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Event-Triggered Fuzzy Filtering for Nonlinear

Dynamic Systems via Reduced-Order Appraoch
Xiaojie Su, Senior Member, IEEE, Yao Wen, Student Member, IEEE, Peng Shi, Fellow, IEEE, and Hak Keung

Lam, Senior Member, IEEE

Abstract—This paper is concerned with the problem of gen-
eralized H2 reduced-order filter design for continuous Takagi-
Sugeno fuzzy systems using an event-triggered scheme. For a
continuous Takagi-Sugeno fuzzy dynamic system, we want to
establish a reduced-order filter to transform the original model
into a linear lower-order one. This filter can also approximate
the original system with H2 performance, with a new type of
event-triggered scheme used to decrease the communication loads
and computation resources within the network. By transforming
the filtering problem to a convex optimization one, conditions
are presented to design the fuzzy reduced-order filter. Finally,
two illustrative examples are used to verify the feasibility and
applicability of the proposed design scheme.

Index Terms—Fuzzy systems, Fuzzy filter, H2 filtering,
Reduced-order approach

I. INTRODUCTION

Filtering on dynamical systems has received considerable

attention in the past many years as its capability to estimate

system states when the systems have noisy inputs. A great

number of results have been obtained which are applicable

to practical systems [2], [19]. Significant effort has been

expended on estimation techniques, with the Kalman filtering

method [10], a particularly common approach to minimize

estimation errors. Kalman filtering can effectively process

a dynamic system if the system consists of an explicitly

known model, and the external disturbance is Gaussian noise.

In actual situations, however, the exact mathematical system

model is often not available, and there may be various external

disturbances and system modeling errors. Therefore, many

other significant and effective approaches have been developed

[20], [29]. Some examples include H2 filtering [31], H∞

filtering [30], [33], mixed H∞ and passive filtering [26],

H−/H∞ filter design for discrete T-S fuzzy system [8], filter

design for polynomial fuzzy systems [6], robust observer

design for unknown input T-S models [9], fault detection filter
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design for T-S fuzzy systems in the finite-frequency domain,

which was resolved in [7], and efficient adaptive filter design

for the signal processing problem, which was proposed in [16].

Of these filtering methods, two approaches are particularly

common: robust H2 filtering [11] and H∞ filtering [32]. H2

filters are more sensitive to modeling errors than are H∞

filters, but the latter may produce large estimation errors if

the original system is disturbed by white noise. However, little

previous research has been conducted on the application of H2

optimal estimation theory to relevant filtering problem, thus

providing the initial motivation for the present study.

This paper focuses on the filtering problem for Takagi-

Sugeno (T-S) fuzzy systems with an event-triggered scheme.

The information transmission process in networked control

systems (NCSs) is conducted through a communication chan-

nel. If network measurements are sampled with a constant

h > 0, whether the sampling signal is transferred to the filter

is decided by a pre-specified event-triggered condition (ETC).

When the ETC is met, the current sampled signal is promptly

released to the communication channel and transmitted to

the filter. Consequently, valuable computational resources and

communication bandwidth can be saved during network trans-

mission. Therefore, a dynamic system can be converted into

an error-dependent time-delay system using an effective event-

triggered communication scheme. For this, appropriate filters

also need to be designed to guarantee system performance if

a group of linear matrix inequalities is satisfied for a given

threshold parameter. Filtering problems combined with ETCs

have thus attracted the interests of many researchers, leading

to a number of proposed event-triggered filtering approaches,

including a fault detector and controller-coordinated design

[25], mixed H∞ and passive filtering [18], fault detection [28],

H∞ filtering for delayed neural networks [4], and a distributed

Kalman filter [5]. Thus, event-triggered schemes play a vital

role in performance analysis and system synthesis.

Nonlinear dynamic systems in various engineering fields

commonly require higher-order mathematical models [13],

[14], [17], [22], which may increase the difficulty and com-

plexity of evaluating the performance and analyzing the stabil-

ity of the system in question. Hence, methods for simplifying

the original system with lower-order filters based on certain

criteria have been a common research focus [3], [15]. The goal

of reduced-order filtering is to incorporate a filter of a lower

order than the original system based on specific standards.

Over the last few years, many techniques have been introduced

to process mathematical models by utilizing reduced-order

filters, such as the H∞ [1] and H2 methods [23]. Model order
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reduction for electronic circuit design was introduced in [27],

and the authors of [24] investigated model approximation for

switched systems with stochastic perturbation. Reduced-order

filter design has the advantage of flexibility and simplicity in

implementation for practical applications, but it is worth noting

that limited research has been conducted on H2 filtering for T-

S fuzzy systems, particularly regarding reduced-order filtering.

As a consequence, research on reduced-order filter design for

T-S fuzzy systems is important in terms of both theory and

practice, which has motivated us to conduct the current study.

Few studies have been conducted on H2 filtering and event-

triggered schemes for T-S fuzzy systems, and there have been

few attempts to address the related reduced-order filtering

problem despite its theoretical and practical significance. Thus,

the objective of this work is to resolve the problem of

reduced-order H2 filtering for nonlinear T-S fuzzy systems

that employ an event-triggered communication scheme. The

main contributions of this paper are summarized below:

1) Ideal solutions are obtained for the filtering of con-

tinuous T-S fuzzy systems. Problems surrounding H2

filtering and reduced-order filter design are also resolved

for these systems.

2) An event-triggered communication scheme, which can

be used to decide whether the sampling signal will be

transmitted, is coupled with a fuzzy filter to decrease the

use of limited network resources.

3) Because the filter conditions include nonlinear matrix

inequalities, the non-convex feasibility issue is converted

to a convex optimization issue using the reciprocally

convex method and readily solved by some standard

available software.

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

A. Model Description

Consider a class of continuous-time nonlinear systems as

the target plants, which can be expressed approximately as

the T-S fuzzy model below:

� Plant Form:

Rule i : IF ζ1(t) is ϑi1, ζ2(t) is ϑi2, . . . , and ζp(t) is ϑip,

THEN 



ẋ(t) = Aix(t) +Biω(t),

y(t) = Cix(t),

z(t) = Eix(t),

(1)

where x(t) ∈ R
n denotes the state vector of the system ;

ω(t) ∈ R
q denotes the exogenous disturbance input which

is assumed to belong to L2[0,∞); y(t) ∈ R
p denotes the

measurement output; and z(t) ∈ R
m denotes the signal to be

estimated. Ai, Bi, Ci, and Ei are system matrices of suitable

dimensions. The fuzzy basis functions can be presented as

hi

(
ζ(t)

)
=

vi(ζ(t))
r∑

i=1

vi(ζ(t))
, vi

(
ζ(t)

)
=

p∏

j=1

ϑij

(
ζj(t)

)
,

where ζ(t) =
[
ζ1(t), ζ2(t), · · · , ζp(t)

]
represents the premise

variable vector, and ϑij

(
ζj(t)

)
stands for the grade of mem-

bership of ζj(t) in ϑij . ϑij represents the fuzzy sets, where

i = 1, 2, · · · , r, and the scalar r denotes the number

of IF-THEN rules. For all t, assume that vi(ζ(t)) > 0,
r∑

i=1

vi
(
ζ(t)

)
> 0. Consequently, we conclude that hi

(
ζ(t)

)
>

0, and
r∑

i=1

hi

(
ζ(t)

)
= 1. Thus, the T-S fuzzy system (1) can

be further rewritten in a more complete representation:




ẋ(t) =

r∑

i=1

hi

(
ζ(t)

){
Aix(t) +Biω(t)

}
,

y(t) =

r∑

i=1

hi

(
ζ(t)

)
Cix(t),

z(t) =

r∑

i=1

hi

(
ζ(t)

)
Eix(t).

(2)

B. Structure of Reduced-Order Fuzzy Filter

We are on the stage to propose the reduced-order fuzzy

filter in this subsection. Suppose the premise variable of the

fuzzy model ζ(t) is obtainable for feedback, which signifies

that hi

(
ζ(t)

)
is obtainable for feedback. Assume the premise

variables and membership functions of the fuzzy filter are

identical to these in the T-S fuzzy plant. By utilizing the

parallel distributed compensation approach, the fuzzy-rule-

dependent filter is put forward to employ identical IF-THEN

sections. Then, the aim is how to design a reduced-order

dynamic filter described by

� Filter Form:

Rule i : IF ζ1(t) is ϑi1, . . . , and ζp(t) is ϑip, THEN
{

ẋf (t) = Afixf (t) +Bfiŷ(t),

zf (t) = Efixf (t),
(3)

where xf (t) ∈ R
l denotes the state vector of filter with

l ≤ n; ŷ(t) denotes practical input signal of filter; zf (t) ∈ R
m

denotes the estimate signal of z(t); Afi, Bfi, and Efi are

matrices with appropriate dimensions to be determined. Fur-

thermore, the fuzzy filter in (3) is compactly represented by




ẋf (t) =

r∑

i=1

hi

(
ζ(t)

){
Afixf (t) +Bfiŷ(t)

}
,

zf (t) =

r∑

i=1

hi

(
ζ(t)

){
Efixf (t)

}
.

(4)

C. Event-Triggered Technique

A fresh event-triggered communication technique is em-

ployed to decide whether or not the output signal y(t) can

be transmitted to the reduced-order filter, which can reduce

the data transmission pressure and save the precious commu-

nication resources.

Employing the sampler and zero-order holder (ZOH) in

communication network, the current sampled signal y(tkT +
nT ) will be transferred if the threshold condition satisfies as

follow:
[
y(tkT + nT )−y(tkT )

]T
Λ1

[
y(tkT + nT )−y(tkT )

]

6 δyT (tkT )Λ2y(tkT ), (5)
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where δ ∈ [0, 1), Λ1 and Λ2 are positive definite symmetric

matrices, y(tkT + nT ) is the present sampling signal, and

y(tkT ) is the latest transmitted packet.

Define the transmission error ek
(
skT

)
between the latest

sampled signal and the current sampled signal as

ek
(
skT

)
=

[
y(tkT + nT )

]
− y

(
tkT

)
.

Denote skT = tkT + nT , which means the sampling time

between the current instant tkT and the approaching instant

tk+1T . Thus, the transmission error can be rewritten as

ek
(
skT

)
= y

(
skT

)
− y

(
tkT

)
. (6)

Considering event-triggered communication scheme, the T-S

fuzzy system in (2) can be converted into a new system with

time-delay. Assumed that q is a finite positive integer, and it

satisfies tk+1 = tk + q + 1. Therefore, the time interval of

ZOH is given by

[
tkT + τtk , tk+1T + τtk+1

)
=

q⋃

n=0

Λn,k,

where

Λn,k ,
[
tkT + nT + τik+n, tkT + (n+ 1)T + τik+n+1

)
,

n = 0, 1, . . . , q.

In this work, we define the network delay as

h(t) = t−
(
tkT + nT

)
= t− skT, 0 6 h(t) 6 T + h̄ = h,

where t ∈ Λn,k. Therefore, the new ETC is inferred as

eTk
(
skT

)
Λ1ek

(
skT

)
6 δyT

(
tkT

)
Λ2y

(
tkT

)
. (7)

Considering the behavior of ZOH, the input of the reduced-

order filter can be further formulated as

ŷ(t) = y(tkT ) = y(skT )− ek(skT )

= y
(
t− h(t)

)
− ek

(
t− h(t)

)
,

t ∈
[
tkT + τtk , tk+1T + τtk+1

)
. (8)

Substituting (8) to (4), it follows that




ẋf (t) =

r∑

i=1

hi

(
ζ(t)

){
Afixf (t) +Bfi

[
y(t− h(t)

−ek(t− h(t))
]}

,

zf (t) =

r∑

i=1

hi

(
ζ(t)

){
Efixf (t)

}
.

(9)

Therefore, the fuzzy filter in (4) is transformed into a delayed-

time system with the event-triggered technique described

above.

Remark 1. Because the effect of the correspondence network

in traditional filter design is considered negligible, ŷ(t) =
y(t). However, the time delays within the network affect the

analysis of system performance, which are considered in this

article, hence ŷ(t) 6= y(t).

Remark 2. The zero-order holder (ZOH), which can select

the most recent data signal, is used to drive the proposed

filter. Therefore, out-of-order data packets can be dropped.

Data packet losses and communication network delays can be

attributed to the delays caused by the network.

D. Problem Formulation

Extending the model in (2) to contain the filter signals in (9)

and the ETC in (7), the corresponding filtering error system

can be obtained as




ξ̇(t) =

r∑

i=1

r∑

j=1

hi

(
ζ(t)

)
hj

(
ζ(t)

){
Ã0ξ(t) + Ã1x(t− h(t))

+B̃0w(t) + C̃1ek
(
t− h(t)

)}
,

ef (t) =

r∑

i=1

r∑

j=1

hi

(
ζ(t)

)
hj

(
ζ(t)

){
Ẽ1ξ(t)

}
,

(10)

where ξ(t) ,

[
x(t)
xf (t)

]
, ef (t) , z(t)− zf (t).

Ã0 =

[
Ai 0
0 Afj

]
, Ã1 =

[
0

BfjCi

]
, B̃0 =

[
Bi

0

]
,

C̃1 =

[
0

−Bfj

]
, Ẽ1 =

[
Ei −Efj

]
, E ,

[
I 0

]
.

The structure of the overall filtering error system is shown in

Fig. 1.

Event Generator

T-S Fuzzy System

w(t)

y(t)

u(t)

ZOH

z(t)

zf(t)

Sampler

y(kT)

y(tkT)

(t)

ef(t)

+

-

Nonlinear System

Modeling

Bfi
+

Afi
+

xf(t)

f(t)

Efi

Filter

Fig. 1: Structure of the fuzzy filter with event-triggered scheme

Definition 1. The equilibrium ξ∗ = 0 of the fuzzy filtering

system (10) with w(t) = 0 is asymptotically stable if the

following condition is satisfied:

lim
t→∞

E
{
‖ξ(t)‖2 = 0

}
= 0.

Definition 2. For a given scalar γ > 0, the overall filtering

system (10) is asymptotically stable with a generalized H2

disturbance attenuation level γ, if it is asymptotically stable

when w(t) = 0, and the zero initial state is set as ξ(0) = 0,

‖e(t)‖∞ < γ‖w(t)‖2,

for whole non-zero w(t) ∈ L2[0,∞), where

‖e(t)‖∞ , sup
t

√
|e(t)2|.
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III. MAIN RESULTS

In this section, the asymptotic stability with a generalized

H2 performance level γ of system (10) is discussed in Theo-

rem 1, and a fuzzy reduced-order filer is designed in Theorem

2.

A. Generalized H2 Filtering Analysis

Sufficient conditions to ensure system (10) is asymptotic

stability with an H2 performance are presented in the follow-

ing theorem.

Theorem 1. Given scalars δ ∈ [0, 1), h > 0, γ > 0,

system in (10) is asymptotically stable with a generalised H2

disturbance attenuation level γ if there exist matrices P > 0,

Q > 0, R > 0, S > 0, T > 0, Λ1 > 0, Λ2 > 0, χ, such that,

for all i, j = 1, 2, . . . , r,

2

r − 1
Ωii +Ωij +Ωji < 0, (11)

Ωii < 0, (12)[
−P ẼT

1

⋆ −γ2I

]
< 0, (13)

[
I ⊗R+ I ⊗ S χ

⋆ I ⊗R+ I ⊗ T

]
> 0, (14)

where Ωii =

[
Ωii

1 Ωii
2

⋆ Ωii
4

]
, I , diag{I, 3I, 5I},

Ωii
1 ,




Ωii
11 Ωii

12 Ωii
13 Ωii

14

⋆ −Q− 6T − 9R Ωii
23 Ωii

24

⋆ ⋆ Ωii
33 Ωii

34

⋆ ⋆ ⋆ Ωii
44



,

Ωii
2 ,




Ωii
15 Ωii

16 Ωii
17 Ωii

18 PT C̃1

18T + 36R Ωii
26 Ωii

27 0 0

Ωii
35 Ωii

36 Ωii
37 0 −δCT

i Λ2

Ωii
45 Ωii

46 Ωii
47 0 0


 ,

Ωii
4 ,




Ωii
55 Ωii

56 Ωii
57 0 0

⋆ Ωii
66 Ωii

67 0 0

⋆ ⋆ Ωii
77 0 0

⋆ ⋆ ⋆ Ωii
88 0

⋆ ⋆ ⋆ ⋆ δΛ2 − Λ1



,

with

Ωii
11 , sym{ÃT

0 P}+ ET [Q− 6S − 9R+ h2AT
i RAi +

1

2
h2AT

i (S + T )Ai]E,

Ωii
12 ,ET

{ 3∑

m=1

(χT
1m − χT

2m + χT
3m)

}
,

Ωii
13 , PT Ã1 + ET

{ 3∑

m=1

(−χT
1m − χT

2m − χT
3m) + 3R

}
,

Ωii
14 ,ET {−6S − 24R},Ωii

17 , ET
{ 3∑

m=1

6χT
3m

}
,

Ωii
15 ,ET

{ 3∑

m=1

(2χT
2m − 6χT

3m)
}
,Ωii

16 , ET {12S + 30R},

Ωii
18 ,ET

[
h2AT

i RBi +
1

2
h2AT

i (S + T )Bi

]
+ PT B̃0,

Ωii
23 , (−1)m

3∑

m=1

(χm1 − χm2 + χm3) + 3R,

Ωii
24 , (−1)m

3∑

m=1

(2χm2 − 6χm3),

Ωii
26 , (−1)m

3∑

m=1

6χm3,Ω
ii
27 , −12T − 30R,

Ωii
33 , sym

{ 3∑

m=1

(χm1−χm2+χm3)
}
−6S−6T−18R

+δCT
i Λ2Ci,

Ωii
34 ,

3∑

m=1

(2χm2 − 6χm3) + 18T + 36R,

Ωii
35 , (−1)m

3∑

m=1

(2χT
2m − 6χT

3m)− 6S − 24R,

Ωii
36 ,

3∑

m=1

6χm3 − 12T − 30R,

Ωii
37 , (−1)m

3∑

m=1

6χT
3m + 12S + 30R,

Ωii
44 ,−18S − 66T − 192R, E ,

[
I 0

]
,

Ωii
45 ,−4χT

22 + 12χT
23 + 12χT

32 − 36χT
33,

Ωii
46 , 24S + 48T + 180R,Ωii

47 , −12χT
32 + 36χT

33,

Ωii
55 ,−18S − 66T − 192R,Ωii

56 , −12χ23 + 36χ33,

Ωii
57 , 24S + 48T + 180R,Ωii

66 , −36S − 36T − 180R,

Ωii
67 ,−36χT

33,Ω
ii
77 , −36S − 36T − 180R,

Ωii
88 , h2BT

i RBi +
1

2
h2BT

i (S + T )Bi − I.

Proof: Construct the following Lyapunov function candi-

date

V (t) =

3∑

m=1

Vm(t), (15)

where

V1(t) , ξT (t)Pξ(t),

V2(t) ,

∫ t

t−h

ξT (s)Qξ(s)ds

+h

∫ 0

−h

∫ t

t+θ

ξ̇T (s)Rξ̇(s)dsdθ,

V3(t) ,

∫ 0

−h

∫ 0

r

∫ t

t+θ

ξ̇T (s)Sξ̇(s)dsdθdr

+

∫ 0

−h

∫ r

−h

∫ t

t+θ

ξ̇T (s)T ξ̇(s)dsdθdr.

By taking the derivation of V (t), it follows that

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t)
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6 sym
{
ξT (t)ÃT

0 Pξ(t) + ξT (t− h(t))ÃT
1 Pξ(t)

+wT (t)B̃T
0 Pξ(t) + eTk (t− h(t))C̃T

1 Pξ(t)
}

+ξT (t)Qξ(t)− ξT (t− h)Qξ(t− h)

+
1

2
h2ξ̇T (t)(S + T )ξ̇(t) + h2ξ̇T (t)Rξ̇(t)

−2ΓT
7 SΓ7 − 4ΓT

8 SΓ8 − 2ΓT
9 SΓ9 − 4ΓT

10SΓ10

−2ΓT
11TΓ11 − 2ΓT

12TΓ12 − 4ΓT
13TΓ13

−4ΓT
14TΓ14 − ΓT

1,6ΞΓ1,6 (16)

where

Γ1 , Υ3 −Υ2, Γ2 , Υ3 +Υ2 − 2Υ5,

Γ3 , Υ3 −Υ2 + 6Υ5 − 6Υ7, Γ4 , Υ1 −Υ3,

Γ5 , Υ1 +Υ3 − 2Υ4, Γ6 , Υ1 −Υ3 + 6Υ4 − 6Υ6,

Γ7 , Υ3 −Υ5, Γ8 , Υ3 + 2Υ5 − 3Υ7,

Γ9 , Υ1 −Υ4, Γ11 , Υ2 −Υ5,

Γ10 , Υ1 + 2Υ4 − 3Υ6, Γ12 , Υ3 −Υ4,

Γ13 , Υ2 − 4Υ5 + 3Υ7, Γ14 , Υ3 − 4Υ4 + 3Υ6,

Γ1,6 ,
[
Γ1 Γ2 Γ3 Γ4 Γ5 Γ6

]
,

Ξ ,

[
diag{R, 3R, 5R} χ

⋆ diag{R, 3R, 5R}}

]
,

Υ(t) , col
{
ξ(t), ξ(t−h), ξ(t−h(t)),

1

h(t)

∫ t

t−h(t)

ξ(α)dα,

1

h−h(t)

∫ t−h(t)

t−h

ξ(α)dα,
2

h2(t)

∫ 0

−h(t)

∫ t

t+β

ξ(α)dαdβ,

2

(h− h(t))2

∫
−h(t)

−h

∫ t−h(t)

t+β

ξ(α)dαdβ,w(t),

ek(t− h(t))
}
.

For the sake of completing the establishment of the generalised

H2 performance for the overall filtering system in (10), the

zero initial state is assumed as ξ(0) = 0, so V (ξ(t))|t=0 = 0.

Consider the following induced index

J (t) ,

∫
∞

0

−wT (t)w(t)dt

6
[ ∫ ∞

0

−wT (t)w(t)dt
]
+ V (t)− V (0)

,

∫
∞

0

[
− wT (t)w(t) + V̇ (t)

]
dt (17)

Considering the event-triggered mechanism in (7), we denote

∆(t) = δyT
(
tkT

)
Λ2y

(
tkT

)
− eTk

(
skT

)
Λ1ek

(
skT

)
> 0. (18)

It follows from (16) to (18) that

−wT (t)w(t) + V̇ (t) + ∆(t)6
r∑

i=1

r∑

j=1

hi

(
ζ(t)

)
hj

(
ζ(t)

)

{
ΨT (t)ΩiiΨ(t)

}
. (19)

Then, in view of the condition in (12), it is easy to get Ωii < 0.

From the condition in (18) and (19), it follows that

−wT (t)w(t) + V̇ (t) < 0 (20)

Through the integral calculation on the two sides of (20) from

0 to ∞, we get

V (t) <

∫
∞

0

wT (t)w(t)dt (21)

Furthermore, the inequality in (13) can be converted into the

following inequality by the Schur Complement method:

ẼT
1 Ẽ1 − γ2P < 0 (22)

Thus, it can be easily established that for all t > 0,

eTf (t)ef (t)− γ2V1(t)6

r∑

i=1

r∑

j=1

hi

(
ζ(t)

)
hj

(
ζ(t)

)

{
ξT (t)

(
ẼT

1 Ẽ1 − γ2P
)
ξ(t)

}
.(23)

From (22), we can easily conclude that

eTf (t)ef (t) < γ2V1(t) < γ2V (t). (24)

It follows from (21) and (24) that for all t > 0

eTf (t)ef (t) < γ2V (t) < γ2

∫
∞

0

wT (t)w(t)dt. (25)

Getting the supremum over t > 0 leads to ‖e(t)‖∞ <

γ‖w(t)‖2 for all non-zero w(t) ∈ L2[0,∞), thus it completes

the proof.

B. Reduced-order Filter Design

The following result provides conditions to solve the H2

filtering problem for system (10) by linearization method.

Theorem 2. Given scalars δ ∈ [0, 1), h > 0, γ > 0, if there

exist real matrices W > 0, P1 > 0, Q > 0, R > 0, S > 0,

T > 0, Λ1 > 0, Λ2 > 0, χ, and the parameters of the filter

Ãfi, B̃fi, Ẽfi such that the following matrix inequations are

satisfied for i, j = 1, 2, . . . , r:

2

r − 1
Ψii +Ψij +Ψji < 0, (26)

Ψii < 0, (27)


−P1 −HW ET
i

⋆ −W
T −ẼT

fi

⋆ ⋆ −γ2I


 < 0, (28)

where Ψii =

[
Ψii

1 Ψii
2

⋆ Ψii
4

]
,

Ψii
1 ,




Ψii
111 Ψii

112 Ψii
12 Ψii

13 Ψii
14

⋆ Ψii
122 0 Ψ̄ii

13 0
⋆ ⋆ Ωii

22 Ωii
23 Ωii

24

⋆ ⋆ ⋆ Ωii
33 Ωii

34

⋆ ⋆ ⋆ ⋆ Ωii
44



,

Ψii
2 ,




Ψii
15 Ψii

16 Ψii
17 Ψii

18 Ψii
19

0 0 0 Ψ̄ii
18 Ψ̄ii

19

Ωii
25 Ωii

26 Ωii
27 0 0

Ωii
35 Ωii

36 Ωii
37 0 −δCT

i Λ2

Ωii
45 Ωii

46 Ωii
47 0 0



,

Ψii
4 ,Ωii

4 ,
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with

Ψii
111 ,AT

i P1 + P1Ai +Q− 6S − 9R+ h2AT
i RAi +

1

2
h2AT

i (S + T )Ai,Ψ
ii
112 , AT

i HW+HÃfi,

Ψii
122 , Ãfi + ÃT

fi,Ψ
ii
12 ,

3∑

m=1

(χT
1m − χT

2m + χT
3m),

Ψii
13 ,

3∑

m=1

(−χT
1m − χT

2m − χT
3m) + 3R+HB̃fiCi,

Ψii
14, −6S − 24R,Ψii

15 ,

3∑

m=1

(2χT
2m − 6χT

3m),

Ψii
16 , 12S + 30R,Ψii

17 ,

3∑

m=1

6χT
3m,

Ψii
18 , P1Bi + h2AT

i RBi +
1

2
h2AT

i (S + T )Bi,

Ψii
19 ,−HB̃fi, Ψ̄

ii
13 , B̃fiCi

Ψ̄ii
18 ,W

THTBi, Ψ̄
ii
19 , −B̃fi,

Ωii
22 ,−Q− 6T − 9R,Ωii

25 , 18T + 36R,

then the H2 reduced-order filter design problem is solvable.

Furthermore, the parameters of the desired H2 filter in (4) are

given as
[

Afi Bfi

Efi 0

]
=

[
W

−1 0

0 I

][
Ãfi B̃fi

Ẽfi 0

]
. (29)

Proof: Based on Theorem 1, if the conditions (11)-(13)

hold, then the nonsingular matrix P can be partitioned as

P ,

[
P1 HP2

⋆ P3

]
, (30)

where

H = [Ir×r 0r×(n−r)]
T ,

P1 ∈ Rn×n, P2 ∈ Rr×r, P3 ∈ Rr×r.

Assume that P2 is nonsingular, and to prove it, define

M , P + ̺N(̺ > 0)

and

N ,

[
0n×n H

⋆ 0r×r

]
,M ,

[
M1 HM2

⋆ M3

]
. (31)

Owing to P > 0, we can easily obtain that M > 0 for ̺ > 0.

Therefore, it is simple to validate that M2 is nonsingular for

an arbitrary small ̺ > 0, and the equation above is feasible

with P . Thus, without loss of generality, P2 is assumed to be

nonsingular subject to M2.

Based on the above discussion, several matrices are defined

as below:

U ,

[
I 0
0 P−1

3 PT
2

]
,V , P1,W , P2P

−1
3 PT

2 , (32)

and[
Ãfi B̃fi

Ẽfi 0

]
,

[
P2 0

0 I

][
Afi Bfi

Efi 0

][
P−1
3 PT

2 0

0 I

]
. (33)

Then, we can get

U
T ÃT

0 PU ,

[
AT

i P1 AT
i HW

ÃT
fiH

T ÃT
fi

]
,

U
TPÃ0U ,

[
P1Ai HÃfi

W
THTAi Ãfi

]
,

U
TPU ,

[
P1 HW

W
THT

W
T

]
,UT ẼT

1 ,

[
ET

i

−ẼT
fi

]
,

U
TPÃ1 ,

[
HB̃fiCi

B̃fiCi

]
,UTPB̃0 ,

[
P1Bi

W
THTBi

]
,

U
TPC̃1 ,

[
−HB̃fi

−B̃fi

]
. (34)

Executing congruence transformations to (11), (12), and (13)

with matrices

diag
{

U I I I I I I I I
}
,

diag
{

U I I I I I I I I
}
,

diag
{

U I
}
,

respectively, we obtain that the equalities in (26)–(28) hold

if (32)–(34) are considered. Therefore, the error system in

(10) can be guaranteed to be asymptotically stable with a

generalized H2 disturbance attenuation level γ. Moreover, note

that (33) is equivalent to

[
Afi Bfi

Efi 0

]
,

[
(P−T

2 P3)
−1

W
−1 0

0 I

]

[
Ãfi B̃fi

Ẽfi 0

][
P−T
2 P3 0

0 I

]
. (35)

Therefore, the parameters (Afi, Bfi, Efi) in (4) can be given

by (35), and it is obvious that P−T
2 P3 can obtain the state-

space form by means of similarity transformation. And in

general, let P−T
2 P3 = I , we can get (29), which can be

employed to construct the reduced-order H2 fuzzy filter in

(4). Hence, it completes the proof.

Remark 3. Note that matrix H, which is put forward in

Theorem 2, plays a key role during the design process of the

reduced-order filter because of its use as an order reduction

factor. The result in Theorem 2 becomes a full-order case when

H is chosen as the unit matrix, and this is simpler than using

the reduced-order filtering.

IV. NUMERICAL EXAMPLES

In this section, two examples are provided to illustrate the

effectiveness and feasibility of the reduced-order H2 fuzzy

filter design scheme. Firstly, a numerical example is employed

to manifest the validity of the proposed technique in this paper.

Then a tunnel diode circuit system is approximated by a class

of T-S fuzzy systems, and the desired performance index of

the tunnel diode circuit system is achieved.
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Example 1. Consider the following continuous T-S fuzzy

system in (2):





ẋ(t) =

2∑

i=1

hi

(
ζ(t)

){
Aix(t) +Biω(t)

}
,

y(t) =

2∑

i=1

hi

(
ζ(t)

)
Cix(t),

z(t) =

2∑

i=1

hi

(
ζ(t)

)
Eix(t).

with

A1 =




−1.0 0.2 0.4
0.1 −1.0 0.1
0.4 0.0 −1.2


 , B1 =




0.8
1.0
1.2


 ,

C1 =
[
1.0 1.2 0.8

]
, E1 =

[
0.2 0.8 0.5

]
,

A2 =




−1 0.2 0.0
0.4 −1.1 0.1
0.1 0.3 −1.0


 , B2 =




1.2
1.0
1.0


 ,

C2 =
[
0.6 1.0 0.6

]
, E2 =

[
0.5 0.2 0.6

]
.

Then we strive to find effective reduced-order filters in (4) to

approximate the aforementioned system with an H2 perfor-

mance by employing convex linearization approach. Here we

assume h=0.12, δ=0.8.

Case 1. First, the case of reduced-order filtering (k = 2) is

considered. By solving the conditions in (11)–(14), we can

obtain the corresponding event-triggered parameters as Λ1 =
41.4731 and Λ2 = 0.0088. Furthermore, the H2 reduced-

order filter parameters are shown as below via calculating

the conditions in Theorem 2:

Af1 =

[
−2.7637 −1.4605
−1.4895 −3.0605

]
,

Bf1 =

[
−1.4054
−1.3933

]
, Ef1 =

[
−0.3407 −0.3926

]
,

Af2 =

[
−2.2015 −1.3880
−0.4678 −3.0639

]
,

Bf2 =

[
−1.6967
−1.6954

]
, Ef2 =

[
−0.4223 −0.2202

]
.

Case 2. Then we consider the reduced-order filtering problem

(k = 1), and the corresponding event-triggered parameters

can be obtained as Λ1 = 22.4914 and Λ2 = 0.0109. Moreover,

the relevant parameters of the H2 reduced-order filters are

calculated below:

Af1 = −6.9118 , Bf1 = −0.1908 , Ef1 = −0.7967 ,

Af2 = −2.1357 , Bf2 = −0.3896 , Ef2 = −0.9851 .

To show the reduced-order filtering performance, the initial

state of the overall filtering error system (10) is assumed to be

zero, which means x(t) = 0, xf (t) = 0. Moreover, the exoge-

nous disturbance w(t) is set as w(t) = sin(0.3t) exp(−0.2t).
Furthermore, assume that the fuzzy basis functions are chosen

as 



h1

(
ζ(t)

)
=

1−
[
sin(x1(t))

]2

2
,

h2

(
ζ(t)

)
=

1 +
[
sin(x1(t))

]2

2
.

By using efficient MATLAB toolbox, the simulations of the

proposed H2 filters are presented in Figs. 2–7. Among them,

the corresponding event-triggered release time intervals dia-

grams of two-order filter and one-order filter are drawn in

Fig. 2 and Fig. 5, respectively. The outputs of system model

(2) and reduced-order filters (k = 2, k = 1) are plotted in

Fig. 3 and Fig. 6. In addition, Fig. 4 and Fig. 7 manifest

the corresponding filtering errors ef (t) between them. From

these figures, one can see that the H2 reduced-order filter via

event-triggered technique realizes an ideal estimation of z(t)
and the valuable communication bandwidth and computation

resources during transmissions can be saved to a certain

degree.

Example 2. In this example, we consider a tunnel diode circuit

[12] which has been introduced in Fig. 8. The tunnel diode

system is

iD(t) = 0.002vD(t) + 0.01v3D(t).

Assume the state variables x1(t) = vC(t), x2(t) = iL(t). The

circuit is governed by the following equalities:




Cẋ1(t) = −0.002x1(t) + x2(t)− 0.01x3
1(t),

Lẋ2(t) = −x1(t)−Rx2(t) + w(t),
y(t) = x1(t),
z(t) = x1(t) + w(t),

(36)

where w(t) denotes the disturbance signal, y(t) denotes the

measurement output signal, and z(t) denotes the signal to be

evaluated. The parameters in the circuit are given as C =
20mF , L = 1H , and R = 10Ω. Thus, the circuit system is

further rewritten as




ẋ1(t) = −0.1x1(t) + 50x2(t)− [0.5x2
1(t)]× x1(t),

ẋ2(t) = −x1(t)− 10x2(t) + w(t),
y(t) = x1(t),
z(t) = x1(t) + w(t).

(37)

Therefore, we can obtain the two-rule T-S fuzzy model to

approximate the nonlinear circuit system (37) as follows.

� Plant Form:

Rule 1: IF x2(t) is N1(x1(t)) THEN




ẋ(t) = A1x(t) +B1ω(t),

y(t) = C1x(t),

z(t) = E1x(t).

Rule 2: IF x2(t) is N2(x1(t)) THEN




ẋ(t) = A2x(t) +B2ω(t),

y(t) = C2x(t),

z(t) = E2x(t).

On account of the above T-S fuzzy model, the relevant system

parameters can be inferred as

A1 =

[
−0.1 50
−1 −10

]
, B1 =

[
0
1

]
,
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C1 =
[
1 0

]
, E1 =

[
1 0

]
,

A2 =

[
−4.6 50
−1 −10

]
, B2 =

[
0
1

]
,

C2 =
[
1 0

]
, E2 =

[
1 0

]
.

Furthermore, the membership functions employed in this ex-

ample are defined as:

h1

(
ζ(t)

)
=





3 + x1(t)

3
, −3 ≤ x1(t) ≤ 0,

3− x1(t)

3
, 0 ≤ x1(t) ≤ 3,

0, elsewhere

h2

(
ζ(t)

)
= 1− h1

(
ζ(t)

)
.

Moreover, we are committed to finding the reduced-order filter

which is in the format of (4), to approximate the aforemen-

tioned system with an H2 performance via convex linearization

approach. Under the assumption that h = 0.06, δ = 0.8, and

by employing Theorem 2, we can obtain the corresponding

event-triggered matrices as Λ1 = 116.0829 and Λ2 = 0.1179.

In addition, the relevant parameters of H2 reduced-order filter

are calculated as

Af1 =−16.7582, Bf1 = −16.4151, Ef1 = −0.3709,

Af2 =−38.3097, Bf2 = −16.6927, Ef2 = −0.3709.

Additionally, to investigate the reduced-order filtering perfor-

mance of the obtained models, the initial state is assumed to

be ξ(0) = 0, which means x(0) = 0 and xf (0) = 0; the

external disturbance signal w(t) is assumed to be w(t) =
exp(−0.1t)sin(0.1t), with t ≥ 0. The simulation results in

Example 2 are shown in Fig. 9–11. Among them, the event-

triggered release time figure is plotted in Fig. 9. Fig. 10

draws the outputs of the system model and the aforementioned

reduced-order filter. Fig. 11 draws the filtering error between

them. Moreover, Fig. 9 shows that over the time interval

[0, 40s], just 155 sampled data packets are transmitted, leading

to a transmission rate of 46.5%, which means that communica-

tion resources can be saved by 53.5%. Therefore, the findings

from Figs. 9–11 demonstrate the validity of H2 reduced-order

filter design scheme and the bandwidth usages of the network

are reduced by employing the event-triggered communication

scheme.

Remark 4. Because the obtained filtering conditions involve

nonlinear matrix inequalities (NLMIs), the reciprocally convex

method is employed to recast the fuzzy filter design as a convex

optimization problem subject to linear matrix inequalities

(LMIs), which can be easily resolved with MATLAB. The

conditions required for the solvability of an H2 reduced-order

filter are presented in Theorem 2. For the preset triggered

parameter δ, the corresponding allowable performance level

γ, the filter parameters Afi, Bfi, and Efi and the event-

triggered matrices Λ1 and Λ2 are designed from the derived

results, which can be easily achieved by employing standard

numerical software. This means that the chosen triggered

parameter determines the performance of the filtering error

system.

Remark 5. In this paper, we apply the reciprocally convex

technique combined with a new Lyapunov function in (15),

which contributes to the stability analysis and performance

evaluation of the concerned system. The reciprocally convex

method is utilized to handle the time delay, which reduces

the conservativeness and the computational complexity. The

event-triggered scheme is proposed to reduce the number of

information transmissions while retaining ideal system perfor-

mance. For the resulting filtering error system, data packets of

sampled signals are transmitted by the event-trigger scheme,

i.e., information transmissions are available only when the

defined triggering criteria are satisfied.

V. CONCLUSION

This paper addresses H2 reduced-order filter design for

continuous fuzzy logic systems using event-triggered com-

munication. First, the conditions required for the presence of

H2 reduced-order fuzzy filters are derived in terms of matrix

inequalities using Lyapunov-Krasovskii functions, meaning

that the resulting overall filtering system is asymptotically

stable in terms of H2. The solvability conditions for the pro-

posed reduced-order filter are then established. A novel event-

triggered technique, which can be used to decide whether the

sampling signals are transmitted, is also presented to decrease

the communication loads and use of computational resources

within the network. Finally, the simulation results illustrate

that the proposed design scheme is valid and effective. It is

expected that the proposed reduced-order filter design can be

extended into sampled-data T-S fuzzy systems or polynomial

fuzzy systems. Applying the theoretical achievements of this

work to practical complex systems such as power systems is

an interesting avenue for future research.
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