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Event-triggered Control Systems under
Denial-of-Service Attacks
V.S. Dolk, P. Tesi, C. De Persis and W.P.M.H. Heemels

Abstract—In this paper, we propose a systematic design frame-
work for output-based dynamic event-triggered control (ETC)
systems under Denial-of-Service (DoS) attacks. These malicious
DoS attacks are intended to interfere with the communication
channel causing periods in time at which transmission of mea-
surement data is impossible. We show that the proposed ETC
scheme, if well designed, can tolerate a class of DoS signals
characterized by frequency and duration properties without
jeopardizing the stability, performance and Zeno-freeness of the
ETC system. In fact, the design procedure of the ETC condition
allows trade-offs between performance, robustness to DoS attacks
and utilization of communication resources. The main results will
be illustrated by means of a numerical example.

I. INTRODUCTION

The field of cyber-physical systems (CPS) and, in particular,
networked control systems (NCSs) is rapidly emerging due to a
wide range of potential applications. However, there is a strong
need for novel analysis and synthesis tools in control theory
to guarantee safe and secure operation despite the presence
of possible malicious attacks [2]. Especially for safety-critical
applications such as intelligent transport systems and power
grids, this is of high importance and requires the integration
of cyber-security and control strategies.

One of the main concerns in NCSs with respect to security
are deception attacks and denial-of-service (DoS) attacks.
Deception attacks are intended to tamper transmitted data
packages causing false feedback information, see for more
details, e.g., [3] and the reference therein, whereas DoS
attacks, induced by radio interference signals (also referred to
as jamming signals), typically cause periods in time at which
communication is not possible, see, for instance, [4]. In the
present paper, we focus on the latter type of attack. To be more
concrete, we are interested in creating control strategies that
render the overall closed-loop system resilient to DoS attacks
which occur according to some unknown strategy with the aim
to impede the communication of sensor measurements.

In addition to this resilience requirement described above,
the control strategy needs to deal with the inherent imperfec-
tions of networked communication. Communication in NCSs
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is in general packet-based and thus measurement data can only
be transmitted at discrete time instants. Moreover, especially
since a communication network is often shared with multiple
devices, the communication resources are restricted. Hence,
a resource-aware and resilient control approach, which aims
to only schedule the transmission of data when needed to
maintain the desired stability and performance criteria, is a
requisite. In a nutshell, the control problem addressed in this
paper is to design a control law that limits the transmission of
sensor data while realizing desired closed-loop stability and
performance criteria despite the presence of DoS attacks.

The proposed solution to this challenging design problem
is to adopt an event-triggered control (ETC) strategy, in
which transmission times are determined online by means
of well-design triggering rules which rely on, e.g., sensor
measurements of the system. The introduction of this feedback
in the sampling process enables ETC schemes to reduce the
utilization of communication resources without jeopardizing
control performance. In contrast to periodic time-triggered
control schemes, ETC schemes aim to only transmit data when
needed to maintain desired closed-loop properties. However,
the majority of the literature on ETC strategies do not consider
cyber-security issues like DoS attacks. Notable exceptions are
[5]–[7]. In [7], a method was proposed to identify features
of DoS attacks in order to improve the scheduling of trans-
missions in the sense that the DoS periods are being avoided.
However, this approach turns out to be effective only when the
DoS attacks are “well-structured” over time, e.g., in case of a
periodic jamming signal. In [5], [6], a more general and more
realistic DoS attack model is used based on the frequency
and duration of the attacker’s actions. These constraints are
quite natural, as in reality, also the jammers resources are
not infinite and several provisions can be taken to mitigate
these DoS attacks. Additionally, no assumptions regarding
the underlying jamming strategy of the attacker are made.
Moreover, in contrast to stochastic packet dropout models,
this characterization allows to capture a wide class of DoS
attacks including trivial, periodic, random and protocol-aware

jamming attacks [4], [8].
A drawback of the approaches in [5]–[7] is that these

approaches are restricted to the case of static state feed-
back which requires the availability of full state information.
Clearly, in practice, this is a strong assumption as only in very
rare cases the full state variable is available for feedback. For
this reason, it is of interest to study event-triggered NCSs
subject to DoS attacks that rely on output measurements
only. To the best of our knowledge, the output feedback case
in the context of DoS attacks has never been addressed in
literature. This is not surprising as, especially in the presence
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of disturbances, extending existing ETC schemes that rely
on state-feedback to the output-based ETC schemes (even
without DoS attacks) is far from trivial as shown in [9], [10].
Therefore, we propose in this paper a novel systematic design
methodology for output-based resilient and resource-aware

dynamic ETC strategies for a class of non-linear systems
subject to disturbances. We prove that under the proposed
design conditions, the resulting closed-loop system is input-
to-output stable with finite induced L∞-gains (peak-to-peak

gains). Interestingly, this result is of independent interest in
the context of switched systems under average-dwell time
conditions, see also [11].

To enable practical implementation of the ETC scheme, it
is important to guarantee that the time between consecutive
transmission attempts is strictly positive and preferably lower
bounded by a positive constant. By exploiting the Zeno-
freeness property of the ETC scheme presented in [12], [13],
we show that for the proposed ETC scheme, such a positive
minimal-inter event time (MIET) exists by design despite the
presence of disturbances and/or DoS attacks. By employing
the DoS characterization as presented in [5], [6], the obtained
results hold for wide classes of relevant DoS attacks. As a
matter of fact, as already mentioned, no assumptions regarding
the underlying strategy of the attacker are needed, which
makes the proposed scheme applicable in many contexts.
The design procedure is demonstrated on a case study of
cooperative adaptive cruise control. The numerical example
reveals that illustrates a tradeoff between robustness with
respect to DoS attacks, network utilization and performance
guarantees.

The remainder of this paper is organized as follows. After
presenting the necessary preliminaries and notational conven-
tions in Section II, we introduce the event-triggered networked
control setup subject to DoS attacks in Section III leading
to the problem statement. This event-triggered NCS setup is
formalized in Section IV by means of hybrid models resulting
in a mathematically rigorous problem formulation. In Section
V, we characterize DoS attacks in terms of frequency and
duration and, based on this characterization, we provide design
conditions for the proposed dynamic event-triggered strategy
such that stability and performance properties are satisfied.
The obtained design framework is illustrated by means of
a numerical example in Section VI. Finally, we provide the
concluding remarks in Section VII.

II. DEFINITIONS AND PRELIMINARIES

The following notational conventions will be used in this
paper. N denotes the set of all non-negative integers, N>0 the
set of all positive integers, R the field of all real numbers and
R>0 the set of all non-negative reals. For N ∈ N, we write the
set {1, 2, . . . , N} as N̄ . For N vectors xi ∈ R

ni , i ∈ N̄ , we
denote the vector obtained by stacking all vectors in one (col-
umn) vector x ∈ R

n with n =
∑N

i=1 ni by (x1, x2, . . . , xN ) ,

i.e., (x1, x2, . . . , xN ) =
[

x⊤
1 x⊤

2 · · · x⊤
N

]⊤
. The vec-

tors in R
N consisting of all ones and zeros are denoted by

1N and 0N , respectively. By | · | and 〈·, ·〉 we denote the
Euclidean norm and the usual inner product of real vectors,

Figure 1. Schematic representation of the event-triggered NCS considered in
this paper which consists of the interconnection of P , C and N and where
the transmission instants are determined by an event-triggering mechanism
(ETM). Moreover, we assume an acknowledgement scheme is available
meaning that the ETM has knowledge about reception of packages at the
controller side.

respectively. For a real symmetric matrix A, λmax(A) denotes
the largest eigenvalue of A. IN denotes the identity matrix
of dimension N × N and if N is clear for the context, we
write I . A function α : R>0 → R>0 is said to be of class
K if it is continuous, strictly increasing and α(0) = 0. It is
said to be of class K∞ if it is of class K and it is unbounded.
A continuous function β : R>0 × R>0 → R>0 is said to be
of class KL if, for each fixed s, the mapping r 7→ β(r, s)
belongs to class K, and for each fixed r, the mapping β(r, s)
is decreasing with respect to s and β(r, s) → 0 as s → ∞. A
continuous function γ : R>0 × R>0 × R>0 → R>0 is said to
be of class KLL if, for each r > 0, both γ(·, ·, r) and γ(·, r, ·)
belong to class KL. A function f : Rn → R

n is said to be
locally Lipschitz continuous if for each x0 ∈ R

n there exist
constants δ > 0 and L > 0 such that for all x ∈ R

n we have
that |x− x0| 6 δ ⇒ |f(x)− f(x0)| 6 L|x− x0|.

III. NCS MODEL AND PROBLEM STATEMENT

In this section, we present the networked control setup and
the dynamic event-triggering mechanism employed by this
NCS. Moreover, we describe how this NCS is affected by
denial-of-service (DoS) attacks. Based on these descriptions,
we formulate the problem statement.

A. Networked Control Configuration

Consider the feedback control configuration depicted in
Figure 1. In this configuration, the sensor measurements of
a plant P are being transmitted to a (dynamic) output-based

controller C over a network N . The continuous-time plant P
is given by

P :

{

ẋp = fp(xp, u, w)

y = gp(xp),
(1)

where w ∈ R
nw is a disturbance input, xp ∈ R

np the state
vector, u ∈ R

nu is the control input, y ∈ R
ny is the measured

output of plant P . The (dynamic) output-based controller C is
given by

C :

{

ẋc = fc(xc, ŷ)

u = gc(xc, ŷ),
(2)

where xc ∈ R
nc denotes the controller state, ŷ ∈ R

ny

represents the most recently received output measurement of
the plant at the controller C and u ∈ R

nu is the controller
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output. The performance output is given by z = q(x), where
z ∈ R

nz and x = (xp, xc).
Typically, the communication over the network N is packet-

based, which implies that the output measurements y can
only be transmitted at discrete instants in time, i.e., at times
tj , j ∈ N, satisfying 0 6 t0 < t1 < t2 < . . .. Hence,
at each transmission instant tj , j ∈ N, the value of ŷ is
updated/jumps according to ŷ(t+j ) = y(tj), for all j ∈ N

(assuming for the moment that no DoS attacks are present).
Here we consider ŷ as a left-continuous signal in the sense
that ŷ(t) = lims→t ŷ(s). Furthermore, we assume that the
value of ŷ evolves in a zero-order-hold (ZOH) fashion in the
sense that in between updates, the variable ŷ is held constant,
i.e., ˙̂y(t) = 0 for all t ∈ (tj , tj+1) with j ∈ N. The functions
fp and fc are assumed to be continuous and the functions gp
and gc are assumed to be continuously differentiable.

Remark 1. For the sake of brevity, we consider the control

configuration presented in Figure 1 in which we consider

dynamic controllers as in (2) and only sensor measurements

are transmitted over the network. However, the framework

presented in this paper also applies to other configurations

such as decentralized control setups as described in [13], [14].

B. DoS Attacks

A denial-of-service (DoS) attack is defined as a period in
time at which the communication is blocked by a malicious
attacker. Hence, when a transmission of y(tj) is attempted at
transmission time tj and a DoS attack is active, the attempt
will fail and thus the value of ŷ can not be updated to y(tj).
Obviously, this can have detrimental effects on the stability
and performance of the closed-loop system.

In general, DoS attacks lead to a sequence of time in-
tervals {Hn}n∈N

, where the n-th time interval Hn, given
by Hn := {hn} ∪ [hn, hn + τn), represents the n-th DoS
attack (period). Hence, hn ∈ R>0 denotes the time instant
at which the n-th DoS interval commences and τn ∈ R>0

denotes the length of the n-th DoS interval. The collection of
all sequences {Hn}n∈N

of DoS attacks without overlap, i.e.,
satisfy 0 6 h0 6 h0 + τ0 < h1 6 h1 + τ1 < h2 < . . ., is
denoted by IDoS .

Moreover, for a given {Hn}n∈N
∈ IDoS , we define the

collection of times at which a DoS attack is active by

T :=
⋃

n∈N

Hn, (3)

where we do not explicitly write the dependency of T on
{Hn}n∈N

∈ IDoS assuming it is clear from the context. By
means of this definition, we can now describe the jump/update
of ŷ as in (2) for each transmission attempt at time tj ∈ R>0,
j ∈ N as

ŷ(t+j ) =

{

y(tj), when tj /∈ T

ŷ(tj), when tj ∈ T ,

and, accordingly, the update of the transmission error e :=
ŷ − y as

e(t+j ) =

{

0, when tj /∈ T

e(tj), when tj ∈ T ,
(4)

for each j ∈ N.

C. Event-based Communication

As already mentioned in the introduction, in comparison
with time-triggered control, event-triggered control (ETC) is
much more suitable for balancing network utilization and con-
trol performance. See also [15]–[18] for some early approaches
of ETC and see [19] for a recent overview.

In this paper, we we follow a design philosophy based on a
dynamic event-triggered control scheme [12], [13], [20]–[23],
which has several advantages over their static counterparts, see
[1], [12], [20], [22], [23] for more details on these advantages.
A dynamic triggering condition in the context of this paper will
take the form

t0 = 0, tj+1 := inf
{

t > tj + τ
m(t)
miet | η(t) < 0

}

, (5)

for all j ∈ N, η(0) = 0, where m(t) ∈ {0, 1} is an auxiliary
variable used to keep track of whether the most recent trans-
mission attempt at time t ∈ R>0 was successful (m(t) = 0)
or not (m(t) = 1) (due to DoS attacks), τ0miet, τ

1
miet ∈ R>0

are (enforced) lower bounds on the minimum inter-event times

(MIETs) for the cases that m(t) = 0 and m(t) = 1,
respectively, and η ∈ R is an auxiliary variable. Let us
remark that in general, if possible, it is helpful to schedule
transmission attempts more often when a DoS attack is active
in order to determine earlier when the DoS attack is over. For
this reason, we consider two different waiting times τ0miet,
τ1miet and we choose τ1miet 6 τ0miet. The variable η evolves
according to

η̇(t) = Ψ̃(m(t), o(t), η(t)), when t ∈ (tj , tj+1] (6)

η(t+j ) =

{

η0(e(tj)), when tj /∈ T

η(tj), when tj ∈ T ,
(7)

where o = (y, e, τ, φ) ∈ O := R
ny × R

ny × R>0 ×
[

λ, λ−1
]

with λ ∈ (0, 1) representing the information locally available
at the event-triggering mechanism (ETM) (see Figure 1)
including the output measurements y ∈ R

ny , the transmission
error e := ŷ − y and the auxiliary variables τ ∈ R>0 and
φ ∈

[

λ, λ−1
]

. The variables τ and φ are discussed in more de-
tail in Section IV. Observe that by taking τ0miet, τ

1
miet ∈ R>0

Zeno-behavior is excluded from the ETC system since the
next event can only occur after at least τ1miet time units have
elapsed, i.e., tj+1−tj > τ1miet, for each j ∈ N. In Section V-B
and Section V-C, we specify how to select τ0miet, τ

1
miet, Ψ̃ and

η0 such that desirable closed-loop stability and performance
requirements are met.

D. Problem Formulation

Given the descriptions above, the problem considered in this
work can now roughly be stated as follows: Propose a system-

atic design procedure for Ψ̃, η0, τ0miet and τ1miet such that the

interconnection (P, C,N ) with P and C as in (1) and (2),

respectively, and the transmission attempts being generated

by (5)-(7), satisfies desired asymptotic stability criteria and

performance criteria, in terms of the so-called peak-to-peak
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gain despite the presence of the DoS attacks {Hn}n∈N
∈ IDoS

that satisfy constraints in terms of frequency and duration.

In the next section, we introduce a complete mathemati-
cal (hybrid) model for the event-triggered closed-loop NCS
setup, definitions of DoS frequency and duration, and relevant
stability and performance notions, leading to a more formal
problem formulation.

IV. MATHEMATICAL FORMULATION OF THE

EVENT-TRIGGERED CONTROL SETUP

In this section, we reformulate the dynamics of the event-
triggered NCS subject to DoS attacks in the form of the hybrid
model HT given by,

ξ̇ = F (ξ, w), when ξ ∈ C, (8a)

ξ+ = GT (ξ), when ξ ∈ D, (8b)

see [24] for details on this hybrid modelling framework.
Let us remark that the hybrid systems considered in this

paper have time regularization (or dwell time) and exter-
nal inputs only appearing in the flow map. The latter al-
low us to employ the following signal norm definitions
inspired by [21]. For any hybrid signal ζ(·, ·) defined on
dom ζ ⊂ R>0 × N we define the L∞-norm of ζ as ‖ζ‖∞ :=

supj∈N

(

ess sup{t∈R|(t,j)∈dom ζ} |ζ(t, j)|
)

. Observe that this
signal norm definition is similar to the corresponding clas-
sical continuous-time norm. In this paper, we employ the
same notation for the L∞-norm of hybrid time signals and
conventional continuous-time signals. Moreover, due to the
aforementioned properties and notational convenience, we
consider the disturbance input w : R>0 → R

nw to be a time
signal instead of a hybrid signal and use the usual definition
for L∞-norm.

A. Hybrid Model

To describe the NCS setup as discussed before in terms of
flow equations (8a) and jump equations (8b), we first need to
introduce a few auxiliary variables, namely, the timer variables
s, τ ∈ R>0 representing the overall time and the time elapsed
since the most recent transmission attempt, respectively. More-
over, we we also introduce an additional auxiliary variable
φ ∈

[

λ, λ−1
]

, where λ ∈ (0, 1) is a tuning parameter to
be specified, used in the triggering condition and part of o
as already mentioned in Section III-C. By combining these
auxiliary variables with (1), (2) and (7), the flow map of the
interconnection (P, C,N ) can be defined as

F (ξ, w) :=
(

f(x, e, w), g(x, e, w), 1, 1, 0,

Ψ̃(m, o, η), fφ(τ,m, φ)
)

, (9)

where ξ = (x, e, τ, s,m, η, φ) ∈ X := R
nx × R

ny × R>0 ×
R>0 × {0, 1} × R>0 ×

[

λ, λ−1
]

with nx = np + nc and λ ∈
(0, 1). Moreover, the functions f and g follow from (1) and
(2) and are given by

f(x, e, w) =

[

fp(xp, gc(xc, gp(xp) + e), w)
fc(xc, gp(xp) + e)

]

, (10)

g(x, e, w) = −
∂gp
∂xp

(xp)fp(xp, gc(xc, gp(xp) + e), w), (11)

and fφ will be specified later. In accordance with (5), we define
the flow set as

C := {ξ ∈ X | τ 6 τmmiet ∨ η > 0} . (12)

Based on (7) and (4), we specify the jump map as

GT (ξ) :=

{

G0(ξ), when ξ ∈ D ∧ s /∈ T

G1(ξ), when ξ ∈ D ∧ s ∈ T ,
(13)

where

G0(ξ) = (x, 0, 0, s, 0, η0(e), λ) (14)

G1(ξ) = (x, e, 0, s, 1, η, φ) , (15)

such that ξ+ = G0(ξ) corresponds to a successful transmission
attempt and ξ+ = G1(ξ) to a failed transmission attempt.

Finally, the jump set is given by

D := {ξ ∈ X | τ > τmmiet ∧ η 6 0} . (16)

The time-constants τ0miet and τ1miet and the functions Ψ̃, η0
and fφ are specified in Section V. Observe that the hybrid
system description presented above leads to more solutions
than induced by the triggering condition given by (5) and (7).1

Moreover, observe that the hybrid system HT as described
by (8)-(16) is parameterized by the collection of time-intervals
at which DoS attacks are active as defined in (3). Therefore,
we write explicitly the dependence of HT on T .

B. Constraints on DoS Sequence

Since it is reasonable to assume that the attacker’s resources
are not infinite and measures can be taken to mitigate mali-
cious DoS attacks, a natural characterization of DoS attacks
can be given in terms of both the DoS frequency and the DoS
duration as in [5], see also Remark 2 below. Therefore, we
define the collection of times within the interval [T1, T2], with
T2 > T1 > 0, at which DoS attacks are active as

Ξ(T1, T2) := [T1, T2] ∩ T (17)

with T as in (3) and the collection of time instants within the
interval [T1, T2] at which communication is possible as

Θ(T1, T2) := [T1, T2]\Ξ(T1, T2).

Consider a collection {Ii}, i ∈ N̄ of N intervals that do not
overlap, i.e., Ii ∩ Ij = ∅ for all i, j ∈ N̄ , i 6= j, and let
I =

⋃

i∈N̄ Ii. We denote with |I| the sum of the lengths of all
intervals Ii, i ∈ N̄ . Consequently, |Ξ(T1, T2)| denotes the total
length of the DoS attacks within the interval [T1, T2]. Consider
the following definitions.

Definition 1. [6], [11] (DoS frequency). Let {Hn}n∈N
∈ IDoS

and let n(T1, T2) denote the number of DoS off/on transitions

1We foresee that the results in [24, Chapter 6, Chapter 7] on well-posed
hybrid systems can relatively easily be used to obtain robustness properties
with respect to arbitrarily small vanishing perturbations on the flow map jump
map and all states. Note, however, that the focus of this paper is to obtain
robustness result with respect to DoS attacks, which require different and
new techniques. To not complicate the exposition of the novel techniques
by introducing more technicalities needed to address also the robustness
properties studied in [24], we describe only the new results, although they
can be combined with the existing robustness results of [24].
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occurring in the interval [T1, T2), i.e., n(T1, T2) = card{n ∈
N | hn ∈ [T1, T2)}, where card denotes the number of

elements in the set. We say that a given sequence of DoS

attacks {Hn}n∈N
satisfies the DoS frequency constraint for a

given τD ∈ R>0, and a given ν ∈ R>0, if for all T1, T2 ∈ R>0

with T2 > T1

n(T1, T2) 6 ν +
T2 − T1

τD
. (18)

We denote the class of sequences of DoS intervals that satisfy

this DoS frequency constraint by IDoS,freq(ν, τD).

Definition 2. [6] (DoS duration). We say that a sequence of

DoS attacks specified by {Hn}n∈N
∈ IDoS satisfies the DoS

duration constraint for a given T ∈ R>1 and a given ς ∈ R>0,

if for all T1, T2 ∈ R>0 with T2 > T1

|Ξ(T1, T2)| < ς +
T2 − T1

T
. (19)

We denote the class of all sequences of DoS intervals that

satisfy this DoS duration constraint by IDoS,dur(ς, T ).

We will also use the notation IDoS(ν, τD, ς, T ) for ν, ς ∈
R>0, τD ∈ R>0 and T ∈ R>1 to denote the intersection
IDoS,freq(ν, τD) ∩ IDoS,dur(ς, T ). We call a sequence of
DoS attacks that satisfies {Hn}n∈N

∈ IDoS(ν, τD, ς, T ),
a (ν, τD, ς, T )-DoS sequence for short. Moreover, we also
define the class of hybrid systems, which are generated by
(ν, τD, ς, T )-DoS sequences as H(ν, τD, ς, T ) := {HT |
T as in (3) with {Hn}n∈N ∈ IDoS(ν, τD, ς, T )}.

Remark 2. Observe that Definition 1 and Definition 2 make

no assumptions regarding the attacker’s underlying strategy

as they only indicate limitations in terms of the frequency

and duration of DoS attacks. From a practical point of

view, Definition 1 and Definition 2 are natural as well since

there exist several techniques to mitigate jamming attacks, for

example, spreading techniques and high-pass filtering. As a

consequence, the frequency and duration of DoS attacks can

indeed be restrained by exploiting such techniques, see, e.g.,
[4], [8].

Of course, desired control objectives can in general not be
achieved in case the DoS frequency and/or DoS duration can
be arbitrarily large, i.e., in case τD → 0 or T = 1, respectively,
as in that case every communication attempt can be blocked
by the attacker with the consequence that the system is in
open loop all the time. Fortunately, as already mentioned in
Remark 2, several provisions can be taken in order to mitigate
DoS attacks with the aim to limit the frequency and duration
of the time intervals over which communication is effectively
denied.

C. Mathematical Problem Formulation

To specify desirable stability and performance properties,
we introduce the following definitions that use the concepts
of hybrid time domains and corresponding solutions [24]. In
this paper, we assume that all hybrid trajectories start in the
set

X0 := {ξ ∈ X | τ > τ0miet, s = 0, η = 0, φ = φmiet}, (20)

where φmiet will be specified in Section V-B. Observe that
this assumption only reflects the initialization of the ETM
variables, which can be freely chosen, while we do not put
any (initial) constraints on the plant and the controller states
x = (xp, xc) and the initial knowledge of ŷ at the controller
side.

Definition 3. A hybrid system HT is said to be persistently
flowing with respect to initial state set X0 if all maximal

solutions2 ξ with ξ(0, 0) ∈ X0 have unbounded domains in

the t-direction, i.e., supt dom ξ = ∞.

Definition 4. Let ν, ς ∈ R>0, τD ∈ R>0 and T ∈ R>1 be

given. A closed set A ⊂ X is said to be uniformly globally
asymptotically stable (UGAS) for the class of hybrid systems

H(ν, τD, ς, T ) with respect to initial state set X0 if all systems

HT ∈ H(ν, τD, ς, T ) are persistently flowing with respect to

initial state set X0 and there exists a function β ∈ KLL such

that for any HT ∈ H(ν, τD, ς, T ) and for any initial condition

ξ(0, 0) ∈ X0, all corresponding solutions ξ of HT with w = 0
satisfy

|ξ(t, j)|A 6 β (|ξ(0, 0)|A, t, j) (21)

for all (t, j) ∈ dom ξ. The closed set A is said to be uniformly
globally exponentially stable (UGES) for the class of hybrid

systems H(ν, τD, ς, T ), if the above holds with β(r, t, j) =
Mr exp(−̺(t+ j)) for some M > 0 and ̺ > 0.

Definition 5. Let ϑ, ν, ς ∈ R>0, τD ∈ R>0 and T ∈ R>1 be

given. A closed set A ⊂ X is said to be L∞-stable with an

induced L∞-gain less than or equal to ϑ for the class of hybrid

systems H(ν, τD, ς, T ), if all systems HT ∈ H(ν, τD, ς, T )
are persistently flowing with respect to initial state set X0

and there exists a K∞-functionβ such that for any HT ∈
H(ν, τD, ς, T ), exogenous input w ∈ L∞, and any initial

condition ξ(0, 0) ∈ X0, each corresponding solution to HT

satisfies

‖z‖L∞
6 β(|ξ(0, 0)|A) + ϑ‖w‖L∞

. (22)

We can now formalize the problem, which was loosely
stated at the end of Section III.

Problem 1. Given ν ∈ R>0, τD ∈ R>0, ς ∈ R>0 and T ∈
R>1, provide design conditions for the values of τ0miet, τ

1
miet ∈

R>0 and the functions Ψ̃, η0 as in the event generator given

by (5) and (7) and fφ as in (9), such that the closed set A :=
{ξ ∈ X | x = 0, e = 0} is UGES and/or, in the presence of

disturbances, has a finite induced L∞-gain for the class of

hybrid systems H(ν, τD, ς, T ) .

V. DESIGN CONDITIONS AND STABILITY GUARANTEES

In Section V-B and Section V-C, the time-constants τ0miet

and τ1miet, and the function fφ are specified and design
conditions for the functions Ψ̃ and η0 are presented leading

2[24, Chapter 2] A solution ξ to HT is maximal if there does not exist
another solution ξ̄ to HT such that dom ξ is a proper subset of dom ξ̄ and
ξ(t, j) = ξ̄(t, j) for all (t, j) ∈ dom ξ.
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to a solution for Problem 1. In order to specify the de-
sign conditions, we first start with the required preliminaries
consisting of stability and performance conditions for time-

triggered NCSs taken from [25], [26] in Section V-A.

A. Preliminaries

Consider the following condition.

Condition 1. ([25], [26]) There exist a locally Lipschitz

function W : R
ny → R>0, a continuous function H :

R
nx × R

nw → R, and constants L > 0, cW , and c̄W , such

that

• for all e ∈ R
ne it holds that

cW |e| 6 W (e) 6 c̄W |e|, (23)

• for all x ∈ R
nx , and almost all e ∈ R

ny it holds that
〈

∂W (e)

∂e
, g(x, e, w)

〉

6 LW (e) +H(x,w). (24)

In addition, there exist a locally Lipschitz function V : Rnx →
R>0, and a positive semi-definite function ̺ : Rny → R>0 and

constants ρV , ρW , γ, cV , c̄V , cz > 0, such that

• for all x ∈ R
nx

cV |x|
2
6 V (x) 6 c̄V |x|

2, cz|q(x)|
2
6 V (x), (25)

• for all e ∈ R
ny , w ∈ R

nwand almost all x ∈ R
nx

〈∇V (x), f(x, e, w)〉 6 −ρV V (x)−̺(|y|)−H2(x,w)

+ (γ2 − ρW )W 2(e) + θ2|w|2, (26)

• the constants ρW and γ satisfy ρW 6 γ2.

Let us remark that for linear systems the conditions above
can be obtained systematically by solving a multi-objective
linear matrix inequality (LMI) problem, see [12], [13], [26]
for more details. Also several classes of nonlinear systems
satisfy these conditions, see [13].

B. Minimal Inter-event Time

As already mentioned, τ0miet and τ1miet (and φmiet, Ψ̃, fφ
and η0) should be chosen appropriately in the sense that
desirable closed-loop stability and performance requirements
can be achieved. To do so, we specify the function3 fφ :
R>0 × N× R>0 → R, as

fφ(τ,m, φ):=

{

(m− 1)
(

2Lφ+ γ(φ2 + 1)
)

, for τ 6 τ0miet,

0, for τ > τ0miet,

(27)

with L and γ as given in Condition 1. The time-constants τ0miet

and τ1miet can be chosen less than or equal to the maximally

3Observe that the flow map F as given in (9) is discontinuous in τ due to
(27). However, due to the facts that τ̇ = 1 and the right hand-side of (27)
is Lipschitz continuous, we find by means of the Carathéodory’s existence
theorem that this does not cause any problems in the uniqueness and existence
of solutions.

allowable transmission interval bound (in this work referred
to as τ̄miet) given in [25] as

τ̄miet :=























1
Lr arctan

(

r(1−λ)

2 λ
1+λ (

γ
L
−1)+1+λ

)

, γ > L

1
L

1−λ
1+λ , γ = L

1
Lr arctanh

(

r(1−λ)

2 λ
λ+1 (

γ
L
−1)+1+λ

)

, γ < L,

(28)

where r =
√

|(γ/L)2 − 1|. Note that by selecting τ0miet

and τ1miet equal to the right-hand side of (28) indeed longer
(average) transmission intervals are realized compared to time-
based (worst-case) specifications as discussed in Section III-C.

Lemma 1. [25] Let τ̄miet be given by (28), then the solution

to
˙̃
φ = −2Lφ̃− γ

(

φ̃2 + 1
)

(29)

with φ̃(0) = λ−1 satisfies φ̃(t) ∈ [λ, λ−1] for all t ∈ [0, τ̄miet],
and φ̃(τ̄miet) = λ.

Finally, we define

φmiet := φ̃(τ0miet), (30)

where φ̃ is the solution to (29) with φ̃(0) = λ−1 and note
again that τ1miet 6 τ0miet 6 τ̄miet.

C. Stability and Performance Guarantees

Theorem 2. Consider the class of hybrid systems

H(ν, τD, ς, T ) with ν, ς ∈ R>0, τD ∈ R>0, T ∈ R>1

and let Condition 1 be satisfied with τ1miet 6 τ0miet 6 τ̄miet

with τ̄miet as in (28) and with fφ and φmiet as in (27) and

(30), respectively. Moreover, suppose that the following three

conditions hold:

i) The DoS frequency parameter τD and the DoS duration

parameter T satisfy

τ1miet

τD
+

1

T
<

ω1

ω1 + ω2
, (31)

where

ω1 = min

(

ρV ,
λρW
γ

)

, ω2 =
(γ̄ − ρW )

γφmiet
(32)

and

γ̄ := γ
(

2φmietL+ γ(1 + φ2
miet)

)

. (33)

ii) The function Ψ̃ is given by

Ψ̃(m, o, η) =

{

Ψ(o)− σ(η), when m = 0,

−(1− ω(τ,m)), when m = 1,
(34)

where σ is a K∞-function that satisfies σ(s) > ω1s for all

s ∈ R>0, the function Ψ : O → R is given by

Ψ(o) = ̺(|y|) + γ̄ω(τ,m)W 2(e) (35)

with

ω(τ,m) :=

{

1, for 0 6 τ 6 τmmiet

0, for τ > τmmiet,
(36)

for τ ∈ R>0 and with γ̄ as given in (33).
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iii) The function η0 is given by η0(e) = γφmietW
2(e).

Then the closed set A = {ξ ∈ X | x = 0, e = 0} is

UGES and is L∞-stable with a finite induced L∞-gain less

than or equal to θ
√

κ
czβ∗

with cz as in (25) and where κ :=

eς∗(ω1+ω2), ς∗ := ς + ντ1miet, β∗ = ω1 − (ω1 + ω2)/T∗ and

T∗ := τDT/(τD + τ1mietT ), for the class of hybrid systems

H(ν, τD, ς, T ).

The proof is provided in the Appendix. Observe that the
condition given in item i) imposes restrictions on the DoS
parameters τD and T in terms of other system parameters. As
such, the frequency and duration of the allowable DoS attacks
are limited. Moreover, observe that the DoS parameters ν, τD,
ς and T affect the guaranteed L∞-gain of the system which
illustrates the tradeoff between robustness with respect to DoS
attacks and performance in the sense that in general, robustness
comes at cost of performance.

Observe that in case communication is allowed, the trans-
missions are scheduled in an event-based fashion (to save
valuable communication resources) whereas in case the com-
munication is denied, the next transmission is scheduled again
after τ1miet time units (to determine when the DoS attack
is over) since when m = 1, which implies that η = 0
at the previous transmission attempt, Ψ̃(m, o, η) = 0 for
0 6 τ 6 τ1miet and Ψ̃(m, o, η) = −1 for τ > τ1miet. Hence,
when m = 1 and τ > τ1miet a next jump occurs as flow
condition η > 0 will be violated.

Remark 3. Note that this implementation requires the knowl-

edge about when DoS attacks are blocking transmissions,

which could be realized by means of acknowledgements as

illustrated in Figure 1. Let us remark that the ETM can easily

be adjusted such that it is not required that acknowledgements

are being received instantaneously. For example, the acknowl-

edgement is allowed to be delayed with at most τ1miet time

units if after each transmission instant, the ETM keeps track

of the evolution of η for both the cases that the transmission

has been successful or denied. For the brevity of exposition,

this feature has, however, been omitted.

The presented framework does not require an acknowl-

edgement scheme when purely periodic sampling with inter-

sampling time τ1miet is employed. The same design conditions

lead to the same guarantees in this case.

Remark 4. The proposed framework can also be used for the

design of a static triggering mechanism, namely

tj+1 := inf
{

t > tj + τ
m(t)
miet | Ψ(o) 6 0

}

, (37)

with t0 = 0 and with Ψ as in (35).

VI. CASE STUDY ON COOPERATIVE ADAPTIVE CRUISE

CONTROL

In this section, we illustrate the main result by means of a
case study on cooperative adaptive cruise control (CACC). As
shown in [27], in the context of vehicle platooning, wireless
communication between vehicles can have a significant contri-
bution to improving traffic throughput and safety. For a platoon

of two identical vehicles equipped with CACC, the functions f
and g as in (9) are given by f(x, e, w) = A11x+A12e+A13w
and g(x, e, w) = A21x+A22e+A23w, where

A11 =

















− 1
τc

1
τc

0 0 0 0

0 − 1
h 0 0 0 0

0 0 0 1 −h 0
1 0 0 0 −1 0
0 0 0 0 − 1

τc
1
τc

0 1
h

kp

h
kd

h −kd − 1
h

















A12 =
[

0 0 0 0 0 1
h

]⊤
,

A13 =
[

0 1
h 0 0 0 0

]⊤
,

A21 =
[

0 1
h 0 0 0 0

]

, A22 = 0, A23 = −
1

h

with τc ∈ R>0 a time-constant corresponding to the driveline
dynamics, h ∈ R>0 the time headway (desired time between
the two vehicles) and kp, kd ∈ R>0 the controller gains.
Moreover, the input w represents the control input of the
leading vehicle. See, e.g., [27] for more details. For this
example, we use the following parameter values τc = 0.15,
h = 0.6, kp = 0.2, kd = 0.7. To comply with safety, one
of the control objectives is to keep the error with respect to
the vehicle desired distance small and therefore we define the
performance output as z = Czx, where

Cz =
[

0 0 1 0 0 0
]

,

which corresponds to the spacing error between the two
vehicles. The measured output y as in (1) is the desired
acceleration of the leading vehicle and is given by y = Cyx,
where

Cy =
[

0 1 0 0 0 0
]

,

and is available at the ETM to determine the transmission
instants.

Before the ETM design and the stability and performance
analysis, we first have to guarantee that Condition 1 is met.
For the vehicle platoon system described above, we can take
W (e) = |e|. Observe that with this choice, (23) and (24) are
met with cW = c̄W = 1, L = 0 and H(x,w) = |A21x +
A21w|. To comply with (25) and (26), we take ̺(r) = qr2

and V (x) = x⊤Px, cV = λmin(P ) and c̄V = λmax(P ) where
P can be obtained by minimizing γ + θ subject to the LMI
given in (38).

To illustrate the design procedure, we take λ = 0.7 and
compute τ̄miet (as in (28)) for various ρV and ρW . By taking
λ = 0.7, cz = 1 and τ0miet = τ1miet = 1

2 τ̄miet, we obtain
Figure 2 and Figure 3, which illustrate robustness in terms of

ω1

ω1+ω2
which corresponds to the right-hand side of (31) and

network utilization in terms of τ1miet, respectively.
Let us now study the influence of four DoS attacks of length

zero on the performance of the system described above. For
this reason, we take ν = 4, ς = 0 and we take β∗ = 3

4ω1 which
implies that τD and T should satisfy τmiet

τD
+ 1

T 6
1
4

ω1

ω1+ω2
.

The L∞-gains for this case for various ρV and ρW are shown
in Figure 4. Let us remark that other choices for ς and ν such
as, e.g., ς = τmiet and ν = 2τmiet lead to identical results in
terms of the L∞-gain but allow for different classes of DoS
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Figure 2. The achievable robustness in terms of ω1

ω1+ω2
for various values

of ρV and ρW . The dashed line represents the points for which ω1 = ρV =
λρW
γ
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Figure 3. The minimal inter-event time for various values of ρV and ρW .
The dashed line represents the points for which ω1 = ρV = λρW

γ

Attacks. The dashed-line In Figure 2, Figure 4 and Figure 3
represents the points at which ω1 = ρV = λρW

γ . Observe
that below this line, the tradeoff between robustness, network
utilization and performance is unfavorable for ρV >

λρW

γ ,
since for this case, a smaller ρW leads to a relatively steep
decline in both robustness and performance in contrast to the
minimal inter-event time τ1miet that barely changes.

In Figure 5, the distance error/performance output z and
the inter-event times tj+1 − tj are displayed for the case that
ρV = 0.5, ρW = 5 and w as illustrated the figure resulting
in an L∞-gain less than or equal to 5.35, ω1

ω1+ω2
= 0.0454

and τ0miet = τ1miet = 0.0307. Although in general, it is
difficult to obtain the worst-case DoS attack and disturbance,
the simulation results show that for this particular system, the
derived L∞-bound is a somewhat conservative. In fact, more
consecutive transmission failures can be tolerated as shown
in Figure 5. To obtain better performance in terms of lower
L∞-bounds, λ and/or cz could be chosen larger and τ0miet and
τ1miet could be chosen smaller. However, this comes at cost of
increased network utilization and/or reduced robustness with
respect to DoS attacks.
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Figure 4. The L∞-gain for various values of ρV and ρW . The dashed line
represents the points for which ω1 = ρV = λρW

γ
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Figure 5. In the top plot, the trajectory of the distance error z of the vehicle
platoon for DoS-attacks of various sizes and the input w are given. In the
bottom plot, the inter-event times of the dynamic event triggering mechanism
described by (5) and (7) are given. Both plots were generated by taking ρV =
0.5 and ρW = 5 resulting in L∞-gain less than or equal to 5.35, ω1

ω1+ω2
=

0.0454 and τmiet = 0.0307. The dark and light gray boxes show where
the DoS attacks take place that block 4 and 20 consecutive transmissions,
respectively.

VII. CONCLUSION

In this work, we addressed the design of resource-aware

and resilient control strategies for networked control systems
(NCS) subject to malicious Denial-of-service (DoS) attacks. In
particular, the control and communication strategy was based
on an output-based event-triggered control scheme applicable
to a class of non-linear feedback systems that are subject
to exogenous disturbances. The proposed framework led to
guarantees regarding the existence of a robust strictly positive
lower bound on the inter-event times despite the presence
of disturbances and DoS attacks. Additionally, based on the
natural assumption that DoS attacks are restricted in terms
of frequency and duration, we showed that desired stability
and performance criteria in terms of induced L∞-gains can
be guaranteed.

APPENDIX

Proof of Theorem 2: The main idea behind the proof is
to regard the closed-loop system HT as a system switching
between a stable hybrid model (when effectively no DoS attack
is active) and an unstable mode (when effectively a DoS attack
is active). Inspired by the concept of average dwell-time [11],
we can then exploit the duration and frequency constraints of
the DoS attacks to conclude UGES (or L∞-stability a finite
induced L∞-gain) of the set A for the class of hybrid systems
H(ν, τD, ς, T ). For clarity of exposition, the proof consists of
four steps. In the proof, we often omit the time arguments of
the solution ξ of a hybrid system HT and we do not mention
dom ξ explicitly.

Step I. Lyapunov/storage function analysis. Let R (X0)
denote all the reachable states of a hybrid system HT ∈
H(ν, τD, ς, T ) for ξ(0, 0) ∈ X0, see also [24, Chapter 6].

Lemma 3. For any χ ∈ R (X0) it holds that

• {m = 1 ∨ τ > τ0miet} ⇔ φ = φmiet
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A⊤
11
P + PA11 + ρV P +A⊤

21
A21 + C⊤QC PA12 PA13 +A⊤

21
A23

A⊤
12
P (ρW − γ2)I 0

A⊤
13
P +A⊤

23
A21 0 A⊤

23
A23 − θ2I



 � 0, P � 0, C⊤
y Cy � P. (38)

• λ−1 > φ > φmiet

• η > 0

Moreover, for all χ ∈ R(X0)\D there exists an ε > 0 and

an absolutely continuous function z : [0, ε] → R
n such that

z(0) = χ, ż(t) = F (z(t)) for almost all t ∈ [0, ε] and z(t) ∈
C for all t ∈ (0, ε].

The proof is omitted for the sake of brevity. Consider the
candidate Lyapunov/storage function,

U(ξ) = V (x) + γφW 2(e) + η. (39)

Given the second and third item of Lemma 3 and the fact
that according to Condition 1, V and W satisfy (25) and (23),
respectively, and γ > 0, we find that there exists a positive
constant cU ∈ R>0 such that

cU |ξ|
2
A 6 U(ξ), (40)

for all ξ ∈ R (X0) where A = {ξ ∈ X | x = 0, e = 0}.
Hence, U constitutes a suitable candidate Lyapunov/storage
function for the cases w = 0 and w 6= 0, respectively.

To study the stability and the performance, we will discuss
how the function U evolves over time by considering both
jumps (when ξ ∈ D), and flows (when ξ ∈ C).

Jumps: We can see from (14) and (27) that at transmission
events when communication is possible, i.e., if ξ ∈ R (X0)
and ξ ∈ D and s /∈ T (and thus η = 0), we have that
U(ξ+) − U(ξ) = −γφW 2(e) + η0(e). By recalling that
η0 = γφmietW

2(e), the first item of Lemma 3 and by using
the fact that τ > τ0miet when ξ ∈ D, we have that

U(ξ+)− U(ξ) = 0, (41)

when ξ ∈ R (X0) ∩ D and s /∈ T (and thus τ > τ0miet). At
transmission times during a DoS attack, i.e., when ξ ∈ D, and
s ∈ T , (41) holds as well since e+ = e, φ+ = φ, η+ = η = 0
and x+ = x.

Flows: For the bounds on U during flow we consider two
cases depending on whether the most recent transmission
attempt was successful (m = 0) or not (m = 1).

Case I (m = 0): From (24), (26) and (27), we can derive
that for almost all ξ ∈ R (X0) with m = 0 and for w ∈ R

nw ,

〈∇U(ξ), F (ξ, w)〉 6 −̺(|y|)−H2(x,w) + γ2W 2(e)

+2γφW (e) (LW (e) +H(x,w))

−ω(τ, 0)γW 2(e)
(

2Lφ+ γ
(

φ2 + 1
))

−ρWW 2(e)− ρV V (x) + Ψ̃(m, o, η) + θ2|w|2

6 −ρV V (x)− ρWW 2(e)−M(ξ, w) + Ψ̃(m, o, η) + θ2|w|2,
(42)

with ω(τ,m) as in (36) and where M given by

M(ξ, w) =

{

M1(ξ, w), for 0 6 τ 6 τ0miet,

M2(ξ, w), for τ > τ0miet,
(43)

where for all ξ ∈ X and w ∈ R
nw

M1(ξ, w) : = ̺(|y|) + (H(x,w)− γφW (e))
2
, (44)

M2(ξ, w) : = ̺(|y|) +H2(x,w)− 2γφW (e)H(x,w)

−
(

γ2 + 2γφL
)

W 2(e). (45)

By using the fact that 2γφW (e)H(x,w) 6 γ2φ2W 2(e) +
H2(x,w), we can conclude from (35) and (43) that Ψ(o) 6
M(ξ, w) for all o ∈ O. Using the latter fact, we obtain
from (34) and (42) that for m = 0, 〈∇U(ξ), F (ξ, w)〉 6

−ρV V (x) − ρWW 2(e) − ω1η + θ2|w|2. By using Lemma 3
and the fact that V (x) 6 cV̄ |x|

2 due to (25), we can conclude
that for almost all ξ ∈ R (X0) with m = 0 and for w ∈ R

nw ,
we have that

〈∇U(ξ), F (ξ, w)〉 6 −ω1U(ξ) + θ2|w|2, (46)

with ω1 as in (32).
Case II (m = 1): Observe that for m = 1, we have that

φ̇ = 0 and η̇ = 0 due to (7), (27) and (34), respectively. Hence,
it holds that for almost all ξ ∈ R (X0) with m = 1 and for
all w ∈ R

nw

〈∇U(ξ), F (ξ, w)〉 6 −̺(|y|)−H2(x,w) + γ2W 2(e)

+2γφW (e) (LW (e) +H(x,w))

−ρWW (e)− ρV V (x) + θ2|w|2.

Using the fact that 2γφW (e)H(x,w) 6 γ2φ2W 2(e) +
H2(x,w), and Lemma 3 we obtain that 〈∇U(ξ), F (ξ, w)〉 6
(γ̄ − ρW )W 2(e) + θ2|w|2 with γ̄ as in (33). Hence, it holds
that for almost all ξ ∈ R (X0) with m = 1 and all w ∈ R

nw

〈∇U(ξ), F (ξ, w)〉 6 ω2U(ξ) + θ2|w|2 (47)

with ω2 as in (32). In fact, observe that since ω2 > due to
Condition 1, (47) also holds when m = 0.

Observe that a system HT ∈ H(ν, τD, ς, T ) does not exhibit
Zeno-behaviour due to a strictly positive MIET. Moreover,
observe that finite escape-times are excluded from the system
due to the bounds on the states x and e as in (40), (41), (46),
(47) and the fact that the trajectories of the state variables
τ , s, m, η, and φ do not exhibit finite escape-times. Given
the aforementioned facts and the last property mentioned in
Lemma 3, we can conclude that a system HT ∈ H(ν, τD, ς, T )
with ξ(0, 0) ∈ X0 is indeed persistently flowing with respect
to initial state set X0.

Step II. Characterization of stable and unstable modes. In
the previous step, we have shown how the Lyapunov/storage
function behaves for both the cases where m = 0 and m = 1,
see (46) (m = 0) and (47) (m = 1). To use average dwell-
time arguments, it is needed to determine the collection of time
instants at which either m = 0 or m = 1. Unfortunately, this
can not directly be related to T , since the value of ŷ is typically
not updated immediately after a DoS interval has ended due
to τ1miet being a lower bound on the inter-event times tj+1 −
tj , j ∈ N, for which transmission time tj corresponds to an
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unsuccessful transmission attempt. For this reason, we will
consider the “effective” DoS attacks, decompose the time axis
accordingly and relate these “effective” DoS attacks to T via
the collection of DoS intervals as given in (17). To do so, we
first define for a given maximal solution ξ, the collection of
time instants in the interval [T1, T2], with T2 > T1, at which
the most recent transmission attempt was successful and at
which no DoS attack is active as

Θ̄ξ(T1, T2) :=
{

t̄ ∈ (T1, T2) |

t̄ /∈ T and ∀j ∈ N, (t̄, j) ∈ dom ξ ⇒ m(t̄, j) = 0
}

. (48)

The system HT is said to be in the stable mode (satisfying
(46)) at a time instant t if t ∈ Θ̄ξ(0,∞). In addition, we
define the collection of “effective” DoS attacks in the interval
[T1, T2], with T2 > T1 as

Ξξ(T1, T2) := [T1, T2]/Θ̄ξ(T1, T2). (49)

Likewise, the system is said to be in the unstable mode

(satisfying (47)) at a time instant t if t ∈ Ξξ(0,∞). Since
for T1, T2 ∈ R>0 with T2 > T1, Θ̄ξ(T1, T2) ∪ Ξξ(T1, T2) =
[T1, T2], we can write Θ̄ξ(T1, T2) and Ξξ(T1, T2) as follows

Ξξ(T1, T2) :=
⋃

k∈N

Zk ∩ [T1, T2], (50)

and
Θ̄ξ(T1, T2) :=

⋃

k∈N

Wk−1 ∩ [T1, T2], (51)

where for k ∈ N

Zk :=

{

[ζk, ζk + vk) when vk > 0,

{ζk} when vk = 0,

Wk :=

{

[ζk + vk, ζk+1) when vk > 0,

(ζk, ζk+1) when vk = 0,

where vk denotes the time elapsed between ζk and the next
successful transmission attempt, and where ζ0 := h0 where
W−1 = [0, ζ0) when h0 > 0 and W−1 = ∅ when h0 = 0.
The collection of effective DoS attacks can be related to the
original collection of DoS intervals as given in (17) as

|Ξξ(T1, T2)| 6 |Ξ(T1, T2)|+ (1 + n(T1, T2))τ
1
miet, (52)

for all T1, T2 ∈ R>0 with T2 > T1, where n(T1, T2) denotes
the number of DoS attacks in the interval [T1, T2). Indeed,
due to the finite sampling rate, the effective DoS interval
H̄n is extended with maximally τ1miet time units compared
to Hn, n ∈ N. Since this extension might also occur at the
beginning of an interval [T1, T2), the collection of effective
DoS attacks over the interval [T1, T2) is at most prolonged
with (1 + n(T1, T2))τ

1
miet time units. Observe that the latter

is not the case if T1 ∈
[(
⋃

k∈N
Wk−1

)

∪ {0}
]

∩ [0, t], i.e.,

|Ξξ(T1, T2)| 6 |Ξ(T1, T2)|+ n(T1, T2)τ
1
miet, (53)

for all T1 ∈
[(
⋃

k∈N
Wk−1

)

∪ {0}
]

∩ [0, t] and all T2 ∈ R>T1
.

By means of Definition 1 and Definition 2 for the specific
values of τD and T , we find that according to (53)

|Ξξ(T1, T2)| 6 ς∗ +
T2 − T1

T∗
, (54)

where ς∗ := ς+ ντ1miet and T∗ := τDT/(τD + τ1mietT ) for all
T1 ∈

[(
⋃

k∈N
Wk−1

)

∪ {0}
]

∩ [0, t] and all T2 ∈ R>T1
.

In summary, in this second step of the proof, we defined
effective DoS sequences, which led to the intervals Zk and
Wk, k ∈ N, representing the stable and (possibly) unstable

mode of the system, respectively. Furthermore, we showed
how this effective DoS is related to the original DoS sequence.
This relation will be important in the stability and performance
analysis.

Step III. Time-trajectory bounds on Lyapunov/storage func-

tion. As already mentioned, the collection of time instants at
which either m = 0 or m = 1 can not directly be related to T .
However, we can deduce the following implications regarding
a trajectory ξ with ξ(0, 0) ∈ X0 and the stable and unstable

mode descriptions

(t, j) ∈(Wk × N) ∩ dom ξ ⇒ m(t, j) = 0,

(t, j) ∈(Zk × N) ∩ dom ξ ⇒ (m(t, j) = 0 or m(t, j) = 1).

Based on these implications, (41), (46) and (47), we have that
for all (t, j) ∈ (Wk × N) ∩ dom ξ, k ∈ N ∪ {−1}

U(ξ(t, j)) 6 e−ω1(t−ζk−vk)U(ξ(ζk + vk, j))

+ θ2
t

∫

(ζk+vk)

e−ω1(t−s)|w(s)|2ds (55)

and for all (t, j) ∈ (Zk × N) ∩ dom ξ, k ∈ N

U(ξ(t, j)) 6 eω2(t−ζm)U(ξ(ζk, j))

+ θ2
t

∫

ζk

eω2(t−s)|w(s)|2ds. (56)

In essence, the right-hand sides of (55) and (56) reflect bounds
on the Lyapunov/storage function U over (hybrid) time for the
stable and unstable modes, respectively. In order to asses the
performance of a system HT ∈ H(ν, τD, ς, T ), we require an
upper-bound that holds for all (t, j) ∈ dom ξ. For this reason,
consider the following statement.

Lemma 4. For all (t, j) ∈ dom ξ, it holds that

U(ξ(t, j)) 6 Υ(0, t)U(ξ(0, 0)) + θ2
∫ t

0

Υ(s, t)|w(s)|2ds

(57)

with Υ(s, t) := e−ω1|Θ̄ξ(s,t)|eω2|Ξξ(s,t)|.

Proof of Lemma 4: We will prove Lemma 4 by induction.
First, we need to prove that (57) holds for all (t, j) ∈ [0, ζ0)×
N ∩ dom ξ. To do so, observe that for all (t, j) ∈ W−1 ×
N ∩ dom ξ it holds that |Θ̄ξ(0, t)| = t and |Ξξ(0, t)| = 0.
By substituting the latter in (57), we can conclude that for
all (t, j) ∈ W−1 × N ∩ dom ξ, the inequality given in (57)
coincides with (55). As such, (57) holds for all (t, j) ∈ W−1×
N∩ dom ξ and thus for all (t, j) ∈ [0, ζ0)×N∩ dom ξ. Now
assume (57) holds for all (t, j) ∈ [0, ζp)× N ∩ dom ξ, where
p ∈ N. By means of this hypothesis and the inequality in (56),
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we find that for all (t, j) ∈ (Zp × N) ∩ dom ξ,

U(ξ(t, j)) 6 eω2(t−ζp)Υ(0, ζp)U(ξ(0, 0))

+ θ2eω2(t−ζp)

∫ ζp

0

Υ(s, ζp)|w(s)|
2ds

+ θ2
t

∫

ζp

eω2(t−s)|w(s)|2ds. (58)

Since for all t ∈ Zp and all s ∈ [0, t], |Θ̄ξ(s, ζp)| =
|Θ̄ξ(s, t)| and t − ζp + |Ξξ(s, ζp)| = |Ξξ(s, t)|, we have
that eω2(t−ζp)Υ(s, ζp) = Υ(s, t) for all t ∈ Zp and all
s ∈ [0, t]. Substitution of the latter in (58) yields that for
all (t, j) ∈ (Zp × N) ∩ dom ξ,

U(ξ(t, j)) 6 Υ(0, t)U(ξ(0, 0)) + θ2
∫ ζp

0

Υ(s, t)|w(s)|2ds

+ θ2
t

∫

ζp

eω2(t−s)|w(s)|2ds. (59)

Note that for all t ∈ Zp and s ∈ [ζp, t], t− s = |Ξξ(s, t)| and
in accordance with (51), |Θ̄ξ(s, t)| = 0 and thus eω2(t−s) =
Υ(s, t) for all t ∈ Zp and s ∈ [ζp, t]. By combining the latter
with (59), we can see that (57) holds for all (t, j) ∈ ([0, ζp +
vp)× N) ∩ dom ξ, p ∈ N.

Now we consider the interval Wp. Using (55), we have that
for all (t, j) ∈ (Wp × N) ∩ dom ξ,

U(ξ(t, j)) 6 e−ω1(t−ζp−vp)Υ(0, ζp + vp)U(ξ(0, 0))

+ θ2e−ω1(t−ζp−vp)

∫ ζp+vp

0

Υ(s, ζp + vp)|w(s)|
2ds

+ θ2
t

∫

ζp+vp

e−ω1(t−s)|w(s)|2ds. (60)

Since t−ζp−vp+|Θ̄ξ(s, ζp+vp)| = |Θ̄ξ(s, t)| and |Ξξ(s, ζp+
vp)| = |Ξξ(s, t)| for all t ∈ Wp and all s ∈ [0, t], we obtain

e−ω1(t−ζp)Υ(s, ζp) = Υ(s, t) (61)

for all t ∈ Wp and all s ∈ [0, t]. Substitution of (61) in (60)
yields that for all (t, j) ∈ (Wp × N) ∩ dom ξ,

U(ξ(t, j)) 6 Υ(0, t)U(ξ(0, 0)) + θp
∫ ζp

0

Υ(s, t)|w(s)|2ds

+ θp
t

∫

ζp

e−ω1(t−s)|w(s)|2ds. (62)

Combining (61) with the fact that for all t ∈ Wp and s ∈
[ζp + vp, t], t − s = |Θ̄ξ(s, t)| and in accordance with (50),
|Ξξ(s, t)| = 0, we can see that e−ω1(t−s) = Υ(s, t) for all
t ∈ Wp and s ∈ [ζp + vp, t]. By means of the latter, we can
conclude that (57) coincides with (62) and thus (57) holds for
all (t, j) ∈ ([0, ζp+1)×N)∩dom ξ, which concludes the proof
of Lemma 4.

Step IV. Stability and performance analysis. In the last step
of the proof, we show that under (ν, τD, ς, T )-DoS sequences

with τD and T satisfying (31), the system HT is UGES, and
has a finite induced L∞-gain. By means of (54) and the fact
that |Θ̄ξ(T1, T2)| = T2 − T1 − |Ξξ(T1, T2)|, we obtain that

Υ(T1, T2) 6 κe−β∗(T2−T1), (63)

for all T2 ∈ R>0 and all T1 ∈
[(
⋃

k∈N
Wk−1

)

∪ {0}
]

∩[0, T2],
where κ := eς∗(ω1+ω2) and where β∗ := ω1 − (ω1 + ω2)/T∗.
Important to note is that condition (31) assures that β∗ > 0.

The inequality given in (63) does not only hold for T1 ∈
[(
⋃

k∈N
Wk−1

)

∪ {0}
]

∩ [0, T2]. In fact, the inequality holds
for all T1, T2 ∈ R>0 with T1 6 T2 due to the follow-
ing. Let 0 6 T1 6 T2 be arbitrary and consider T ∗

1 =

sup
{

T̃ 6 T1 | T̃ ∈
(
⋃

k∈N
Wk

)

∪ {0}
}

. Since |Θ(T ∗
1 , T1)| =

0, we can write Υ(T ∗
1 , T2) = Υ(T1, T2)e

ω2(T1−T∗

1 ) for
all T1, T2 ∈ R>0 with T1 6 T2. Hence, we have that
Υ(T1, T2) 6 Υ(T ∗

1 , T2). Due to (63) and the facts that
β∗ > 0 and T ∗

1 ∈
[(
⋃

k∈N
Wk

)

∪ {0}
]

∩ [0, T2], we have
that Υ(T ∗

1 , T2) 6 κe−β∗(T2−T∗

1 ) 6 κe−β∗(T2−T1). for all
T1, T2 ∈ R>0 with T1 6 T2. Hence, (63) holds for all
T1, T2 ∈ R>0 with T1 6 T2.

1) Stability analysis for the case w = 0. By combining (63)
and (57) for the case w = 0, we find that for all (t, j) ∈ dom ξ

U(ξ(t, j)) 6 κe−β∗tU(ξ(0, 0)).

Using (23), (25), (40) and the fact that η(0, 0) = 0, we obtain

|ξ(t, j)|A 6

√

κmax (c̄V , c̃W )

cU
e−(β∗/2)t|ξ(0, 0)|A,

where c̃W := γφmietc̄
2
W . Given the fact that due to (31) β∗ >

0, we can conclude that HT is UGES under (ν, τD, ς, T )-DoS
sequences.

2) Performance analysis for the case w 6= 0 in terms of

induced L∞-gain. Substitution of (63) in (57) yields

U(ξ(t, j)) 6κU(ξ(0, 0)) + κθ2
∫ t

0

e−β∗(t−s)ds‖w‖2L∞

.

The facts that U(ξ(t, j)) > V (x(t, j)) > cz|z(t, j)|
2 and

U(ξ(0, 0)) 6 max (c̄V , c̃W ) |ξ(0, 0)|2A, we now obtain that for
all (t, j) ∈ dom ξ

‖z‖L∞
6

√

κ

cz
max (c̄V , c̃W )|ξ(0, 0)|A + θ

√

κ

czβ∗
‖w‖L∞

.

Hence, (22) is satisfied with β(r) =
√

κ
cz

max (c̄V , c̃W )r and

ϑ = θ
√

κ
czβ∗

for p = ∞ which completes the proof.
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