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Event-Triggered Fault Detection of Nonlinear

Networked Systems
Hongyi Li, Ziran Chen, Ligang Wu, Hak-Keung Lam and Haiping Du

Abstract—This paper investigates the problem of fault de-
tection for nonlinear discrete-time networked systems under
an event-triggered scheme. A polynomial fuzzy fault detection
filter is designed to generate a residual signal and detect faults
in the system. A novel polynomial event-triggered scheme is
proposed to determine the transmission of the signal. A fault
detection filter is designed to guarantee that the residual system
is asymptotically stable and satisfies the desired performance.
Polynomial approximated membership functions obtained by
Taylor series are employed for filtering analysis. Furthermore,
sufficient conditions are represented in terms of sum of squares
(SOS) and can be solved by SOS Tools in Matlab environment. A
numerical example is provided to demonstrate the effectiveness
of the proposed results.

Index Terms—Nonlinear networked systems; Polynomial fuzzy
model; Sum of squares; Event-triggered scheme; Fault detection.

I. INTRODUCTION

IT is well know that the real systems are uncertain nonlinear

systems [1]–[8]. Recently, some fuzzy logic control and

neural control methods have been proposed to control the

nonlinear systems [9]–[16]. The authors in [12] designed a

novel adaptive fuzzy output feedback controller for pure-

feedback interconnected nonlinear systems with unmeasured

states. Recently, Takagi-Sugeno (T-S) fuzzy-model-based ap-

proach has drawn considerable attention because of its high

ability on modeling nonlinear systems [17]–[20]. The model

reduction problem was investigated for interval type-2 T-

S fuzzy systems in [17]. The authors in [18] considered

switched fuzzy output feedback control problem for nonlinear

systems. Many results have been developed based on the T-

S fuzzy systems for fault diagnosis [21]–[23]. To mention

a few, in [23], fault estimation and fault-tolerant control for
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T-S fuzzy stochastic systems with sensor failures have been

investigated via a novel robust observer technique. In [24], a

novel fuzzy fault detection filter was proposed for T-S fuzzy

systems with time-varying delays via delta operator approach.

However, in the modeling process, limited system information

was taken into account, which leads to more conservative

results [25]. Various methods have been developed to obtain

more relaxed results. A learning algorithms of cerebellar

model articulation controllers to provide the robust property

against outliers existing in training data was discussed in

[26]. In [27], sufficient conditions are derived in terms of

the matrix spectral norm of the closed-loop fuzzy system

instead of the traditional fuzzy control design approaches.

Moreover, the information hidden in membership functions

was considered for the stability and control problems in order

to get relaxed conditions in [28]–[32]. In recent years, the T-

S system approach has been generalized to the polynomial

T-S system approach [33], which inherits the virtues of the

T-S systems approach and has two additional advantages [34].

One is that the approach can represent nonlinear systems

with less number of fuzzy rules, while the other one is that

the stability conditions obtained via polynomial Lyapunov

functions also have less conservatism than those obtained via

the well known quadratic Lyapunov functions. In order to

develop these advantages, many results were investigated for

polynomial T-S systems in recent years [35]–[38]. Moreover,

new polynomial approximated membership functions were

proposed to relax the stability conditions [39].

The communication link of the networked systems is a

limited resource. Several methods have been developed to

save that resource [40]–[45], in which the event generator is

a critical factor [46], [47]. The role of the event generator

is to determine whether or not the sampled signal should

be transmitted through a predefined event-triggered scheme

[48]–[51]. Because of the event generator, all the transmitted

signals become more important to the control or the filtering

procedures and more sensitive to faults. In addition, T-S and

polynomial fuzzy approaches to networked systems bring new

challenges such as dealing with the network induced delay

and data packets dropout [52]–[56]. In order to increase the

safety and reliability of the control signal, the fuzzy fault

detection filter was designed in [57]. However, to the authors’

best knowledge, there are few results on fuzzy fault detection

problem under event-triggered scheme, which motivates this

study.

This paper introduces a novel fault detection scheme

for polynomial fuzzy discrete-time networked systems under

event-triggered scheme. A polynomial fuzzy fault detection
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filter is designed under a new polynomial event-triggered

scheme to guarantee the asymptotic stability of the residual

system with desired performance. Polynomial approximated

membership functions obtained by Taylor series are employed,

and sufficient conditions are developed as SOS, which can

be solved by SOSTOOLS. The main contributions of this

paper can be summarized as follows: 1. We first investigate

the fault detection problem for networked systems subject to

event-triggered scheme. 2. A new polynomial event-triggered

scheme is adopted to improve the design flexibility. 3. Poly-

nomial T-S system approach and polynomial approximated

membership functions are employed to handle the nonlinear

systems and reduce the conservativeness. A numerical example

is provided to demonstrate the effectiveness of the proposed

methods.

The rest of this paper is organized as follows. In Section

II, the residual system distributed in the network modeled

as a polynomial fuzzy system is constructed, including the

phenomena of event-triggered scheme. Section III proposes

the approach of designing an H∞ fault detection filter. A

numerical example is exploited to show the effectiveness of

the proposed approach in Section IV and we conclude this

paper in Section V.

Notations: The notations used in this paper are quite

standard. The symbol “∗” represents the transposed elements

of the symmetric matrix. The notation ∥H∥ indicates the L2

norm of matrix H defined by ∥H∥ =
√

tr (HTH). Identity

matrices with appropriate dimensions will be denoted by I.

The superscripts “T ” and “−1” denote the matrix transpose

and inverse respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES

The nonlinear networked system considered in this paper

is shown in Fig. 1. The output of the plant is measured

Physical plant
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Network

Reference model

Event generator ZOH

Fault detection 
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+

-

k
f

k
f

ky ˆ
k

y

k
r

k
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Fig. 1: The physical model of the residual system.

by the sensor and evaluated by the event generator before

being communicated through the network, which saves the

communication bandwidth. It is assumed that there may be

faults occurred in the sensor and then the overall system is

modeled as follows:

Plant Rule i : IF θ1(xk) is Ni1, and · · · , and θj(xk) is Nij ,

and · · · , and θp(xk) is Nip, THEN

xk+1 = Ai (xk)xk +B1i (xk)wk +B2i (xk) fk,

yk = Ci (xk)xk +D1i (xk)wk +D2i (xk) fk, (1)

where xk ∈ Rn is the state vector, yk ∈ Rl is measurement

output, wk ∈ Rnw is the process disturbance belonging to

l2 [0,∞), and fk ∈ Rm is the faults vector. Generally, it

is assumed that fk is l2 norm bounded. Ai (xk), B1i (xk),
B2i (xk), Ci (xk), D1i (xk) and D2i (xk) are polynomial

system matrices. i = 1, 2, . . ., r, where r is a scalar denoting

the number of IF-THEN rules. θj(k) and Nij are the premise

variable and the fuzzy set, respectively. j = 1, 2, . . ., p, where

p is the number of the premise variables. Based on the above

discussion, we obtain the global model of dynamic system as:

xk+1 =
r
∑

i=1

hi (θk) [Ai (xk)xk

+B1i (xk)wk +B2i (xk) fk] ,

yk =

r
∑

i=1

hi (θk) [Ci (xk)xk

+D1i (xk)wk +D2i (xk) fk] , (2)

where hi(θk) = µi(θk)�
r
∑

i=1

µi(θk) , µi(θk) =

p
∏

j=1

Nij(θj(xk)) and Nij(θj(xk)) is the grade of membership

of θj(xk) in fuzzy set Nij . Usually, it is assumed that:

µi(θk) ≥ 0 for i = 1, 2, . . ., r and
r
∑

i=1

µi(θk) > 0 for all k.

Therefore, hi (θk) ≥ 0 and
r
∑

i=1

hi (θk) = 1.

One of the components of the fault detection scheme is to

construct a dynamical system called the residual generator. The

constructed auxiliary system takes the output of the physical

plant which is assumed to be stable throughout this paper

and then generates the residual signal. The residual signal is

used to determine whether or not faults have occurred in the

system. The following polynomial fuzzy fault detection filter

is constructed to generate the residual signal.

Filter Rule i : IF θ̄1(xfk) is Mi1, and · · · , and θ̄j(xfk) is

Mij , and · · · , and θ̄q(xfk) is Miq , THEN

xfk+1 = Afi (xfk)xfk +Bfi (xfk) ŷk,

rk = Cfi (xfk)xfk +Dfi (xfk) ŷk, (3)

where xfk ∈ Rn is the filter state vector, ŷk ∈ Rl is the

input vector of the filter, rk ∈ Rm represents residual signal,

and Afi (xfk), Bfi (xfk), Cfi (xfk) and Dfi (xfk) are the

polynomial filter gain matrices to be designed. i = 1, 2, ..., c,

the scalar c is the number of IF-THEN rules. Mij and θ̄j(xfk)
are the fuzzy set and the premise variable respectively, j = 1,

2, . . ., q, where q is the number of the premise variables.

Obviously, the fuzzy filter does not need to share the same

premise variables and membership functions with the physical

plant, which improves the design flexibility of the fuzzy filter.

Similar to (2), the defuzzification of the fuzzy filter is given

as:

xfk+1 =
c
∑

i=1

gi
(

θ̄k
)

[Afi (xfk)xfk +Bfi (xfk) ŷk] ,

rk =
c
∑

i=1

gi
(

θ̄k
)

[Cfi (xfk)xfk +Dfi (xfk) ŷk] ,(4)
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where gi
(

θ̄k
)

is the membership function, ŷk is the actual

input of the filter. Next, we will discuss the network introduced

problems in this paper.

Remark 1: A key process of fault detection is to generate

a residual signal which is sensitive to system fault. In this

paper, we employ H∞ filter to generate that residual signal.

H∞ filter can not only describe the estimated signal accurately

but also suppress the disturbance effectively.

Event Detector: The purpose of introducing the event

generator is to save the limited communication resource. An

event-triggered scheme is adopted to determine whether or

not the sampled signal should be transmitted. First, we define

the difference between the current output of the plant and

the last released data of the generator which is defined as

δk = yk − yik , where ik, yik denote the last released instant

and the released data, respectively with k ∈ [ik, ik+1), and

ik+1 is the next release instant of the generator. One can see

that, d = k− ik−1, where k is the current time and d denotes

the number of the unreleased signal between current time and

last released instant.

In order to reduce the release times of the generator, the cur-

rent measurement yk satisfying δkQ (yk) δk ≥ ηyikQ (yk) yik
will be released, where η > 0 is an arbitrary scalar, and

Q (yk) is an arbitrary polynomial matrix to be determined with

appropriate dimensions.

In terms of the aforementioned discussions, the input of

the polynomial fuzzy fault detection filter is represented as

ŷk = yik = yk − δk.

Remark 2: Due to the existence of the event generator, the

signal released to the network channel is non-uniform signal.

As shown in Fig. 1, a zero order holder (ZOH) is employed

to keep the input signal of the filter as uniform discrete-time

signal over all sampling instants.

Remark 3: Available results use a quadratic event detector

can be found in [46]–[48]. In this paper, we use a polynomial

event detector that includes the quadratic one as a special case

which improves the design flexibility.

Fault Weighting System: To improve the performance, a

reference residual model is usually adopted as the weighting

matrix function of the fault fk, which is represented as f̄ (z) =
W (z) f (z) [58], where W (z) is given a priori. The choice

of W (z) is to impose frequency weighting on the spectrum

of the fault signal for detection. A state-space realization of

W (z) can be

xwk+1 = Awxwk +Bwfk,

f̄k = Cwxwk +Dwfk, (5)

where xwk ∈ Rk is the state vector, Aw, Bw, Cw, Dw are

constant matrices.

Residual Evaluation: In order to facilitate the fault de-

tection problem, the residual signal generated in the fault

detection filter should be evaluated by a residual evaluation

function. The prescribed evaluation function will be compared

with the predefined threshold Jth. If the value of the evaluation

function exceeds the threshold, an alarm of fault is triggered.

In this paper, we adopt the following evaluation function

∥r∥T ,
1

T

√

√

√

√

t0+T−1
∑

k=t0

rTk rk, Jth , sup
wk∈l2, fk=0

∥r∥T . (6)

For a given threshold Jth, the chosen of Jth can refer to the

discussion in [46]–[48], the generation of the alarms can be

summarized as follows:
{

∥r∥T > Jth
∥r∥T ≤ Jth

=⇒
=⇒

with faults

no faults.

=⇒ alarm

Referring to (2), (4), (5) and the event-triggered scheme, we

have the following residual system:

εk+1 =
r
∑

i=1

c
∑

j=1

higj
[

Ǎijεk + B̌ijξk
]

,

ek =
r
∑

i=1

c
∑

j=1

higj
[

Čijεk + Ďijξk
]

, (7)

where

Ǎij =





Ai (xk) 0 0
Bfj (xfk)Ei (xk) Afj (xfk) 0

0 0 Aw



 ,

B̌i =





0 B1i (xk) B2i (xk)
−Bfj (xfk) B1fj (x̄k) B2fj (x̄k)

0 0 Dw



 ,

Čij =
[

Dfj (xfk)Ci (xk) Cfj (xfk) −Cw

]

,

Ďij =
[

−Dfj (xfk) D1fj (x̄k) D2fj (x̄k)−Dw

]

,

B1fj (x̄k) = Bfj (xfk)D1i (xk) ,

B2fj (x̄k) = Bfj (xfk)D2i (xk) ,

D1fj (x̄k) = Dfj (xfk)D1i (xk) ,

D2fj (x̄k) = Dfj (xfk)D2i (xk) , (8)

and ek = rk − f̄k, hi and gj denote for hi (θk) and

gj (θk) respectively. εk =
[

xT
k xT

fk xT
wk

]T
, ξk =

[

δTk wT
k fT

k

]T
, k ∈ [ik, ik+1).

Polynomial Approximated Membership Function: In

order to reduce the conservativeness, we employ the poly-

nomial approximated membership functions to estimate the

original membership functions. Consider the system states

x (t) =
[

x1 (t) x2 (t) · · · xn (t)
]T

, x (t) ∈ Ω, where

Ω is the known bounded n dimensional state space. It is

assumed that the original membership functions depend on

xθp (t), θp ∈ [1, n], p = 1, 2, ..., s, where s is the number of

system states appeared in the original membership functions.

We divide xθp (t) into dθp connected subregions, thus, the

overall state space Ω is divided into l = Πs
p=1dθp sub-state

spaces and we have Ω = ∪l
q=1Ωq , where Ωq is one of the sub-

state spaces. When xθp (t) falls into one of the substate spaces,

a corresponding sub-polynomial approximated membership

functions will be employed.

In this paper, we will use the Taylor series approach which

is represented in [59] to obtain the polynomial approximated
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membership functions

f (x) =

τ
∑

k=0

1

k!

(

s
∑

p=1

(

xθp − xθp0

) ∂

∂xθp

)k

f (x) |x=x0
,

τ → ∞, (9)

where f (x) is an arbitrary function of x, x0 is the known

expansion points. xθi0 and xθi are one of the elements in

x0 and xθ, respectively, where xθ is an arbitrary point in

the neighbourhood of x0. ∂
∂xθp

f (x) |x=x0
is the value of the

partial derivative of f (x) with x = x0 which is a constant.

When xθi (t) falls into one of the substate spaces divided

by dθp , the two endpoints of the subregion is assumed as xθp1,

xθp2, and this assumption is valid for every p = 1, 2, ..., s.

Then, we will employ the Taylor series expansions at every

two endpoints combined by weighting functions υqθpp (xθ).

Defining mij = higj , based on the aforementioned ap-

proach, we have the polynomial approximated membership

functions m̄ij as

m̄ij =

l
∑

q=1

2
∑

θ1=1

2
∑

θ2=1

· · ·

2
∑

θs=1

s
∏

p=1

υqθpp (xθ)χijθ1θ2···θsq (x) ,

(10)

where χijθ1θ2···θsq (x) is the Taylor series expansion of

mij with corresponding expansion points, for example,

χij12···1q (x) is the Taylor series expansion of mij with

corresponding expansion points are x =(xθ11, xθ22, · · · , xθs1)
at substate space Ωq . The weighting functions υqθpp (xθ)
have the following properties: 0 ≤ υqθpp (xθ) ≤ 1 and

υq1p (xθ) + υq2p (xθ) = 1, for θp = 1, 2, p = 1, 2, ...,

s, x ∈Ωq , q = 1, 2, ..., l. Otherwise, υqθpp (xθ) = 0

which lead to
l
∑

q=1

2
∑

θ1=1

2
∑

θ2=1

· · ·
2
∑

θs=1

s
∏

p=1

υqθpp (xθ) = 1. Due

to the effectiveness of the weighting functions υqθpp (xθ), the

local approximating functions χijθ1θ2···θsq (x) are combined

to approximate the original membership functions.

Problem: The problem considered in this paper is to design

a polynomial fuzzy fault detection filter such that

1) The residual error system in (7) is asymptotically stable

with w̄k = 0.

2) The residual error ek satisfies

∥e∥
2
≤ γ ∥w̄∥

2
(11)

under zero-initial condition, in which γ denotes the distur-

bance level and w̄k =
[

wT
k fT

k

]T
.

For proceeding further, the following lemma is employed.

Lemma 1: Consider a polynomial matrix P (xk) > 0 and

a nonsingular polynomial matrix Γ (xk) > 0, we have

λ2ΓT (xk)P
−1 (xk) Γ (xk)−λΓ (xk)−λΓT (xk)+P (xk) > 0,

(12)

where λ is an arbitrary scalar to be determined.

Proof: As P (xk) > 0, naturally, we have

(λΓ (xk)− P (xk))
T
P−1 (xk) (λΓ (xk)− P (xk)) ≥ 0,

which implies

λ2Γ (xk)
T
P−1 (xk) Γ (xk)− λΓ (xk)

T
P−1 (xk)P (xk)

−λPT (xk)P
−1 (xk) Γ (xk) + PT (xk)P

−1 (xk)P (xk)

≥ 0,

then Lemma 1 holds.

III. MAIN RESULTS

In this section, a novel idea of the PFMB approach is

employed to establish the stability conditions of the residual

system in (7) with the performance specified in (11).

Before proceeding further, the solution about the technolo-

gies used in this paper is presented. The SOS decomposi-

tion of multivariate polynomials is employed as the com-

putational method. A multivariate polynomial f (x (t)) sat-

isfies f (x (t)) =
r
∑

j=1

gj (x (t))
2
, e.g., x1 (t)

2
+ 2x1 (t) +

1 = (x1 (t) + 1)
2

is referred as sum of squares. Obviously,

f (x (t)) ≥ 0 if f (x (t)) is a SOS.

For a polynomial f (x (t)) in x (t) ∈ Rn of degree 2d, and

x̂ (x (t)) with degree no greater than d, where x̂ (x (t)) ∈ Rn

is a column vector of monomials in x (t). Then, a SOS

with multivariate structure can be defined as f (x (t)) =
x̂T (x (t))Px̂ (x (t)), where P ≥ 0.

In order to facilitate the analysis, the following denota-

tions are employed. Define x̃k = (xs1
k , xs2

k , . . . , xsm
k ), S =

{s1, s2, . . . , sm} represents the row indices of B1i (xk) and

B2i (xk) whose corresponding row are both equal to zero, i.e.,

B1i (x̃k)xk = 0 and B2i (x̃k)xk = 0. In addition, Ãi (xk)
denotes a partial matrix of Ai (xk) consists of its s1, s2, . . .,

sm rows. Then we have x̃k+1 = Ãi (xk)xk. It is assumed that

P (x̃k) only depends on x̃k, therefore, P (x̃k+1) is a convex

item. For brevity, in the following, Pk+1 and Pk stand for

P (x̃k+1) and P (x̃k), respectively.

Theorem 1: The residual system in (7) with known filter

gain matrices Afj (xfk), Bfj (xfk), Cfj (xfk), Dfj (xfk)
is asymptotically stable with a guaranteed H∞ performance

level γ if there exist symmetric polynomial matrices Pk > 0,

in which x̃k is a partial vector in xk, polynomial matrices

Ξij (xk), ̥ij (xk), and matrix G with appropriate dimensions,

where i = 1, 2, . . ., r, j = 1, 2, . . ., c, constants η > 0,

ε > 0, and arbitrary scalar λ, such that the following SOS

optimization problem which minimizes γ subject to

vT1 (Pk − ϵ1 (x̃k)) v1 is SOS, (13)

vT2 (Ξij (xk)− ϵ2 (xk)) v2 is SOS, (14)

vT3 (̥ij (xk)− ϵ3 (xk)) v3 is SOS, (15)

vT4 (Ξij (xk)−Ψij − ϵ4 (xk)) v4 is SOS, (16)

−vT5
[(

χijθ1θ2···θsq (x) + αij

)

Ψij

+
(

αij − αij

)

Ξij (xk)

+
(

χijθ1θ2···θsq (x)− β
ij

)

̥ij (xk)

−ϵ5 (xk)] v5 is SOS, (17)

has feasible solution for all i, j, θ1, θ2, · · · , θs, q, where v1,

v2, v3, v4, v5 are arbitrary vectors independent of xk, ϵ1 (x̃k),
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ϵ2 (xk), ϵ3 (xk), ϵ4 (xk), ϵ5 (xk) are nonnegative polynomial

matrices with appropriate dimensions, and χijθ1θ2···θsq (x) is

defined in Section II, and αij , αij and β
ij

are presented above

and below (23), respectively. In addition,

Ψij =









Φ̄11 ∗ ∗ ∗
Φ21 Φ22 ∗ ∗
GǍij GB̌ij Mk+1 ∗
Čij Ďij 0 −I









,

Φ11 =





ηCT
i (xk)Q (yk)Ci (xk) ∗ ∗

0 0 ∗
0 0 0



 ,

Φ22 =





Θ1 ∗ ∗
ΘT

2 Θ4 − γ2I ∗
ΘT

3 ΘT
5 Θ6 − γ2I



 ,

Φ21 =





−ηQ (yk)Ci (xk) 0 0
ηDT

1i (xk)Q (yk)Ci (xk) 0 0
ηDT

2i (xk)Q (yk)Ci (xk) 0 0



 ,

Θ1 = (η − 1)Q (yk) , Θ3 = −ηQ (yk)D2i (xk) ,

Θ2 = −ηQ (yk)D1i (xk) , Φ̄11 = Φ11 − Pk,

Θ4 = ηDT
1i (xk)Q (yk)D1i (xk) ,

Θ5 = ηDT
1i (xk)Q (yk)D2i (xk) ,

Θ6 = ηDT
2i (xk)Q (yk)D2i (xk) ,

Mk+1 = λ2Pk+1 − λG− λGT ,

in which Ǎij , B̌ij , Čij and Ďij , are represented in (8), and

Q (xk) is the parameter of the event-triggered scheme to be

determined, Pk+1 is a matrix obtained by substituting the

elements x̃k in matrix Pk by x̃k+1 = Ãi (xk)xk, correspond-

ingly.

Proof: Based on the Lyapunov stability theory, the poly-

nomial Lyapunov functional is constructed as follows:

Vk = εTk Pkεk. (18)

According to the trajectories of system (7), and the problem

considered in this paper, we introduce the following perfor-

mance index:

J = ∆Vk + eTk ek − γ2w̄T
k w̄k

= εTk+1Pk+1εk+1 − εTk Pkεk

+eTk ek − γ2w̄T
k w̄k. (19)

Based on the denotations in the beginning of this section,

formula (19) is converted into

J = εTk+1Pk+1εk+1 − εTk Pkεk + eTk ek − γ2wT
k wk

=
r
∑

i=1

c
∑

j=1

mij ε̄
T
k

[

Ǎij B̌ij

]T
Pk+1

[

Ǎij B̌ij

]

ε̄k

+
r
∑

i=1

c
∑

j=1

mij ε̄k
[

Čij Ďij

]T [

Čij Ďij

]

ε̄k

−εTk Pkεk − γ2w̄T
k w̄k. (20)

Considering the event-triggered communication scheme, for

every k ∈ [ik, ik+1), we know δkQ (yk) δk ≤ ηyikQ (yk) yik .

Then the performance index represented in (20) with nonzero

disturbance can be obtained:

J ≤
r
∑

i=1

c
∑

j=1

mij ε̄
T
k

[

Ǎij B̌ij

]T
Pk+1

[

Ǎij B̌ij

]

ε̄k

+

r
∑

i=1

c
∑

j=1

mij ε̄
T
k

[

Čij Ďij

]T [

Čij Ďij

]

ε̄k

+
r
∑

i=1

c
∑

j=1

mij ε̄
T
kΦε̄k − εTk Pkεk, (21)

where

ε̄k =

[

εk
ξk

]

, Φ =

[

Φ11 ∗
Φ21 Φ22

]

,

Φ21 =





−ηQ (yk)Ci (xk) 0 0
ηDT

1i (xk)Q (yk)Ci (xk) 0 0
ηDT

2i (xk)Q (yk)Ci (xk) 0 0



 ,

Φ11 =





ηCT
i (xk)Q (yk)Ci (xk) ∗ ∗

0 0 ∗
0 0 0



 ,

Φ22 =





Θ1 ∗ ∗
ΘT

2 Θ4 − γ2I ∗
ΘT

3 ΘT
5 Θ6 − γ2I



 ,

Θ1 = (η − 1)Q (yk) , Θ2 = −ηQ (yk)D1i (xk) ,

Θ3 = −ηQ (yk)D2i (xk) ,

Θ4 = ηDT
1i (xk)Q (yk)D1i (xk) ,

Θ5 = ηDT
1i (xk)Q (yk)D2i (xk) ,

Θ6 = ηDT
2i (xk)Q (yk)D2i (xk) .

Referring to Lemma 1, we have −GTP−1

k+1
G < λ2Pk+1 −

λG − λGT , where G is an arbitrary matrix, and by Schur

complement, the formula (21) can be guaranteed by

Ψij < 0, (22)

for all i = 1, 2, . . ., r, j = 1, 2, . . ., c, where

Ψij =









Φ̄11 Φ12 ∗ ∗
Φ21 Φ22 ∗ ∗
GǍij GB̌ij Mk+1 ∗
Čij Ďij 0 −I









,

Φ̄11 = Φ11 − Pk, Mk+1 = λ2Pk+1 − λG− λGT .

In order to obtain relaxed stability conditions, the polynomial

approximated membership functions which are discussed in

Section II are employed. As represented in [59], let the error

between the original membership function and the polynomial

approximated membership function be ∆mij = mij − m̄ij .

Denote the lower and upper bounds of ∆mij as αij and

αij , respectively. Naturally, we have the following relation:

αij ≤ ∆mij ≤ αij , i = 1, 2, . . ., r, j = 1, 2, . . ., c.

In addition, we introduce the slack matrices as Ξij (xk) with

appropriate dimensions which satisfy 0 < Ξij (xk) = ΞT
ij (xk)

and Ξij (xk) ≥ Ψij for all i, j. Thus, the inequality in (22)
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can be rewritten as

r
∑

i=1

c
∑

j=1

mijΨij =
r
∑

i=1

c
∑

j=1

(m̄ij +∆mij)Ψij

=

r
∑

i=1

c
∑

j=1

[(

m̄ij + αij

)

Ψij +
(

∆mij − αij

)

Ψij

]

≤

r
∑

i=1

c
∑

j=1

[(

m̄ij + αij

)

Ψij +
(

αij − αij

)

Ξij (xk)
]

< 0. (23)

Furthermore, we also introduce the lower bound of m̄ij which

is denoted as βij to relax the stability conditions. Meanwhile,

slack matrices ̥ij (xk) satisfying 0 < ̥ij (xk) = ̥T
ij (xk)

are employed which implies the following inequality

r
∑

i=1

c
∑

j=1

[(

m̄ij + αij

)

Ψij +
(

αij − αij

)

Ξij (xk)

+
(

m̄ij − β
ij

)

̥ij (xk)
]

< 0. (24)

Recalling m̄ij =
l
∑

q=1

2
∑

θ1=1

2
∑

θ2=1

· · ·
2
∑

θs=1

s
∏

p=1

υqθpp (xθ)×

χijθ1θ2···θsq (x) and the properties of weighting function

υqθpp (xθ), we know that J < 0 can be guaranteed by

r
∑

i=1

c
∑

j=1

(

χijθ1θ2···θsq (x) + αij

)

Ψij

+
(

αij − αij

)

Ξij (xk)

+
(

χijθ1θ2···θsq (x)− β
ij

)

̥ij (xk) < 0, (25)

for all θ1, θ2, · · · , θs, q.

It can be seen from (25) that J < 0 which implies

∆Vk + eTk ek − γ2w̄T
k w̄k < 0.

In addition, because of eTk ek ≥ 0, under wk ≡ 0, then ∆Vk <

0. Besides, summing up on both sides for all k, where k = 0,

1, 2, · · · , ∞, then we obtain:

εT
∞
Pε∞ − εT0 Pε0 + ∥e∥

2

2
− γ2 ∥w̄∥

2

2
≤ 0.

Considering zero initial condition and εT
∞
Pε∞ > 0, we have

∥e∥
2
− γ ∥w̄∥

2
< 0, (26)

that is, the asymptotic stability of filtering error system (7)

with an H∞ performance being guaranteed.

It is known that, based on Theorem 1, if the filter gain

matrices (Afj (xfk), Bfj (xfk), Cfj (xfk), Dfj (xfk)) are

given, the conditions (13)–(17) can be solved via SOSTOOLS.

However, since the main purpose of this paper is to design the

fault detection filter which concerned with the determination

of the filter gain matrices, so that the above conditions are

nonconvex. In order to deal with the nonconvex parts, we

develop the following theorem.

Theorem 2: The residual system in (7) is said to be asymp-

totically stable with a guaranteed H∞ performance level γ,

if there exist symmetric polynomial matrices Pk > 0, in

which x̃k is a partial vector in xk, polynomial matrices

Ξij (xk), ̥ij (xk), and matrices G1, G3, G5 with appropriate

dimensions, where i = 1, 2, . . ., r, j = 1, 2, . . ., c, constants

η > 0, ε > 0, and arbitrary scalars a, b and λ, such that

the following SOS optimization problem which minimizes γ

subject to

vT1 (Pk − ϵ1 (x̃k)) v1 is SOS, (27)

vT2 (Ξij (xk)− ϵ2 (xk)) v2 is SOS, (28)

vT3 (̥ij (xk)− ϵ3 (xk)) v3 is SOS, (29)

vT4
(

Ξij (xk)− Ψ̄ij − ϵ4 (xk)
)

v4 is SOS, (30)

−vT5
[(

χijθ1θ2···θsq (x) + αij

)

Ψ̄ij

+
(

αij − αij

)

Ξij (xk)

+
(

χijθ1θ2···θsq (x)− β
ij

)

̥ij (xk)

−ϵ5 (xk)] v5 is SOS, (31)

has feasible solution for all i, j, θ1, θ2, · · · , θs, q, where v1, v2,

v3, v4, v5 are arbitrary vectors independent of xk, and ϵ1 (x̃k),
ϵ2 (xk), ϵ3 (xk), ϵ4 (xk), ϵ5 (xk) are nonnegative polynomial

matrices with appropriate dimensions, χijθ1θ2···θsq (x) is de-

fined in Section II, and αij , αij and β
ij

are presented above

and below (23), respectively. In addition,

Ψ̄ij =









Φ̄11 ∗ ∗ ∗
Φ21 Φ22 ∗ ∗
Āij B̄ij Mk+1 ∗
Čij Ďij 0 −I









,

Φ21 =





−ηQ (yk)Ci (xk) 0 0
ηDT

1i (xk)Q (yk)Ci (xk) 0 0
ηDT

2i (xk)Q (yk)Ci (xk) 0 0



 ,

Φ̄11 = Φ11 − P (x̃k) , Mk+1 = λ2Pk+1 − λG− λGT ,

Φ11 =





ηCT
i (xk)Q (yk)Ci (xk) ∗ ∗

0 0 ∗
0 0 0



 ,

Āij =





Ῡ1 aĀfj (xfk) 0
Ῡ2 bĀfj (xfk) 0
0 0 G5Aw



 ,

Φ22 =





Θ1 ∗ ∗
ΘT

2 Θ4 − γ2I ∗
ΘT

3 ΘT
5 Θ6 − γ2I



 ,

B̄ij =





−aB̄fj (xfk) Ῡ3 Ῡ5

−bB̄fj (xfk) Ῡ4 Ῡ6

0 0 G5Dw



 ,
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in which

Θ1 = (η − 1)Q (yk) , Θ2 = −ηQ (yk)D1i (xk) ,

Θ3 = −ηQ (yk)D2i (xk) ,

Θ4 = ηDT
1i (xk)Q (yk)D1i (xk) ,

Θ5 = ηDT
1i (xk)Q (yk)D2i (xk) ,

Θ6 = ηDT
2i (xk)Q (yk)D2i (xk) ,

Ῡ1 = G1Ai (xk) + aB̄fj (xfk)Ci (xk) ,

Ῡ2 = G3Ai (xk) + bB̄fj (xfk)Ci (xk) ,

Ῡ3 = G1B1i (xk) + aB̄fj (xfk)D1i (xk) ,

Ῡ4 = G3B1i (xk) + bB̄fj (xfk)D1i (xk) ,

Ῡ5 = G1B2i (xk) + aB̄fj (xfk)D2i (xk) ,

Ῡ6 = G3B2i (xk) + bB̄fj (xfk)D2i (xk) .

and Čij , Ďij , are represented in (8), and Q (yk) is the

parameter of the event-triggered scheme to be determined,

Pk+1 is a matrix obtained by substituting the elements x̃k

in matrix Pk by x̃k+1 = Ãi (xk)xk, correspondingly. And

the filter gain matrices can be calculated as Afj (xfk) =
G−1

3 Āfj (xfk), Bfj (xfk) = G−1

3 B̄fj (xfk), Cfj (xfk) =
Cfj (xfk), Dfj (xfk) = Dfj (xfk).

Proof: In order to deal with the nonconvex parts discussed

in Theorem 1, we denote the arbitrary matrix G is in the form

of

G =





G1 G2 0
G3 G4 0
0 0 G5



 ,

then we have

GǍij =





Υ1 G2Afj (xfk) 0
Υ2 G4Afj (xfk) 0
0 0 G5Aw



 ,

GB̌ij =





−G2Bfj (xfk) Υ3 Υ5

−G4Bfj (xfk) Υ4 Υ6

0 0 G5Dw



 ,

in which

Υ1 = G1Ai (xk) +G2Bfj (xfk)Ci (xk) ,

Υ2 = G3Ai (xk) +G4Bfj (xfk)Ci (xk) ,

Υ3 = G1B1i (xk) +G2Bfj (xfk)D1i (xk) ,

Υ4 = G3B1i (xk) +G4Bfj (xfk)D1i (xk) ,

Υ5 = G1B2i (xk) +G2Bfj (xfk)D2i (xk) ,

Υ6 = G3B2i (xk) +G4Bfj (xfk)D2i (xk) .

Denote G2 = aG3, G4 = bG3, where a, b are arbitrary

scalars, and let Āfj (xfk) = G3Afj (xfk), B̄fj (xfk) =
G3Bfj (xfk), one can see that J < 0 can be guaranteed by

Ψ̄ij =









Φ̄11 ∗ ∗ ∗
Φ21 Φ22 ∗ ∗
Āij B̄ij Mk+1 ∗
Čij Ďij 0 −I









< 0,

where

Āij =





Ῡ1 aĀfj (xfk) 0
Ῡ2 bĀfj (xfk) 0
0 0 G5Aw



 ,

B̄ij =





−aB̄fj (xfk) Ῡ3 Ῡ5

−bB̄fj (xfk) Ῡ4 Ῡ6

0 0 G5Dw



 ,

Ῡ1 = G1Ai (xk) + aB̄fj (xfk)Ci (xk) ,

Ῡ2 = G3Ai (xk) + bB̄fj (xfk)Ci (xk) ,

Ῡ3 = G1B1i (xk) + aB̄fj (xfk)D1i (xk) ,

Ῡ4 = G3B1i (xk) + bB̄fj (xfk)D1i (xk) ,

Ῡ5 = G1B2i (xk) + aB̄fj (xfk)D2i (xk) ,

Ῡ6 = G3B2i (xk) + bB̄fj (xfk)D2i (xk) .

Similar to the processes from (23) to (26) in Theorem 1,

Theorem 2 can be guaranteed, and the proof is completed.

To have a feasible solution, we now propose the following

algorithm to obtain the appropriate parameters:

Step 1: Give the nonlinear networked system and obtain the

polynomial T-S fuzzy model.

Step 2: Obtain the polynomial T-S system of the system in

Step 1 based on the approach in [33].

Step 3: Design the polynomial fuzzy fault detection filter for

the system in Step 2.

Step 4: Obtain the polynomial approximated membership

functions according to the process in Section III.

Step 5: Give the predefined parameter η, and solve the solution

which minimize γ subject to (27)-(31) to obtain the filter gains

Afj (xfk), Bfj (xfk), Cfj (xfk) and Dfj (xfk).
Remark 4: The above algorithm provides the implementa-

tion process of our method in practical systems. It can address

fault detection problems for a class of nonlinear networked

systems with less waste of network resources. Although the

method is based on the assumption of specific network envi-

ronment, it can be easily generalized into other situations.

IV. ILLUSTRATIVE EXAMPLE

In this section, to illustrate the proposed method, a simu-

lation example is given. A two-rule polynomial fuzzy system

is used to represent the nonlinear system. The relevant system

parameters are given as follows:

A1 =

[

1.5− 0.2 (x1 − 2)
2

0.5
−0.56 0.8

]

,

A2 =

[

−1.5 + 0.5 (x2 + 1)
2

1.5
0.42 −2

]

,

B11 =

[

1
0

]

, B12 =

[

1
0

]

,

B21 =

[

0.5
0

]

, B22 =

[

0.5
0

]

,

C1 =
[

1 0.6
]

, C2 =
[

1 0.6
]

,

D11 = 0.5, D12 = 0.5, D21 = 1, D22 = 1,

where the membership functions of the polynomial fuzzy plant

are given as h1 (θk) = 1 − 1

1+e−x1+1 ∈ [0, 1], and h2 (θk) =
1− h1 (θk).
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The parameters of the fault weighting system are supposed

to be Aw = 0.1, Bw = 0.25, Cw = 0.2, Dw = 0.5, respec-

tively. In addition, we also choose the membership functions

of the fault detection filter as g1
(

θ̄k
)

= e−
x2
f1

2 ∈ [0, 1], and

g2
(

θ̄k
)

= 1− g1
(

θ̄k
)

.

Referring to the polynomial approximated membership

functions in (9), the order τ is chosen as 1, and consid-

ering x1 ∈ [−2, 2], we choose the expansion points as

{(x1, xf1) |x1 ∈ {−2, 0, 2}, xf1 ∈ {−2, 0, 2}}. Then the

local approximating functions χijθ1θ2···θsq (x) can be worked

out. In addition, the weighting functions υq11 (x1), υq21 (x1),
υq12 (x1) and υq22 (x1) are assumed to be υq11 (x1) =
x12−x1

x12−x11
, υq21 (x1) = 1 − υq11 (x1), υq12 (xf1) =

xf12−xf1

xf12−xf11
,

υq22 (x1) = 1−υq12 (xf1), respectively. Thus, the polynomial

approximated membership functions m̄ij can be calculated

based on (10). Setting x1 and xf1 as a series of compact

points, and computing the difference between the original

membership functions and the polynomial approximated mem-

bership functions, we obtain the lower and upper bounds of

the approximation error: α11 = 0.1182, α12 = 0.0545, α21 =
0.0725, α22 = 0.0249, α11 = −0.0289, α12 = −0.0940,

α21 = −0.0392, α22 = −0.0708. Similarly, the lower bounds

of m̄ij is obtained as: β
11

= 0.0380, β
12

= 0, β
21

= 0.0064,

β
22

= 0. The degree of the slack matrices Ξij (xk) and

̥ij (xk) are assumed as 0.

In addition, the arbitrary scalars λ, a, b are chosen as 1, 2,

0.8, respectively, and the external disturbance is assumed to

be:

wk =

{

1

1+0.25dk
,

0,
10 ≤ k ≤ 70,

otherwise,
(32)

where the sampling period d = 0.01 s. Meanwhile, the faults

are supposed to

fk =

{

1,
0,

30 ≤ k ≤ 60,
otherwise.

Using the SOS Tools in Matlab, according to Theorem 2,

with the assumption of the polynomial filter gain matrices of

degree 0 in xfk (constant matrices), in the context of η = 0.2,

the filter gain matrices can be calculated as follows:

Af1 (xfk) =

[

−0.2204 0.1507
−0.1292 −0.2286

]

,

Af2 (xfk) =

[

−0.2203 0.1522
−0.1294 −0.2293

]

,

Bf1 (xfk) =

[

−0.2620
0.0061

]

, Bf2 (xfk) =

[

−0.2621
0.0055

]

,

Cf1 (xfk) =
[

0.1166 0.3511
]

× 10−3,

Cf2 (xfk) =
[

0.1166 0.3512
]

× 10−3,

Df1 (xfk) = 0.1753× 10−3, Df2 (xfk) = 0.1753× 10−3,

meanwhile, the parameter of the polynomial event detector is

obtained as

Q (yk) = 0.8047× 10−5x2
1 − 0.8194× 10−6x1x2

+0.4238× 10−6x1 + 0.1807× 10−6x2
2

+0.3837× 10−6x2 + 0.7846× 10−4.

TABLE I: Minimum γ of polynomial and quadratic event-

triggered scheme for different η

η 0.1 0.2 0.3 0.4 0.5

γ1 0.6255 0.6289 0.6660 0.6532 0.6399

γ2 0.6208 0.6284 0.6555 0.6447 0.6354

Besides, the H∞ disturbance attenuation level can be mini-

mized as γ = 0.6284. Fig. 2 demonstrates the release instants

of the event detector. In the simulation time, only 31 times are

triggered which is much less than the time-triggered scheme

(100 times). Fig. 3 shows the effectiveness of event-triggered

scheme to the measurement output.
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Fig. 2: The release instants.
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Fig. 3: The measured control output.

For different values of η, the variations of the H∞ dis-

turbance attenuation level γ for both quadratic and polyno-

mial event-triggered scheme are shown in Table I, where γ1
represents the disturbance attenuation level in the context of

quadratic event-triggered scheme and γ2 represents the polyno-

mial one. With the variation of value η, the disturbance attenu-

ation levels obtained by polynomial event-triggered scheme are

always smaller than that obtained by quadratic event-triggered

scheme which imply a higher performance.
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Under zero initial condition, Figs. 4 and 5 show the residual

response and the residual evaluation function response with the

disturbance wk = 0, respectively, and Figs. 6 and 7 show the

same responses with the above mentioned disturbance inputs.

One can see that, the residual can not only detect the fault

in time, but also identifies the fault from the influence of

disturbance wk.
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Fig. 4: Residual response of the nominal system with zero wk.
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Fig. 5: Evaluation function of the nominal system with zero

wk.

For further comparison, we also simulate the system re-

sponses in the context of the event-triggered scheme parameter

η = 0.5. In this case, Fig. 8 demonstrates the release instants

of the event detector. In the simulation time, 45 times are

triggered which is more than that in the context of η = 0.2.

Fig. 9 shows the effectiveness of event-triggered scheme to

the measurement output. In addition, Figs. 10 and 11 show the

residual response and the residual evaluation function response

with the disturbance in (32), respectively.

V. CONCLUSIONS

This paper has solved the fault detection problem for

nonlinear networked systems under an event-triggered scheme.

A polynomial event-triggered scheme has been first used to
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Fig. 6: Residual response of the nominal system with none-

zero wk.
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Fig. 7: Evaluation function of the nominal system with none-

zero wk.
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Fig. 9: The measured control output with η = 0.5.
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Fig. 10: Residual response of the nominal system with none-

zero wk and η = 0.5.
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Fig. 11: Evaluation function of the nominal system with none-

zero wk and η = 0.5.

determine whether the signal should be transmitted or not.

A novel polynomial fuzzy fault detection filter has been

designed to guarantee the asymptotic stability of the residual

system and satisfy the desired performance criteria. Sufficient

conditions, which can be solved by the SOSTOOLS, have been

represented as SOS. Simulation results have demonstrated the

effectiveness of the proposed design scheme.
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