

vanishing, practical stability or ISpS with larger inter-event

times may be more desirable when having communication

limitations in mind.

VII. CONCLUSIONS

We presented a general “prescriptive” framework for set

stabilization of event-triggered control systems affected by

measurement noise. It is shown that, by careful design,

we obtain both static and dynamic triggering conditions

that render the closed loop input-to-state (practically) stable

with a guaranteed positive (semi-)global individual minimum

inter-event time. The strengths and generality of the frame-

work are demonstrated on several interesting event-triggered

control problems including consensus problems for multi-

agent systems that we robustify for measurement noise.
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