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Event-triggered Distributed H∞ State Estimation

with Packet Dropouts through Sensor Networks
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Abstract

This paper is concerned with the event-triggered distributed H∞ state estimation problem for a class of discrete-time

stochastic nonlinear systems with packet dropouts in a sensor network. An event-triggered communication mechanism is

adopted over the sensor network with hope to reduce the communication burden and the energy consumption, where the

measurements on each sensor are transmitted only when a certain triggering condition is violated. Furthermore, a novel

distributed state estimator is designed where the available innovations are not only from the individual sensor but also

from its neighboring ones according to the given topology. The purpose of the problem under consideration is to design

a set of distributed state estimators such that the dynamics of estimation errors is exponentially mean-square stable and

also the prespecified H∞ disturbance rejection attenuation level is guaranteed. By utilizing the property of the Kronecker

product and the stochastic analysis approaches, sufficient conditions are established under which the addressed state

estimation problem is recast as a convex optimization one that can be easily solved via available software packages.

Finally, a simulation example is utilized to illustrate the usefulness of the proposed design scheme of event-triggered

distributed state estimators.
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I. Introduction

A sensor network typically consists of a large number of geographically distributed sensor nodes which

cooperatively monitor parameters or events of interest. Nowadays, sensor networks have a wide-scope do-

main of applications such as environment and habitat monitoring, health care applications, traffic control,

distributed robotics, and industrial and manufacturing automation [1–3]. It is worth noting that, the network

size, the communication constraints as well as the stringent energy limit inevitably result in great challenges

to the applications of classical centralized estimation techniques that demand enormous storage space and

centralized computation. As such, it is not surprising that the distributed filtering or estimation problem for

sensor networks serves as one of the most fundamental collaborative information processing problems and has

gained an ever-increasing research interest, see [4–12] and the references therein.
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It is well recognized that the limited bandwidth of the communication channel inevitably leads to some

network-induced phenomena whose occurrence is often of the random nature. It is worth pointing out that

the desired system performances could be seriously degraded if such network-induced phenomena are ignored

in the estimator design. Therefore, considerable attention has been focused on the state estimation issues for

systems with various network-induced phenomena in the past few years [13–20]. Among others, the packet

dropouts (also called missing measurements), which are known to be one of the most frequently occurred

phenomena in the networked systems, have received particular research interests and a great number of

estimator design algorithms have been proposed in the literature, with examples including Kalman filtering

approaches and H∞ estimation methods based on the linear matrix inequalities (LMI) or the recursive linear

matrix inequalities (RLMI), see, e.g., [21–25]. On the other hand, the nonlinearity is ubiquitous in real-world

systems. In a networked environment, the nonlinear disturbances might stem from the random fluctuation of

the network load and the unreliability of communication links. In such a case, the disturbances themselves

could experience random abrupt changes in their type or intensity [26–28]. Furthermore, for sensor networks of

large size, the packet dropouts and stochastic nonlinearities become even severe due primarily to the inherent

feature of such networks, for instance, the communication constraints, strong coupling, spatial deployment,

and so forth. Therefore, it is desirable to examine how these two phenomena affect the estimation performance

and this constitutes one of the motivations for the present research.

Very recently, the event-triggered communication mechanism has attracted some preliminary research at-

tention for networked systems. The event-triggered strategy is deemed to be particularly necessary for the

distributed real-time sensing and control due mainly to the need for reducing the communication burden and

the energy consumption [29–31]. As far as the sensor networks are concerned, the sensor nodes are often

battery operated with a limited energy resource. As such, in order to prolong the lifetime of such sensor

networks, an effective approach in the implementation is to adopt a novel communication strategy (i.e. an

event-triggered protocol) to avoid unnecessary data transmission. It is noted that, on event-triggered proto-

cols, there have been a growing number of results covering a wide range of applications in various engineering

systems such as networked control systems and multi-agent systems [29–33]. Unfortunately, in the presence

of network-induced phenomena, available results in the literature have been scattered for state estimation

problems through sensor networks. Such a situation results from the two challenging issues identified as

follows. (1) A sensor network is often subject to various network-induced phenomena (e.g. packet dropouts

and stochastic nonlinearities) even if the event-triggered communication protocol is exploited. So, the first

difficulty is how to develop a reasonable model to describe event triggering communication mechanisms and

network induced phenomena in a unified framework. (2) The key issue in designing distributed estimators

for sensor networks is how to fuse the information available for the estimator both from itself (without event-

triggered mechanism) and from its neighbors (with event-triggered mechanism). In other words, the second

challenge is how to construct a suitable distributed estimator such that the information from different sources

is adequately integrated.

Summarizing the above discussions, it can be concluded that there is a great need to examine how the packet

dropouts and stochastic nonlinearities affect on the performance of event-triggered distributed estimators

through sensor networks with the given topology. As such, the main purpose of this paper is to initiate

a study on the distributed H∞ state estimation problem with an event-triggered communication protocol.

The main contributions of this paper can be highlighted as follows. (1) Both the packet dropouts and the

event-triggered communication protocol are considered within a unified framework in order to better reflect the
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reality. (2) A novel structure of distributed estimators is designed to adequately utilize the available innovations

from not only itself (without event-triggered mechanism) but also its neighboring sensors (with event-triggered

mechanism). (3) Intensive stochastic analysis is conducted, with help from the utilization of the Kronecker

product, to enforce the H∞ performance for the addressed distributed estimation problem in addition to the

exponentially mean-square stability constraint.

The rest of this paper is organized as follows. In Section II, a target plant described by a discrete-time

stochastic nonlinear system is introduced, where the event-triggered communication mechanism and the phe-

nomenon of packet dropouts are presented in the corresponding sensor networks. In Section III, by employing

the Lyapunov stability theory combined with the Kronecker product, some sufficient conditions are estab-

lished in the form of linear matrix inequalities, and then the gains of event-triggered distributed estimators

are obtained by solving a convex optimization problem. In Section IV, an example is presented to demonstrate

the effectiveness of the established design scheme of distributed estimators. Finally, conclusions are drawn in

Section V.

Notation The notation used here is fairly standard except where otherwise stated. Rn and R
n×m denote,

respectively, the n dimensional Euclidean space and the set of all n × m real matrices. l2([0,∞);Rn) is

the space of square-summable n-dimensional vector functions over [0,∞). I denotes the identity matrix of

compatible dimension. The notation X ≥ Y (respectively, X > Y ), where X and Y are symmetric matrices,

means that X − Y is positive semi-definite (respectively, positive definite). MT represents the transpose of

M . E{x} stands for the expectation of stochastic variable x. ‖x‖ describes the Euclidean norm of a vector

x. The shorthand diag{M1,M2, · · · ,Mn} denotes a block diagonal matrix with diagonal blocks being the

matrices M1, M2, · · · Mn. The symbol ⊗ denotes the Kronecker product. In symmetric block matrices, the

symbol ∗ is used as an ellipsis for terms induced by symmetry.

II. Problem Formulation and Preliminaries

In this paper, it is assumed that the sensor network has n sensor nodes which are distributed in space

according to a fixed network topology represented by a undirected graph G = (V ,E ,H ) of order n with the

set of nodes V ={1, 2, · · · , n}, the set of edges E ∈ V ×V , and the weighted adjacency matrix H = [hij ] with

nonnegative adjacency element hij . An edge of G is denoted by the ordered pair (i, j). The adjacency elements

associated with the edges of the graph are positive, i.e., hij > 0 ⇐⇒ (i, j) ∈ E , which means that sensor i can

obtain information from sensor j. The set of neighbors of node i ∈ V is denoted by Ni = {j ∈ V : (i, j) ∈ E }.

In this paper, a target plant is the system whose states are to be estimated through the distributed sensors.

Let the target plant be described by the following discrete-time stochastic nonlinear system:

{

xk+1 = Axk +Adxk−τ + f(xk, ϑk) +Bwk

zk = Lxk
(1)

with n sensors modeled by

yi,k = Cixk +Divk, i = 1, 2, · · · , n (2)

where xk ∈ R
nx is the state of the target plant that cannot be observed directly, yi,k ∈ R

ny is the measure-

ment output from sensor i, zk ∈ R
nz is the output to be estimated, and wk, vk ∈ l2([0,∞);R) are external

disturbances. τ is a known positive scalar, and A, Ad, B, L, Ci and Di are known constant matrices with

compatible dimensions.
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The function f(xk, ϑk) with f(0, ϑk) = 0 is a stochastic nonlinear function having the following first moment

for all xk:

E {f(xk, ϑk)|xk} = 0 (3)

and the covariance given by

E
{

f(xk, ϑk)f
T (xj , ϑj)|xk

}

= 0, k 6= j, (4)

and

E
{

f(xk, ϑk)f
T (xk, ϑk)|xk

}

=
s
∑

i=1
Πix

T
k Γixk, (5)

where s is a known nonnegative integer, Πi and Γi (i = 1, 2, · · · , s) are known matrices with appropriate

dimensions.

For the purpose of presentation clarity, on sensor node i, denote the estimation of xk and the innovation

sequence, respectively, as x̂i,k and

ri,k = yi,k −Cix̂i,k.

It should be pointed out that a distributed state estimation is capable of fusing the information available for

the estimator on node i from both sensor i itself and its neighbors. A further objective of this paper is to

take the event-triggered communication mechanism into consideration in order to reduce the communication

burden. For this purpose, we define event generator functions ψi(·, ·) : Rny × R → R (i = 1, 2, · · · , n) as

follows:

ψi(ei,k, δi) = eTi,kei,k − δir
T
i,kri,k. (6)

Here, ei,k = rti,k − ri,k where rti,k is the broadcast innovation at the latest event instant and δi is a given

positive scalar. The executions are triggered as long as the condition ψi(ei,k, δi) > 0 is satisfied. Therefore,

the sequence of event triggered instants 0 ≤ si0 < si1 < · · · < sil < · · · is determined iteratively by

sil+1 = inf{k ∈ N|k > sil, ψi(ei,k, δi) > 0}. (7)

As is well known, due to the limited network bandwidth, the broadcast innovation could be subject to packet

dropouts. To cater for the phenomenon of packet dropouts, the received information for neighbors of node i

can be described as

r̃ti,k = αi,kr
t
i,k (8)

where the stochastic variables αi,k (i = 1, 2, · · · , n) are employed to govern the stochastic occurring packet

dropouts. These variables are assumed to be mutually independent Bernoulli-distributed white sequences

taking values on 0 or 1 with the following probabilities

Prob{αi,k = 0} = 1− ᾱ, Prob{αi,k = 1} = ᾱ.

In this paper, the distributed state estimators are of the following structure:











x̂i,k+1 = Ax̂i,k +Adx̂i,k−τ +Ki,1ri,k +Ki,2

∑

j∈Ni

hij r̃
t
j,k

ẑi,k = Lx̂i,k

(9)

where ẑi,k ∈ R
nz is the estimated output on sensor node i. Here, Ki,1 and Ki,2 are the estimator gain matrices

on node i to be determined.
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Remark 1: For distributed state estimation problems, the information available on each node is not only

from itself but also from its neighbors according to the given topology. From the engineering viewpoint, the

event-triggered communication protocol is adopted to determine at what time the information needs to be

broadcasted. Hence, for a given node, the amount of the data received from any neighboring sensors should

be less in that of the data from the node itself due to the application of the event-triggered protocol. This

explains why we divide the innovation into two parts in (9), i.e., ri,k concerning the data from the node itself

and
∑

j∈Ni
hij r̃

t
j,k concerning the data from the neiboring nodes. Therefore, the proposed estimator model (9)

can be utilized to effectively cope with the complicated coupling issues between any sensor and its neighboring

sensors and also adequately fuse these two kinds of information (i.e. ri,k and r̃tj,k) to improve the estimation

performance.

Remark 2: For described state estimation issues, an event-triggered communication mechanism (7) is adopted

with hope to reduce the communication burden and the energy consumption, where the innovation on each

sensor is broadcasted to its neighbors only when the certain triggering condition in (8) is violated. In light

of such a condition, it is not difficult to see that a smaller threshold δi gives rise to a heavier communication

load, and therefore an adequate trade-off can be achieved between the threshold and the acceptable network

load.

For notational simplicity, we define

ξk = 1n ⊗ xk − x̂k, x̂k = [x̂T1,k x̂T2,k · · · x̂Tn,k]
T ,

z̃i,k = zk − ẑi,k, z̃k = [z̃T1,k z̃T2,k · · · z̃Tn,k]
T ,

ek = [eT1,k eT2,k · · · eTn,k]
T , f̃(xk, ϑk) = 1n ⊗ f(xk, ϑk),

A = diagn{A}, Ad = diagn{Ad},

C = diag{C1, C2 · · · , Cn}, K1 = diag{K1,1,K2,1 · · · ,Kn,1},

D = [ DT
1 , D

T
2 , · · · , D

T
n ]T , K2 = diag{K1,2,K2,2 · · · ,Kn,2},

Ξ = diagn{ᾱ}, Ξk = diag{α1,k − ᾱ, α2,k − ᾱ, · · · , αn,k − ᾱ}.

Using the defined notations, the dynamics of the estimation errors can be obtained as follows:

ξk+1 =
(

A−K1C − K2(HΞ⊗ I)C
)

ξk +Adξk−τ −K2(HΞ⊗ I)ek −
(

K1D +K2(HΞ⊗ I)D
)

vk

+ (1⊗B)wk + f̃(xk, ϑk)−K2(HΞk ⊗ I)C(1n ⊗ xk)−K2(HΞk ⊗ I)ek −K2(HΞk ⊗ I)Dvk
(10)

Setting ηk = [xTk ξTk ]
T and w̃k = [wT

k vTk ]
T , an augmented system can be derived from (1) and (10) as

follows:
{

ηk+1 = Āηk + Ãkηk + F (xk, ϑk) + Ādηk−τ + B̄ek + B̃kek + D̄w̃k + D̃kw̃k

z̃k = L̄ηk
(11)

where

F (xk, ϑk) = 1n+1 ⊗ f(xk, ϑk), L̄ = [ 0 I ⊗ L ], Ād = diagn+1{Ad},

Ā =

[

A 0

0 A−K1C − K2(HΞ⊗ I)C

]

, B̄ =

[

0

−K2(HΞ⊗ I)

]

,

Ãk =

[

0 0

−K2(HΞk ⊗ I)C(1n ⊗ I) 0

]

, B̃k =

[

0

−K2(HΞk ⊗ I)

]

,

D̄ =

[

B 0

1n ⊗B −K1D −K2(HΞ⊗ I)D

]

, D̃k =

[

0 0

0 −K2(HΞk ⊗ I)D

]

.
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Before proceeding further, we introduce the following definition and assumption.

Definition 1: The augmented system (11) with vk = 0 is said to be exponentially mean-square stable if

there exist constants ε > 0 and 0 < ~ < 1 such that

E{||ηk||
2} ≤ ε~k max

i∈[−τ, 0]
E{||w̃i||

2}, k ∈ N.

Assumption 1: The matrices Πi and Γi (i = 1, 2, · · · , s) in (5) have the following decomposition

Πi = π̄iπ̄
T
i =

[

π1i

π2i

][

π1i

π2i

]T

, Γi = θ̄iθ̄
T
i

where π̄i, π1i, π2i and θ̄i are known vectors with appropriate dimensions.

The purpose of this paper is to design a set of state estimators of form (9) for the discrete-time stochastic

nonlinear system (1) through sensor networks. More specifically, we are interested in looking for the parameters

Ki,1 and Ki,2 (i = 1, 2, · · · , n) such that the following requirements are met simultaneously:

R1) The augmented system (11) with w̃k = 0 is exponentially mean-square stable;

R2) Under the zero-initial condition, for a given disturbance attenuation level γ > 0 and all nonzero w̃k,

the estimation error z̃k satisfies
1

n

∞
∑

k=0

E{||z̃k||
2} ≤ γ2

∞
∑

k=0

||w̃k||
2. (12)

III. Main Results

In this section, by resorting to the stochastic analysis techniques, we shall provide the analysis result of

the H∞ performance for the augmented system (11), and then proceed with the subsequent design stage of

event-triggered estimators.

Theorem 1: Let the estimator parameters Ki,1 and Ki,2 (i = 1, 2, · · · , n) as well as a prescribed disturbance

attenuation level γ > 0 be given. The dynamics of the estimation errors (11) is exponentially mean-square

stable and also satisfies the prespecified H∞ performance constraint (12) if there exist two positive definite

matrices P , Q and a positive scalar λ satisfying

R =













R11 R12 R13 R14

∗ R22 R23 R24

∗ ∗ R33 R34

∗ ∗ ∗ R44













< 0 (13)
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where
Θ = diag{δ1, δ2, · · · , δn}, Hi := diag{hi,1, hi,2, · · · , hi,n},

Ψ = ᾱ(1− ᾱ)

n
∑

i=1

(HT
i Hi)⊗ (KT

i,2PKi,2),

I = [ I 0 0 · · · 0 ], Ĩ = [ 0 I I · · · I ], D̃ = [ 0 D ],

R11 = ĀT (I ⊗ P )Ā+Υ1 +
s

∑

i=1

(n+ 1)tr
[

PΠi

]

ITΓiI

+ λ(1n ⊗ Ĩ)T CT (Θ⊗ I)C(1n ⊗ Ĩ)− (I ⊗ P ) + (I ⊗Q) +
1

n
L̄T L̄,

R12 = ĀT (I ⊗ P )Ād, R13 = ĀT (I ⊗ P )B̄,

R14 = ĀT (I ⊗ P )D̄ + λ(1n ⊗ I)TCT (Θ⊗ I)D̃,

R22 = ĀT
d (I ⊗ P )Ād − (I ⊗Q), R23 = ĀT

d (I ⊗ P )B̄, R24 = ĀT
d (I ⊗ P )D̄,

R33 = B̄T (I ⊗ P )B̄ +Ψ− λI, R34 = B̄T (I ⊗ P )D̄,

R44 = D̄T (I ⊗ P )D̄ +Υ2 + λD̃T (Θ ⊗ I)D̃ − γ2I,

Υ1 =

[

(1n ⊗ I)T CTΨC(1n ⊗ I) 0

0 0

]

, Υ2 =

[

0 0

0 DTΨD

]

.

Proof: First, noting the stochastic matrix Ξk, one has

E
{

(HΞk ⊗ I)TKT
2 (I ⊗ P )K2(HΞk ⊗ I)

}

= ᾱ(1− ᾱ)

n
∑

i=1

(Hi ⊗ I)T (I ⊗Ki,2)
T (I ⊗ P )(I ⊗Ki,2)(Hi ⊗ I)

= ᾱ(1− ᾱ)
n
∑

i=1

(HT
i Hi)⊗ (KT

i,2PKi,2).

(14)

Then, by employing the property of matrix trace, it follows from (4) and (5) that

E
{

F
T (xk, ϑk)(I ⊗ P )F (xk, ϑk)

}

= E
{

(1n+1 ⊗ f(xk, ϑk))
T (I ⊗ P )(1n+1 ⊗ f(xk, ϑk))

}

= E
{

(1Tn+11n+1)⊗ (fT (xk, ϑk)Pf(xk, ϑk))
}

= (1Tn+11n+1)⊗ E
{

fT (xk, ϑk)Pf(xk, ϑk)
}

= (1Tn+11n+1)⊗ E
{

tr
[

Pf(xk, ϑk)f
T (xk, ϑk)

]}

= (1Tn+11n+1)⊗ E

{

xTk

s
∑

i=1

tr
[

PΠi

]

Γixk

}

= E

{

xTk

s
∑

i=1

(n+ 1)tr
[

PΠi

]

Γixk

}

.

(15)

In what follows, choose the Lyapunov function for system (11):

Vk = ηTk (I ⊗ P )ηk +

k−1
∑

i=k−τ

ηTi (I ⊗Q)ηi. (16)



REVISED 8

Calculating the difference of Vk along the trajectory of system (11) with w̃k = 0 and taking the mathematical

expectation, one has

E
{

∆Vk
}

:= E

{

Vk+1 − Vk

}

= E

{(

Āηk + Ãkηk + F (xk, ϑk) + Ādηk−τ + B̄ek + B̃kek

)T

× (I ⊗ P )
(

Āηk + Ãkηk + F (xk, ϑk) + Ādηk−τ + B̄ek + B̃kek

)

− ηTk (I ⊗ P )ηk +

k
∑

i=k−τ+1

ηTi (I ⊗Q)ηi −
k−1
∑

i=k−τ

ηTi (I ⊗Q)ηi

}

= E

{

ηTk Ā
T (I ⊗ P )Āηk + 2ηTk Ā

T (I ⊗ P )Ādηk−τ + 2ηTk Ā
T (I ⊗ P )B̄ek

+ ηTk Υ1ηk + ηTk

s
∑

i=1

(n+ 1)tr
[

PΠi

]

ITΓiIηk + ηTk−τ Ā
T
d (I ⊗ P )Ādηk−τ

+ 2ηTk−τ Ā
T
d (I ⊗ P )B̄ek + eTk B̄

T (I ⊗ P )B̄ek + eTkΨek − ηTk (I ⊗ P )ηk

+ ηTk (I ⊗Q)ηk − ηTk−τ (I ⊗Q)ηk−τ

}

.

(17)

Furthermore, it follows from the event-triggering condition (7) that

λeTk ek − ληTk (1n ⊗ Ĩ)TCT (Θ ⊗ I)C(1n ⊗ Ĩ)ηk ≤ 0. (18)

Taking the above inequality into account, we have

E
{

∆Vk
}

≤ E

{

ηTk Ā
T (I ⊗ P )Āηk + 2ηTk Ā

T (I ⊗ P )Ādηk−τ + 2ηTk Ā
T (I ⊗ P )B̄ek

+ ηTk Υ1ηk + ηTk

s
∑

i=1

(n+ 1)tr
[

PΠi

]

ITΓiIηk + ηTk−τ Ā
T
d (I ⊗ P )Ādηk−τ

+ 2ηTk−τ Ā
T
d (I ⊗ P )B̄ek + eTk B̄

T (I ⊗ P )B̄ek + eTkΨek − λeTk ek

+ ληTk (1n ⊗ Ĩ)T CT (Θ⊗ I)C(1n ⊗ Ĩ)ηk − ηTk (I ⊗ P )ηk

+ ηTk (I ⊗Q)ηk − ηTk−τ (I ⊗Q)ηk−τ

}

(19)

which results in

E
{

∆Vk
}

≤ E

{

η̄Tk R̃η̄k
}

(20)

where η̄k = [ ηTk ηTk−τ eTk ]T and

R̃ =







R11 −
1
n
L̄T L̄ R12 R13

∗ R22 R23

∗ ∗ R33






.

By considering (13), one has R̃ < 0 and, subsequently

E{‖ηk‖
2} ≤ −λmin(−R̃)‖η̄k‖

2. (21)

Finally, along the similar line of the proof of Theorem 1 in [34], once can prove that the augmented system

(11) is exponentially mean-square stable.

To establish the H∞ performance, we introduce the following:
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E

{

∆Vk +
1

n
‖z̃k‖

2 − γ2‖w̃k‖
2
}

≤ E

{

η̄Tk Ωη̄k + 2ηTk Ā
T (I ⊗ P )D̄w̃k + 2ηTk−τ Ā

T
d (I ⊗ P )D̄w̃k

+ 2eTk B̄
T (I ⊗ P )D̄w̃k + w̃T

k D̄
T (I ⊗ P )D̄w̃k + w̃T

k Υ2w̃k +
1

n
ηTk L̄

T L̄ηk − γ2w̃T
k w̃k

+ 2ληTk (1n ⊗ Ĩ)T CT (Θ⊗ I)Dvk + λvTk D
T (Θ⊗ I)Dvk

}

(22)

which leads to

E

{

∆Vk +
1

n
‖z̃k‖

2 − γ2‖w̃k‖
2
}

≤ E
{

η̃Tk Rη̃k
}

< 0. (23)

It follows from the zero initial conditions and (23) that

1

n

∞
∑

k=0

E{‖z̃k‖
2} ≤ γ2

∞
∑

k=0

‖w̃k‖
2

and therefore the proof is now complete.

Having established the analysis results, we are now ready to handle the distributed estimator design problem

with an event-trigged communication mechanism. For this purpose, we firstly need to deal with the trace

operation in Theorem 1, and then establish a sufficient condition for the existence of the desired H∞ estimator.

Theorem 2: Let the estimator parameters Ki,1 and Ki,2 (i = 1, 2, · · · , n) as well as a prescribed disturbance

attenuation level γ > 0 be given. The dynamics of estimation errors (11) is exponentially mean-square stable

and also satisfies the prespecified H∞ performance constraint (12) if there exist two positive definite matrices

P and Q, and positive scalars λ and ̟i (i = 1, 2, · · · , s) satisfying

[

−̟i π̄TP

∗ −P

]

< 0, i = 1, 2, · · · , s (24)







R̄ R̄T
5 WTYT (I ⊗ P )

∗ −I ⊗ P 0

∗ ∗ −I ⊗ P






< 0 (25)

where

R̄ =













R̄11 0 0 R̄14

∗ R̄22 0 0

∗ ∗ R̄33 0

∗ ∗ ∗ R̄44













,

R̄5 = (I ⊗ P )
[

Ā Ād B̄ D̄
]

, Y =
[

Y1 Y2 · · · Yn

]

,

W =
√

ᾱ(1− ᾱ)diag
{

diag
{

C(1n ⊗ I), 0
}

, 0, I, diag
{

0,D
}

}

,

Yi = diag
{

diag
{

Hi ⊗Ki,2, 0
}

, 0, Hi ⊗Ki,2, diag
{

0,Hi ⊗Ki,2

}

}

,

R̄11 = λ(1n ⊗ Ĩ)TCT (Θ ⊗ I)C(1n ⊗ Ĩ)

+ (n+ 1)
s

∑

i=1

̟iI
TΓiI− I ⊗ P + I ⊗Q+

1

n
L̄T L̄,

R̄14 = λ(1n ⊗ Ĩ)TCT (Θ ⊗ I)D̃, R̄22 = −I ⊗Q,

R̄33 = −λI, R̄44 = λD̃T (Θ⊗ I)D̃ − γ2I.
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Proof: First, it is not difficult to see that (13) is equivalent to

S + (n + 1)

s
∑

i=1

diag
{

tr
[

PΠi

]

ITΓiI−̟i, 0, 0, 0
}

< 0 (26)

where S11 = R11 −
∑s

i=1(n+ 1)tr
[

PΠi

]

ITΓiI+ (n+ 1)
∑s

i=1̟i and

S =













S11 R12 R13 R14

∗ R22 R23 R24

∗ ∗ R33 R34

∗ ∗ ∗ R44













.

On the other hand, in light of the Schur complement lemma, (24) is equivalent to

π̄Ti Pπ̄i < ̟i, (̟i = 1, 2, · · · , s)

which, by using the property of matrix trace, can be rewritten as

tr
[

PΠi

]

< ̟i, (̟i = 1, 2, · · · , s).

Therefore, if S < 0, one has that (13) is true. Furthermore, by using the Schur complement lemma again, it

follows that (25) is equivalent to S < 0. Finally, according to Theorem 1, the design requirements R1) and

R2) are simultaneously satisfied. The proof is complete.

Finally, by utilizing variable substitution, we have the following theorem whose proof is omitted for space

saving.

Theorem 3: Let the disturbance attenuation level γ > 0 be given. Assume that there exist two positive

definite matrices P and Q, matrices K̃i,1 and K̃i,2 (i = 1, 2, · · · , s), and positive scalars λ and ̟i (i =

1, 2, · · · , s) satisfying the following linear matrix inequalities

[

−̟i π̄TP

∗ −P

]

< 0, i = 1, 2, · · · , s (27)







R̄ ZT WT ỸT

∗ −I ⊗ P 0

∗ ∗ −I ⊗ P






< 0 (28)

where
Z =

[

Z1 Z2 Z3 Z4

]

, Ỹ =
[

Ỹ1 Ỹ2 · · · Ỹn

]

,

Ỹi = diag
{

diag
{

Hi ⊗ K̃i,2, 0
}

, 0, Hi ⊗ K̃i,2, diag
{

0,Hi ⊗ K̃i,2

}

}

,

Z1 =

[

PA 0

0 (I ⊗ P )A− K̃1C − K̃2(HΞ⊗ I)C

]

, Z2 = diagn+1{PAd},

Z3 =

[

0

−K̃2(HΞ⊗ I)

]

, Z4 =

[

PB 0

1n ⊗ (PB) −K̃1D − K̃2(HΞ⊗ I)D

]

.

In this case, with the estimator gain matrices given by Ki,1 = P−1K̃i,1 and Ki,2 = P−1K̃i,2 (i = 1, 2, · · · , s),

the dynamics of estimation errors (11) is exponentially mean-square stable while achieving the prespecified

H∞ performance constraint (12).
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Remark 3: In this paper, a novel distributed estimator is first proposed in order to properly fuse two

classes of information (i.e. the innovation for the node itself without the event-triggering mechanism and the

innovation for neighboring nodes subject to the event-triggering mechanism). It can be seen that, in the main

results in Theorems 1-3, the information about the given topology, the probability of packet dropouts and

the threshold of event-triggering conditions on the estimation performance are all involved. For instance, the

matrix Θ = diag{δ1, δ2, · · · , δn} mainly lies in matrices R11 and R44 in Theorem 1. It can be found that, with

increased the threshold δi, the inequality R11 < 0 and R44 < 0 are more difficultly satisfied which reduces the

feasibility of the matrix inequality (13). The main technical contributions lie in that 1) a reasonable model is

established to describe the event-triggered communication mechanism and the network-induced phenomena

in an unified framework; and 2) the gains of proposed distributed estimators are obtained by solving a set of

linear matrix inequalities reflecting both the threshold and the desired H∞ performance.

Remark 4: Note that the estimator design scheme provided is in form of LMI techniques. As is well known,

the algorithm based on the standard LMI system has a polynomial-time complexity. Specifically, the number

N(ε) of flops needed to compute an ε-accurate solution is bounded by O(MN3 log(V/ε)), where M is the

total row size of the LMI system, N is the total number of scalar decision variables, V is a data-dependent

scaling factor, and ε is relative accuracy set for algorithm [34]. To handle the computational complexity of the

developed LMI-based algorithm, we recall that the sensor network size is n and the variable dimensions can

be seen from xk, x̂i,k ∈ R
nx, yi,k ∈ R

ny , zk, ẑi,k ∈ R
nz , and wk, vk ∈ R. Furthermore, according to Theorem 3,

one has both M = 12(n + 1)nx + snx + s and N = (nx + 1)nx + 2snxny + 1. Therefore, the computational

complexity of the established result can be represented as O(nn7x). In other words, such a computational

complexity depends polynomially on the variable dimensions.

IV. A Simulation Example

In this section, a simulation example is presented to illustrate the effectiveness of the proposed design

scheme of distributed H∞ estimators for discrete-time stochastic nonlinear systems with both event-triggered

communication protocol and packet dropouts through sensor networks.

The considered target plant and sensor dynamics are, respectively, modeled by (1) and (2) with the following

parameters:

A =

[

0.72 0.40

0.25 −0.56

]

, Ad =

[

0.02 0

0 0.15

]

, B =

[

0.20

0.25

]

,

C1 =
[

−0.30 0.10
]

, C2 =
[

−0.27 0.12
]

, C3 =
[

−0.32 0.10
]

,

C4 =
[

−0.30 0.12
]

, C5 =
[

−0.29 0.09
]

, D1 = 0.02,

D2 = D3 = 0.025, D4 = D5 = 0.015, L =
[

0.20 0.30
]

,

and the stochastic nonlinear function f(xk, ϑk) is chosen as

f(xk, ϑk) =
(

0.1sign(x1k)x
1
kϑ

1
k + 0.13sign(x2k)x

2
kϑ

2
k

)

[

0.06

0.09

]

where xik (i = 1, 2) denotes the i-th element of the system state, and ϑ1k and ϑ2k are zero mean, uncorrelated

Gaussian white noise sequences with unity covariance. It is not difficult to verify that the above stochastic
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Fig. 1. Topological structure of the sensor network

nonlinear function satisfies

E {f(xk, ϑk)|xk} = 0, E
{

f(xk, ϑk)f
T (xk, ϑk)|xk

}

=

[

0.06

0.09

][

0.06

0.09

]T

xTk

[

0.01 0

0 0.0169

]

xk.

The sensor network shown in Fig. 1 is represented by a graph G = (V ,E ,H ) with the set of nodes

V ={1, 2, 3, 4, 5}, the set of edges E = {(1, 2), (1, 5), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3), (4, 5), (5, 1), (5, 4)} and the

following adjacency matrix

H =

















0 0.20 0 0 0.12

0.12 0 0.20 0 0

0 0.12 0 0.20 0

0 0 0.20 0 0.20

0.20 0 0 0.12 0

















.

The H∞ performance level γ, the threshold δi (i = 1, 2, · · · , 5), the time delay τ and the probability ᾱ are

taken as 0.98, 0.04, 3 and 0.95, respectively. Using the Matlab software (with the YALMIP 3.0), a set of

solutions to linear matrix inequalities (27)-(28) in Theorem 3 is obtained as follows:

P =

[

1.0075 −0.0168

−0.0168 1.0980

]

, Q =

[

0.1681 −0.0601

−0.0601 0.3167

]

,

K̃1,1 =

[

−1.6208

−1.4858

]

, K̃1,2 =

[

0.0030

0.0004

]

, K̃2,1 =

[

−1.5140

−1.7262

]

, K̃2,2 =

[

−0.0024

0.0041

]

,

K̃3,1 =

[

−1.5697

−1.3806

]

, K̃3,2 =

[

0.0039

−0.0002

]

, K̃4,1 =

[

−1.4643

−1.5319

]

, K̃4,2 =

[

−0.0008

0.0016

]

,

K̃5,1 =
[

−1.7357 −1.5194
]T
, K̃5,2 =

[

0.0040 −0.0003
]T
, λ = 1.1497, ̟ = 0.4374.

Furthermore, the desired estimator parameters are

K1,1 =

[

−1.6317

−1.3781

]

, K1,2 =

[

0.0030

0.0004

]

, K2,1 =

[

−1.5293

−1.5954

]

, K2,2 =

[

−0.0024

0.0037

]

,

K3,1 =

[

−1.5794

−1.2815

]

, K3,2 =

[

0.0039

−0.0001

]

, K4,1 =

[

−1.4770

−1.4177

]

, K4,2 =

[

−0.0008

0.0014

]

,

K5,1 =
[

−1.7463 −1.4104
],

K5,2 =
[

0.0039 −0.0002
]T
.
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Fig. 2. The estimation errors and event-triggered times.
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Fig. 3. The dynamic trajectories.

In the simulation, the exogenous disturbance inputs are selected as

wk =
0.25 sin(0.2k)

0.1k + 1
, vk = 0.25 cos(0.2k) exp(−0.1k).

The initial conditions are set as x−3 = [−0.10 0.15]T , x−2 = [0.20 − 0.27]T , x−1 = [0.125 − 0.17]T ,

x0 = [0.25 − 0.55]T and x̂i,k = [0 0]T (k = −3,−2,−1, 0, i = 1, 2, · · · , 5). Simulation results are shown

in Figs. 2-3, where Fig. 2 depicts the estimation errors z̃i,k as well as the event-triggered times, and Fig. 3

plots the trajectories for the states and the estimates. The simulation results show that estimators have a

satisfactory estimation performance which confirms that the distributed estimation scheme presented in this

paper is indeed effective.

V. Conclusions

In this paper, we have dealt with the event-triggered distributed H∞ state estimation problem for a class

of discrete-time stochastic nonlinear systems through sensor networks. To reduce the network burden and the
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energy consumption, we have considered the event-triggered communication mechanism, where the innovation

on each sensor has been transmitted only when a certain triggering condition has been violated. By employing

the Lyapunov stability theorem, some sufficient conditions have been established to ensure that the dynamics

of the estimation error satisfies the desired H∞ performance constraint. Finally, an illustrative example has

been provided to confirm the usefulness of the developed state estimation approach. Further research topics

include the extension of the main results to the distributed filtering for more general stochastic nonlinear

systems with different triggering rules.
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