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This paper is concerned with the event-triggered distributed state estimation problem for a class
of uncertain stochastic systems with state-dependent noises and randomly occurring uncertain-
ties (ROUs) over sensor networks. An event-triggered communication scheme is proposed in
order to determine whether the measurements on each sensor should be transmitted to the esti-
mators or not. The norm-bounded uncertainty enters into the system in a random way. Through
available output measurements from not only the individual sensor but also its neighboring sen-
sors, a sufficient condition is established for the desired distributed estimator to ensure that the
estimation error dynamics is exponentially mean-square stable. These conditions are character-
ized in terms of the feasibility of a set of linear matrix inequalities, and then the explicit expres-
sion are given for the distributed estimator gains. Finally, a simulation example is provided to
show the effectiveness of the proposed event-triggered distributed state estimation scheme.

Keywords: Distributed state estimation; Randomly occurring uncertainties; State-dependent
noises; Sensor networks.

1. Introduction

In the past decade, wireless sensor networks have attracted an increasing research atten-

tion for their successful applications in a variety of areas including environment moni-

toring, interactive virtual worlds, health care, information collection and warehouse in-

ventory (Bertrand and Moonen, 2010; Cattivelli and Sayed, 2008, 2010). A fundamental

collaborative information processing problem with the wireless sensor networks is how

to find distributed estimators or filters to obtain the information about the state vectors

of the target plants from observations contaminated with external disturbances. Conse-

quently, considerable research attention has been devoted to the theoretical research on

the distributed estimation or filtering algorithms that are capable of estimating stationary

signals with low-cost and tracking nonstationary processes with reduced-complexity, and

a wealth of literature have appeared on this topic, see, e.g., (Ding et al, 2008; Ding et al.,

∗Corresponding author. Email: shiningdhl@gmail.com
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2012, 2014; Dong et al., 2012, 2013; Huang et al., 2012; Liang et al., 2012; Shen et al.,

2010, 2011; Speranzon et al., 2008; Zhang and Yang , 2014) and the references therein.

Different from the traditional single node, in the distributed estimation schemes, the local

estimators estimate the system state based on the information not only from itself but also

from its neighboring sensors according to the given topology. As such, the essential diffi-

culty in designing distributed estimators depends upon how to deal with the complicated

coupling issues between one sensor and its neighboring sensors and how to reflect such

couplings in the estimator structure specification.

In sensor networks, the limited battery energy, computational power and memory of

the sensor nodes are all changeable in a dynamical way. Therefore, parameter uncertain-

ties are ubiquitous when modeling the target plant and the sensor networks. With rapid

development of network technologies, the parameter uncertainties may be subject to ran-

dom changes and may occur in a probabilistic way, for instance, random network-induced

structural changes, repairs of components, changing subsystem interconnections or sud-

den environment changes, etc. In this sense, it would make practical sense to consider

the randomly occurring uncertainties when designing the desired distributed estimation

algorithm. Very recently, some pioneering work has appeared in the literature concern-

ing the state estimation problem for a class of discrete nonlinear systems with randomly

occurring uncertainties (ROUs), see (Hu et al., 2014). On the other hand, the stochas-

tic disturbances are usually encountered in sensor networks within a noisy environment.

Note that many plants may be modeled by systems with state-dependent noises and some

characteristics of nonlinear systems can be closely approximated by models with state-

dependent noises rather than by linearized models (Ding, 2013; Hu et al., 2013; Wang et

al., 2010, 2013). Unfortunately, up to now, very little research effort has been paid to the

robust distributed estimation issue with simultaneous presence of parameter uncertainties

and state-dependent noises.

In the past decades, the event-triggered communication mechanism has received much

research attention due to the rapid development of digital microprocessor and computer

science. In comparison with conventional time-triggered communication, event-triggering

allows a considerable reduction of the network resource occupancy while maintaining the

guaranteed filtering performance, avoids some injurious transmission phenomena such as

data dropouts and time delay, etc, and extends the lifetime of the services. Therefore, the

event-triggered communication mechanism is particularly significant in sensor networks

due to its capability of decreasing the unnecessary executions of the systems and saving

energy. In the past few years, the event-based strategies have been extensively studied for

various engineering systems such as networked control systems (Donkers and Heemels,

2012; Hu and Yue, 2012; Liu et al., 2014; Peng and Yang , 2013), sensor networks (Lee

and Choi, 2013; Tseng, 2005), multi-agent systems (Tabuada, 2007; Zhu et al., 2014) and

neural networks (Li, 2012; Sahoo et al., 2013), etc. However, the available results in the

literature have been scattered for the filtering or state estimation problems, most of which

have been concerned with the implementation problems rather than the system analysis

and synthesis issues.

Summarizing the above discussion, in this paper, we are motivated to study the robust

distributed state estimation problem for a class of uncertain stochastic systems with state-

dependent noises and randomly occurring uncertainties over the sensor network charac-

terized by a directed graph. By augmenting the state of the original system and the esti-

mation errors on all sensor nodes, sufficient conditions are established for the existence

of the desired estimators and then a parameterization of the estimator gains is derived. A

simulation example is provided to show the effectiveness of the proposed distributed state

estimation scheme. The main contribution of this paper is twofold. 1) A comprehensive

model is established over the sensor network which covers event-triggered measurement

transmissions, randomly occurring uncertainties (ROUs) and state-dependent noises. 2)
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Intensive stochastic analysis and Kronecker product are conducted to ensure the stability

requirement for the addressed “complex” systems.

The rest of this paper is outlined as follows. In Section 2, the discrete-time dynamic

plant with a network of n sensors is introduced and the problem under consideration is

formulated. In Section 3, the distributed estimator design problem is solved by employ-

ing the semi-definite programme method. A simulation example is given in Section 4 to

demonstrate the main results obtained. Finally, we conclude the paper in Section 5.

Notation. The notation used here is standard except where otherwise stated. Rn and

R
n×m denote, respectively, the n-dimensional Euclidean space and the set of all n ×m real

matrices. N0 is used to be describe the set {0, 1, . . .}. The set of all positive integers is

denoted by I+. l2[0,∞) is the space of square summable sequences. The notation X ≥ Y

(respectively, X > Y), where X and Y are real symmetric matrices, means that X − Y is

positive semi-definite (respectively, positive definite). MT represents the transpose of the

matrix M. 0 represents zero matrix of compatible dimensions. The n-dimensional identity

matrix is denoted as In or simply I, if no confusion is caused. diag{· · · } stands for a block-

diagonal matrix. (Ω,F ,Prob) is a complete probability space with the probability mea-

sure Prob having total mass 1. Prob{β} stands for the occurrence probability of the event

β and E{α1}, E{α1|α2} mean, respectively, the mathematical expectation of the stochastic

variable α1 and the expectation of α1 conditional on α2 with respect to the given probabil-

ity measure Prob. In symmetric block matrices, “∗” is used as an ellipsis for terms induced

by symmetry. The symbol ⊗ denotes the Kronecker product. 1n := [1, 1, . . . , 1]T ∈ Rn.

Matrices, if they are not explicitly specified, are assumed to have compatible dimensions.

2. Problem Formulation

In this paper, we assume that the n sensor nodes are distributed in space according to a

fixed network topology represented by a directed graph G = (V,E,Q) of order n with the

set of nodes V =1, 2, . . . , n, the set of edges E ∈ V × V, and the weighted adjacency

matrix Q = [ai j] with nonnegative adjacency element ai j. An edge of G is denoted by

ordered pair (i, j). The adjacency elements associated with the edges of the graph are

positive, i.e., ai j > 0 ⇐⇒ (i, j) ∈ E which means that sensor i can obtain information

from sensor j. Also, we assume that aii = 1 for all i ∈ V, and therefore (i, i) can be

regarded as an additional edge. The set of neighbors of node i ∈ V plus the node itself are

denoted byNi = { j ∈ V : (i, j) ∈ E}.
Consider the following class of discrete-time stochastic uncertain systems defined on

the complete probability space (Ω,F ,Prob):

x(k + 1) = (A + α(k)∆A + Aξξ(k))x(k) + Ew(k) (1)

where x(k) ∈ Rnx is the system state; w(k) ∈ Rnv is the disturbance input belonging to

l2[0,∞); ξ(k) ∈ R is a zero mean Gaussian white noise sequence with E{ξT (k)ξ(k)} = 1.

The real-valued matrix ∆A represents the norm-bounded parameter uncertainty of the

following structure

∆A = HaF(k)N, (2)

where Ha and N are known real constant matrices and F(k) is an unknown matrix function

satisfying the following condition

FT (k)F(k) ≤ I. (3)

3
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The stochastic variable α(k) ∈ R in (1), which characterizes the phenomenon of ran-

domly occurring uncertainties, is a Bernoulli distributed white sequence taking values on

either 0 or 1 with

Prob{α(k) = 1} = ᾱ, Prob{α(k) = 0} = 1 − ᾱ, (4)

where ᾱ ∈ [0, 1] is a known constant, the variables ξ(k) and α(k) are mutually independent.

For the ith sensor, the measurement output is described by

yi(k) = Cix(k) + Div(k), i = 1, 2, . . . , n (5)

and yi(k) ∈ Rny is the output measured by sensor i from the plant, and v(k) ∈ l2[0,∞) is

an external disturbance. Moreover, all the matrices mentioned above, i.e., A, Aξ, E,Ci and

Di, are known matrices with appropriate dimensions.

For the purpose of reducing data communication frequency, the event generator function

fi(·, ·) (i = 1, 2, . . . , n) is constructed as follows:

fi(ϕi(k), δi) = ϕ
T
i (k)Ωiϕi(k) − δirT

i (k)Ωiri(k) (6)

where ri(k) = yi(k)−Ci x̂i(k) is the innovation sequence exchanged via the network, x̂i(k) ∈
R

nx is the estimation of the plant state in the ith sensor node. ϕi(k) = ri(k
j

k
) − ri(k), ri(k

j

k
)

is the broadcast innovation at latest event time, Ωi (i = 1, 2, . . . , n) are symmetric positive

definite matrices, and δi ∈ [0, 1).

The execution is triggered as long as the condition

fi(ϕi(k), δi) > 0 (7)

is satisfied. Therefore, the sequence of event-triggered instants 0 ≤ ki
0
≤ ki

1
≤ · · · ≤ ki

k
≤

· · · is determined iteratively by

ki
k+1 = inf{k ∈ N0|k > ki

k, fi(ϕi(k), δi) > 0}. (8)

In this paper, the following event-triggered distributed state estimator structure is

adopted on sensor node i:

x̂i(k + 1) = Ax̂i(k) +
∑

j∈Ni

ai jKi jr j(k
j

k
) (9)

where Ki j are the estimator gain matrices on node i to be designed.

For convenience of later analysis, we denote

ei(k) = x(k) − x̂i(k), Ψ(k) =
[

ϕT
1

(k) ϕT
2

(k) · · · ϕT
n (k)
]T
,

e(k) =
[

eT
1

(k) eT
2

(k) · · · eT
n (k)
]T
, x̄(k) = 1n ⊗ x(k),

C̄ = diag{C1,C2, . . . ,Cn}, D̄ =
[

DT
1

DT
2
· · · DT

n

]T
,

Ā = In ⊗ A, ∆Ā = In ⊗ ∆A, Θ = diag{δ1I, δ2I, . . . , δnI},
Ē = 1n ⊗ E, α̃(k) = α(k) − ᾱ, Ω = diag{Ω1I,Ω2I, . . . ,ΩnI},
Āξ = In ⊗ Aξ

(10)
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where

K̄ = [K̄i j]n×n with K̄i j =

{

ai jKi j, i = 1, 2, . . . , n; j ∈ Ni

0, i = 1, 2, . . . , n; j < Ni
(11)

Obviously, since ai j = 0 when j < Ni, K̄ is a matrix that can be expressed as

K̄ ∈ Tnx×ny
(12)

where Tp×q =
{

Ū = [Ui j] ∈ Rnp×nq | Ui j ∈ Rp×q, Ui j = 0 if j < Ni

}

.

Letting η(k) =
[

x̄T (k) eT (k)
]T

and ̟(k) =
[

wT (k) vT (k)
]T

, the following system is

obtained that governs the estimator dynamics for the sensor network:

η(k + 1) = (A + ᾱ∆A)η(k) +

(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k) +D̟(k) (13)

where

A =
[

Ā 0

0 Ā − K̄C̄

]

, ∆A =
[

∆Ā 0

∆Ā 0

]

, Aξ =
[

Āξ 0

Āξ 0

]

,

D =
[

Ē 0

Ē −K̄D̄

]

, H =
[

0 I
]T
, K̃ = I2 ⊗ K̄.

(14)

Before proceeding further, we introduce the following definition.

Definition 1. The augmented system in (13) is said to be exponentially mean-square stable

if, with ̟(k) = 0, there exist constants ς > 0 and 0 < κ < 1 such that

E

{

‖η(k)‖2
}

≤ ςκkE
{

‖η(0)‖2
}

, ∀ η(0) ∈ Rn, k ∈ I+.

Our aim in this paper is to design event-triggered distributed state estimators of the

form in (9) on each node i of the sensor network for system (1). In other words, we are

going to find the distributed state estimator parameters Ki j such that the estimation error

systems (13) to be exponentially mean-square stable for all randomly occurring parameter

uncertainties and state-dependent noises.

3. Main Results

In this section, let us investigate the distributed state estimation for system (1) with n

sensors whose topology is determined by the given graph G = (V,E,Q). The following

lemmas will be needed in establishing our main results.

Lemma 1. (Shen et al., 2010) Let P = diag{P1, P2, . . . , Pn} with Pi ∈ Rp×p (1 ≤ i ≤ n)

being invertible matrices. If X = PW for W ∈ Rnp×nq, then we have W ∈ Tp×q ⇐⇒ X ∈
Tp×q.

Lemma 2. (S-procedure) Let L = LT and H and E be real matrices of appropriate di-

mensions with F satisfying FFT ≤ I, then L + HFE + ETFTHT < 0, if and only if there

5
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exists a positive scalar ε > 0 such that L + ε−1HHT + εETE < 0 or equivalently,



















L H εET

HT −εI 0

εE 0 −εI



















< 0. (15)

The following theorem gives a sufficient condition under which the augmented error

system in (13) is exponentially mean-square stable in the sense of Definition 1.

Theorem 1. Consider the discrete-time stochastic uncertain system (1) and sensors (5)

with event generator function (6). For the given estimator parameter K̄, the augmented

estimation error system in (13) is exponentially mean-square stable if there exist a positive

definite matrix P > 0 and a scalar λ > 0 satisfying

Γ̄ =

[

Ῡ11 ∗
−(K̃H)T P(A + ᾱ∆A) (K̃H)T P(K̃H) − λΩ

]

< 0, (16)

where

Ῡ11 = (A + ᾱ∆A)T P(A + ᾱ∆A) + g∆AT P∆A− P + λCTΘΩC +AT
ξ PAξ,

g = ᾱ(1 − ᾱ), C =
[

0 C̄
]

(17)

Proof. Choose the following Lyapunov function for system (13):

V(η(k)) := ηT (k)Pη(k) (18)

The difference of the Lyapunov function is given as follows:

∆V(η(k)) = E{V(η(k + 1))|η(k)} − V(η(k)).

Calculating the difference of V(η(k)) along the trajectory of system (13) with ̟(k) = 0

and taking the mathematical expectation, we have

E{∆V(η(k))} := E
{

ηT (k + 1)Pη(k + 1) − ηT (k)Pη(k)
}

= E

{

(

(A + ᾱ∆A)η(k) +

(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k)

)T

P

(

(A + ᾱ

×∆A)η(k) +

(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k)

)

− ηT (k)Pη(k)

}

(19)

In addition, it follows from the event-triggering condition (7) that

ΨT (k)ΩΨ(k) − ηT (k)CTΘΩCη(k) ≤ 0 (20)
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which results in

E{∆V(η(k))} ≤ E
{

(

(A + ᾱ∆A)η(k) +

(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k)

)T

P

(

(A + ᾱ

×∆A)η(k) +

(

α̃(k)∆A + ξ(k)Aξ
)

η(k) − K̃HΨ(k)

)

− ηT (k)Pη(k)

−λΨT (k)ΩΨ(k) + ληT (k)CTΘΩCη(k)

}

= E{η∗T (k)Γ̄η∗(k)}

where

η∗(k) :=
[

ηT (k) ΨT (k)
]T

(21)

It follows from Theorem 1 that

E{∆V(η(k)} ≤ −λmin(−Γ̄)‖η∗(k)‖2.

Finally, we can confirm from Lemma 1 of (Wang et al., 2006) that the augmented esti-

mation error system (13) is exponentially mean-square stable, and the proof is now com-

plete. �

After conducting the dynamic analysis in Theorem 1 for the augmented estimation error

system (13), we are now in a position to deal with the problem of designing distributed

state estimator (9). The solution to the distributed state estimating problem with both

randomly occurring uncertainties and state-dependent noises is obtained by the following

theorem.

Theorem 2. For the discrete-time stochastic uncertain system (1) and sensors (5) with

event generator function (6), the dynamics of estimation error (13) is exponentially mean-

square stable if there exist positive constant scalars λ and ε, a positive definite matrix

P > 0 and the matrix K ∈ T2nx×ny
satisfying

P = diag{P1, P2, . . . , Pn} > 0,


















Π11 ∗ ∗
Π21 −P̄ ∗
Π31 Π32 Π33



















< 0, (22)

where

Π11 = diag{λCTΘΩC − P,−λΩ}, P̄ = diag{P, P, P},

Π21 =





















PÂ0 +KĈ0 −K
0 0

PAξ 0





















, Π31 =

[

0 0

εN̂a 0

]

,

Π32 =

[

ᾱĤT
a P
√

gĤT
a P 0

0 0 0

]

, Π33 = −I2 ⊗ εI, Â0 = I2 ⊗ Ā,

Ĉ0 =
[

0 −C̄
]

, Ĥa = 12 ⊗
[

In ⊗ Ha 0
]

, N̂a = 12 ⊗
[

In ⊗ N 0
]

(23)

7
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and the other parameters are defined in (10). Moreover, if the above inequalities are fea-

sible, then the matrix K̄ is given as follows:

K̄ = (HT PH)−1HTK (24)

Accordingly, the desired estimator gain parameter Ki j (i = 1, 2, . . . , n, j ∈ Ni) can be

obtained from (11).

Proof. It is observed that

A = Â0 + K̃HĈ0, ∆A = ĤaF̂(k)N̂a. (25)

where

F̂(k) = I2n ⊗ F(k). (26)

By applying the Schur Complement Lemma (Boyd et al., 1994) and noting PK̃H = K ,

(16) can be rewritten as

Π̄ =

[

Π11 ∗
Π̄21 −P̄

]

< 0, (27)

where

Π̄21 =





















PÂ0 +KĈ0 + ᾱPĤaF̂(k)N̂a −K√
gPĤaF̂(k)N̂a 0

PAξ 0





















. (28)

Furthermore, considering the uncertain parameter ∆A, we reorganize (27) in terms of

Lemma 2 as follows:

Π̄ =

[

Π11 ∗
Π21 −P̄

]

+ H̄aF̂(k)N̄a + N̄T
a F̂T (k)H̄T

a < 0, (29)

where

H̄a =
[

0 0 ᾱĤT
a P
√

gĤT
a P 0
]T
, N̄a =

[

N̂a 0 0 0 0
]

. (30)

From Lemma 2, we can easily obtain (22). In addition, noting P(k) =

diag{P1(k), P2(k), . . . , Pn(k)}, from Lemma 1, it is easy to verify that the condition K̄ ∈
Tnx×ny

is satisfied. The proof of this theorem is now complete. �

Remark 1. It is well known that the main difficulties in designing distributed estimators

in sensor networks lie in the tight coupling among sensors in terms of both time and space.

In this paper, the estimator parameters Ki j (i = 1, 2, . . . , n, j ∈ Ni) are “assembled” to

matrix K̄ which should meet the constraint (11). Then, by Lemma 1, we can derive the

condition that K̄ ∈ Tnx×ny
is required to satisfy. Consequently, the distributed estimators

can be designed effectively.

8



August 15, 2014 International Journal of General Systems Dong˙Wang˙IJGS

4. An Illustrative Example

In this section, we present a simulation example to illustrate the effectiveness of the pro-

posed robust event-triggered distributed estimator design scheme for the discrete-time

stochastic system with state-dependent noises and randomly occurring uncertainties over

sensor networks.

The sensor network is represented by a directed graph G =

(V,E,Q) with the set of nodes V = {1, 2, 3, 4}, set of edges E =

{(1, 1), (1, 2), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4), (4, 1), (4, 4)} and the following adjacency

matrix:

A =





























1 1 0 0

0 1 1 0

0 1 1 1

1 0 0 1





























.

The system data are given as follows:

A =



















0.4 0.1 0

0 −0.8 −0.6

0.1 0.2 −0.5



















, Aξ =



















0.1 0.1 0

0 −0.1 0

0 0.2 −0.1



















E =
[

0.5 1 0.1
]T
, F(k) = sin(0.6k),

Ha =
[

0.1 0.2 0.1
]T
, N =

[

0.2 0.1 0.2
]

, C1 =
[

0.1 0 0.1
]

, C2 =
[

0.2 0.1 0.2
]

,

C3 =
[

0.5 0.7 0.2
]

, C4 =
[

0.1 0.2 0.1
]

, D1 = 0.1, D2 = 0.1, D3 = 0.2, D4 = 0.2.

In this example, the probability of the randomly occurring uncertainty is taken as ᾱ =

0.8. Choose event weighted matrix Ω1 = Ω2 = Ω3 = Ω4 = I and the threshold δ1 = δ2 =

δ3 = δ4 = 0.7. By solving (22) in Theorem 2, we can obtain the following parameters of

the desired distributed estimators:

K11 =
[

0 0 0
]T
, K12 =

[

0.0613 −0.0222 0.0285
]T
,

K22 =
[

0.1632 −0.1929 0.0784
]T
, K23 =

[

0.0764 0.0543 0.0034
]T
,

K32 =
[

0 0 0
]T
, K33 =

[

0 0 0
]T
, K34 =

[

0.2652 −0.1866 0.1991
]T
,

K41 =
[

0.1878 −0.0751 0.1736
]T
, K44 =

[

0.1330 −0.1307 0.1382
]T

In the simulation, the exogenous disturbance inputs are selected as w(k) =

exp(−0.2k)sin(k) and v(k) =
sin(10k+1)

3k+1
. The initial conditions are x(0) = [0.4 0.2 0.4]T and

x̂i(0) = [0 0 0]T (i = 1, 2, 3, 4). Figures 1–3 plot the state estimation errors x j(k) − x̂i j
(k)

(i = 1, 2, 3, 4, j = 1, 2, 3). The simulation result has confirmed the effectiveness of the

distributed estimation scheme presented in this paper.

5. Conclusions

In this paper, we have dealt with the robust event-triggered distributed state estimation

problem for a class of stochastic systems with randomly occurring uncertainties and state-

dependent noises over sensor networks. The randomly occurring uncertainties have been
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Figure 1. The estimation errors of the first element x1(k).
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Figure 2. The estimation errors of the second element x2(k)

modeled by the Bernoulli distributed white sequences with known conditional proba-

bilities. An event indicator variable has been constructed and the corresponding event-

triggered scheme has been proposed to determine whether the innovation on each sensor

is transmitted to the estimator or not. By employing the Lyapunov stability theorem, the

distributed estimators have been designed for the dynamics of the estimation error to be

exponentially mean-square stable. Finally, an illustrative example has been provided to

highlight the effectiveness of the developed state estimation approach.
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Figure 3. The estimation errors of the third element x3(k)
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