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Abstract: In this paper, an event-triggered adaptive dynamic programming (ADP) method is pro-
posed to deal with the H∞ problem with unknown dynamic and constrained input. Firstly, the
H∞-constrained problem is regarded as the two-player zero-sum game with the nonquadratic value
function. Secondly, we develop the event-triggered Hamilton–Jacobi–Isaacs(HJI) equation, and an
event-triggered ADP method is proposed to solve the HJI equation, which is equivalent to solving
the Nash saddle point of the zero-sum game. An event-based single-critic neural network (NN) is
applied to obtain the optimal value function, which reduces the communication resource and compu-
tational cost of algorithm implementation. For the event-triggered control, a triggering condition
with the level of disturbance attenuation is developed to limit the number of sampling states, and the
condition avoids Zeno behavior by proving the existence of events with minimum triggering interval.
It is proved theoretically that the closed-loop system is asymptotically stable, and the critic NN
weight error is uniformly ultimately boundedness (UUB). The learning performance of the proposed
algorithm is verified by two examples.

Keywords: event-triggered control (ETC); adaptive dynamic programming (ADP); zero-sum game;
neural network (NN); integral reinforcement learning (IRL).

1. Introduction

In control systems, the main task of the controller is to obtain an admissible control
law when certain conditions are satisfied according to the dynamic characteristics of
the plant. Then, the plant cooperates with other controllers to achieve the optimization
of performance indicators (maximum or minimum), so as to solve the optimal control
problem [1]. Solving the optimal control problem is equivalent to solving the Hamilton–
Jacobi–Bellman (HJB) equation. Because of the nonlinearity and partial derivative of the
HJB equation, it is difficult to acquire its analytical solution. In recent years, the adaptive
dynamic programming (ADP) method has received widespread attention for obtaining the
approximate solutions of the HJB equation [2–5]. The ADP method combines the idea of
dynamic programming (DP) and reinforcement learning (RL). The RL-based agent interacts
with the environment and takes action to obtain cumulative rewards, and it overcomes the
problem of dimensional disasters generated in DP. The implementation of the ADP method
approximates the HJB equation by the approximation principle of neural network function,
and obtains the optimal value function and optimal control law by RL. In [6], the structure
of ADP is proposed for the first time. Subsequently, in [7] uses the actor–critic NN structure
to deal with the nonlinear system that depends on the dynamic information. In [8–10],
the policy iteration (PI) consisting of policy evaluation and policy improvement iterative
techniques is used for continuous time and discrete time dynamic systems to iteratively
update the control policy online with state and input information. However, the PI learning
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algorithm relies on a precise dynamic system. Both drift dynamic and input dynamic
are needed in the iterative process. Therefore, it is based on the improvement of the PI
algorithm and uses the iterative technology of PI approximation to the optimal solution.
An integral reinforcement learning (IRL) algorithm in [11] is proposed to release drift
dynamics by adding integral operations. In [12], for a locally unknown continuous-time
nonlinear system with actuator saturation, an IRL algorithm with an actor-critic network is
proposed to solve the HJB equation online. Then, the experience replay technique is used
to update the critic weights to solve the IRL-Bellman equation. The IRL method is used
for the unknown H∞ tracking control problem of a linear system with actuator saturation
in [13]. The designed controller not only makes the system state trajectory of convergence
but the control strategy can also make the tracking error asymptotically stable.

The complexity and uncertainty of the system increase the difficulty of solving the
HJB solution. Especially the nonlinear system in practical problems, H∞ control problem is
an alternative method to solve the robust optimal problem. The purpose of the H∞ control
problems is to design a controller that can effectively suppress the impact of external
disturbances on system performance. Therefore, many studies propose the robust optimal
control method to transform the H∞ optimal control problem into the zero-sum game
problem, which is a max/min optimization problem essentially [14,15]. Therefore, the Nash
saddle point of the two-player zero-sum problem is regarded as solving the solution of the
Hamilton–Jacobi–Isaacs (HJI) equation. In [16,17], an online policy iteration (PI) algorithm
is presented to solve the two-player zero-sum game. An ADP-based critic–actor network is
used to approximate the solution of the HJI equation. For the system containing external
disturbances, a new ADP-based online IRL algorithm is proposed to approximate the HJI
equation. Use current data and historical data to update network weights to improve
data utilization efficiency when solving the HJI equation [18]. In [19], an H∞ tracking
controller is designed to solve the zero-sum game with completely unknown dynamics
and constrained input. The tracking HJI equation is solved by off-policy reinforcement
learning. In [20,21], Adaptive critic designs (ACD) are used to solve the zero-sum problem
that external disturbances have an impact on system performance.

However, in engineering applications, the controller requires high physical charac-
teristics and security, which is usually limited by the threshold. In addition, the design
and analyzable methods of the control system also have higher requirements. It is not only
necessary to achieve the control design goal to ensure the stability of the dynamic system
but also to consider the control performance of the system to save energy and reduce
consumption. The above iterative methods mostly use the time-triggered mechanism of
periodic sampling to solve the nonlinear zero-sum game problem with actuator saturation.

To reduce unnecessary data transmission and frequency update between components,
the event-triggered mechanism is introduced into adaptive dynamic programming for
the first time in [22]. A controller with sampling states limited by a triggering condition
is designed, which not only ensures the stability and optimality of the system, but also
reduces the controller update. For the system with constrained input, [23,24] propose
an approximately optimal control structure based on the event-triggered strategy, which
makes control laws update non-periodically to reduce computation and transmission costs,
and ensures the uniform ultimate boundedness of the event-triggered system. The designed
triggering condition is the key to the event-based controller. Not only does the triggering
condition have a non-negative triggering threshold but it avoids Zeno behavior. In [25],
an event-driven controller is designed, and the triggering condition should not only have
a non-negative triggering threshold but also the Zeno behavior is free. In [26], the IRL-
based event-triggered algorithm is used to solve the partially unknown nonlinear system.
The critic-network updates periodically and the actor-network updates non-periodically
to approximately acquire the performance index function and control law. The good
convergence of the NN weight is theoretically proved and effectively avoids the Zeno phe-
nomenon. For the system with unknown disturbance, the robust controller is designed by
using the H∞ control method. In [15], an event-triggered H∞ controller is structured, which
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introduces the disturbance attenuation level into the triggering condition, and ensures that
the triggering threshold is non-negative by selecting appropriate parameters. The control
law is updated with an event-triggered strategy, and the perturbation law is adjusted under
the time-triggered mechanism.

At present, the event-triggered ADP algorithm has been applied to optimal regu-
lation problem [27,28], optimal tracking control [29], zero-sum game [30–32], non-zero-
sum game [33,34], robust control problem [35,36]. However, most studies are based on
identification–critic NNs or critic–actor–perturbation NNs structure to approximate obtain
the solution of the HJI equation for the zero-sum game problem, which often increases the
communication load such as actuators and controllers, and increases the loss of resources
and costs [37,38]. Therefore, an event-triggered ADP method is proposed to solve the
H∞ optimal control problem for partially unknown continuous-time nonlinear systems
with constrained input, and the structure of a single-critic network is constructed to ac-
quire approximately the solution of the HJI equation. This paper aims to achieve the
following aspects:

1. Based on the event-triggered control, the triggering condition with the level of dis-
turbance attenuation is developed to limit the sampling states of the system, and the
appropriate level of disturbance attenuation is selected to ensure that the triggering
condition remains non-negative.

2. An event-triggered H∞ input-constrained nonlinear system controller is designed.
The event-based control law and disturbance law are updated at the triggering instant,
and the computation in the control process is effectively reduced.

3. For the zero-sum game problem, a single-critic network structure based on the event-
triggered ADP is proposed to approximate the solution of the HJI equation. It not only
greatly reduces the update frequency of the controller and reduces the computational
cost, but also the reliance on known dynamic information is relaxed.

The rest of this article is organized as follows. Section 2 gives the description and
transformation of the problem. Section 3 introduces the event-triggered HJI equation.
Section 4 describes the implementation of the event-based ADP algorithm, and gives an
analysis of system stability. Section 5 demonstrates the simulation of the continuous-time
linear system and the continuous-time (CT) nonlinear system, and Section 6 presents the
conclusion of this paper.
Notation. Some parameters are defined in this article. R, Rm, Rm×n are all denoted the set
of real matrices, and m, m× n are represented as the corresponding dimension matrix. N+

is the set of positive real numbers. tanh−T(·) is expressed as an inverse hyperbolic function,
λ(·) and λ̄(·) are defined as the minimum and maximum eigenvalue of the matrix. ‖ · ‖
express as the 2-norm. ∇V ≡ ∂V/∂x is denoted as the partial derivative of the function V
with respect to the variable x,→ denotes as numerical infinite approximation.

2. Problem Description

Consider the continuous-time nonlinear system with external disturbance as

ẋ = f (x(t)) + g(x(t))u(t) + h(x(t))υ(t) (1)

where x ∈ Rn denotes the states vector of system. u(t) = {(u1, u2, · · · , um) ∈ Rm : ‖ui‖ ≤
uM, i = 1, 2, · · · , m}, uM is a positive upper bound. f (x) ∈ Rn is drift dynamic, and has
f (0) = 0. g(x) ∈ Rn×m is input coupling dynamic. h(x) ∈ Rn×q and υ(t) ∈ Rq are the
disturbance dynamics and bounded external disturbance. υM is a positive constant with
‖υ(t)‖ ≤ υM.
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Since the system is affected by constrained input, M(u) is defined as [39]

M(u) = 2
∫ u

0
uM tanh−T(µ/uM)Rdµ

= 2
m

∑
i=1

∫ ui

0
uM tanh−T(µi/uM)Rdµi

(2)

where M(u) represents nonquadratic function, and R is assumed to be diagonal matrix.
tanh−T(·) is a hyperbolic tangent function, which is treated as the constrained input.

For the H∞ control problem with constrained input, we need to reduce the impact
of external disturbances on system performance. For any υ(t) ∈ L2[0, ∞), the closed-loop
system (1) exists ∫ ∞

t

(
xTQx + M(u)

)
dτ ≤ γ2

∫ ∞

t
υT(τ)υ(τ)dτ (3)

and this is, L2-gain not larger than γ is satisfied, where Q ∈ Rn×n is a symmetric positive
matrix. γ > 0 denotes the level of disturbance attenuation.

The design intention of the H∞ optimal control problem is to find a control law that
not only guarantees the asymptotic stability of the system (1) but also the disturbance
attenuation condition (3) holds. Then, we need to define the following value function

J(x(t), u, v) =
∫ ∞

t
U
(
x(τ), u(τ), υ(τ)

)
dτ (4)

where U(x, u, υ) = xTQx + M(u)− γ2υTυ.
To achieve the above goals, the H∞ control problem is treated as the zero-sum game

problem. By the minimax optimization principle, the perturbation policy is used as a
decision-maker and maximizes its value, while the control policy acts as another decision-
maker and minimizes its value. The following optimal value function is indicated as

V∗(x) = J(x(t), u∗, v∗) = min
u

max
υ

∫ ∞

t
U
(
x(τ), u(τ), υ(τ)

)
dτ (5)

Assume that the V(x) = J(x, u, υ) is continuous and differentiable, and the Bellman
equation can be given as

∇VT( f + gu + hυ) + xTQx + M(u)− γ2υTυ = 0 (6)

Then, the Hamiltonian function is defined as

H(x,∇V, u, υ) = ∇V∗T( f + gu + hυ) + M(u) + xTQx− γ2υTυ (7)

Definition 1 ([12]). A control law is defined as admission with respect to the value function (4) on
a compact set Λ. If u(0) = 0 and υ(0) = 0, u(x) can ensure system (1) stability on Λ and for any
x0 ∈ Λ the value funcion V(x0) is finite.

By stationarity conditions ∂H/∂u = 0 and ∂H/∂υ = 0, the optimal control law u∗(x)
and the disturbance law υ∗(x) are expressed as

u∗(x) = −uM tanh
( 1

2uM
R−1gT(x)∇V∗(x)

)
(8)

υ∗(x) =
1
2

γ−2hT(x)∇V∗(x) (9)

Submitting (8) into (2), M(u∗) can be obtained

M(u∗) = uM∇V∗Tg tanh(Ψ) + u2
MR̄ ln

(
1− tanh2(Ψ)

)
(10)
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where Ψ = 1/(2uM)R−1gT∇V∗(x), and 1 indicates the elements are all 1 column vectors,
R̄ is a row vector made up of the diagonal elements of R.

Based on (7)–(9), the optimal time-triggered HJI equation becomes

∇V∗T(x) f (x) + xTQx + u2
MR̄ ln

(
1− tanh2(Ψ)

)
− 1

4
γ−2∇V∗Th(x)hT(x)∇V∗(x) = 0 (11)

From (11), it is difficult to solve its solution. In addition, since the dynamic system
f (x) is unknown, it further increases the difficulty of solving the HJI equation. Thus, we
prefer to introduce the IRL technology to obtain the solution to the HJI equation without
requiring the system dynamic f (x).

The learning process of IRL mainly includes the following steps in Algorithm 1 .

Algorithm 1 IRL algorithm.

1: Choose the initial admissible control laws u0, υ0.
2: Policy Evaluation. During the interval time [t − T, t], the value function V[i](x) is
obtained by solving the following Bellman equation

V[i](x(t− T)
)
=
∫ t

t−T

(
xTQx + M(u[i])− γ2υ[i]Tυ[i]

)
dτ + V[i](x(t)) (12)

3: Policy Inprovement. Update the control law and disturbance law by

u[i+1](x) = −uM tanh
( 1

2uM
R−1gT(x)∇V[i](x)

)
(13)

υ[i+1](x) =
1
2

γ−2hT(x)∇V[i](x) (14)

Remark 1. The IRL algorithm is an improvement over the policy iterative (PI) technique. Compared
with the standard Bellman Equation (4), the IRL-based Bellman Equation (12) does not involve
system dynamics f (x) and g(x).

However, in the IRL algorithm, the control policy is updated at t and applied to the
next interval [t, t + T] of the system. It is so-called periodic sampling or time-triggered
control (TTC). By the TTC, the control law and disturbance law are periodically updated,
which may cause large numerous resource consumption and computation costs for the
network system with limited bandwidth. Therefore, an event-triggered ADP is applied to
solve the HJI equation for the H∞ control problem.

3. Design of Event-Triggered H∞-Constrained Optimal Control

An event-triggered control is introduced into ADP to solve the zero-sum game problem
and then develops an event-triggered HJI equation. Then, a triggering condition is designed
to limit the number of sampling states which can avoid the Zeno behavior.

In the ETC, the event-triggered instant sequences are defined as {tk}∞
k=0, tk < tk+1

and k ∈ N+. A novel sampling state can be obtained at the triggering instant when the
triggering condition is violated. The event error determines the appearance of the sampling
state, and it can be expressed as

ek(t) = x̂k − x(t), t ∈ [tk, tk+1) (15)

where x̂k = x(tk) is the sampling state at the triggering instant tk and x(t) represents the
current state, respectively.

Remark 2. The event is triggered depending on two basic conditions, which are the event-triggered
error ek and the triggering threshold eT . An event occurs and the controller updates when the
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error violates the triggering threshold, this is, the error is ek = 0 at t = tk. The holding of the
sampling state in the non-triggered interval t ∈ [tk, tk+1) is realized by the zero-order holder (ZOH).
The ZOH is used to store the control law of the previous moment and convert the sampled signal
into a continuous signal. Then, the law is kept until the next triggering instant.

It is assumed that there is no delay between the sensor and the controller. According
to (15), the closed-loop system (1) is rewritten as

ẋ = f (x) + g(x)u(x̂k) + h(x)υ(x̂k), t ∈ [tk, tk+1) (16)

Then, the event-based value function is shown as

V
(

x(t− T)
)
=
∫ t

t−T

(
xTQx + M(u(x̂k))− γ2υT(x̂k)υ(x̂k)

)
dτ + V

(
x(t)

)
(17)

Therefore, the optimal event-triggered control law and the disturbance law in t ∈
[tk, tk+1) can be transformed into

u∗(x̂k) = −uM tanh
( 1

2uM
R−1gT(x̂k)∇V∗(x̂k)

)
(18)

υ∗(x̂k) =
1
2

γ−2hT(x̂k)∇V∗(x̂k) (19)

Similar to (11), the event-triggered HJI equation becomes

∇V∗T(x) f (x) + xTQx + M(u∗(x̂k))− uMV∗T(x)g tanh
( 1

2uM
R−1gT(x̂k)∇V∗(x̂k)

)
+

1
2

γ−2∇V∗T(x)h(x)hT(x̂k)∇V∗(x̂k)−
1
4

γ−2∇V∗T(x̂k)h(x̂k)hT(x̂k)∇V∗(x̂k) = 0
(20)

To sum up, in order to reduce communication load and computational cost, we
introduce the event-triggered ADP in Algorithm 2 as follows

Algorithm 2 Event-triggered ADP algorithm.

1: Choose the initial admissible control laws u0, υ0.
2: Policy Evaluation. During the interval time, the value function V(x) can be obtain by
solving the event-based Bellman equation (17).
3: Policy Inprovement. (18) and (19) can obtain the optimal control policy u∗(x̂k) and
the optimal disturbance policy υ∗(x̂k) separately.

Assumption 1 ([15]). For the optimal value function V∗(x) is continuously differentiable, V∗(x)
and ∇V∗(x) are bounded on Λ, such that the solution V∗(x) and its partial derivative ∇V∗(x)
can be denoted as max{‖V∗(x)‖, ‖∇V∗(x)‖} ≤ η0 with a positive constant η0.

Assumption 2 ([26]). For ∀x ∈ Rn, there exist gM > 0 and hM > 0 and can be satisfied with
‖g(x)‖ ≤ gM and ‖h(x)‖ ≤ hM.

Assumption 3. Assuming that the optimal control law and the disturbance law are Lipschitz
continuous on a compact set Λ ∈ Rn. There exist Lu > 0 and Lυ > 0 satisfying

‖u∗(x)− u∗(x̂k)‖ ≤ Lu‖ek(t)‖ (21)

‖υ∗(x)− υ∗(x̂k)‖ ≤ Lυ‖ek(t)‖ (22)
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Theorem 1. Let V∗(x) be the optimal solution of (11). The optimal control laws u∗(x̂k) in (18)
and υ∗(x) in (19) are obtained to ensure that the dynamic system is uniformly ultimately bounded
(UUB) only when the following triggering condition is given as

‖ek(t)‖ ≤

√
(1− σ2)

L2
u + γ2L2

υ
λ(Q)‖x‖2 , eT (23)

where γ > 0 is the level of disturbance attenuation from (3), σ is a positive design parameter. λ(Q)
is the minimum eigenvalue of the matrix Q. The controller gets a new control law when the event
error ek exceeds the triggering threshold eT .

Proof. The optimal value function V∗(x) is obtained from (11) and it is positive definite
for any x 6= 0. Use V∗(x) as the Lyapunov function, and its derivative to time is defined as

V̇∗(x) = ∇V∗T(x)( f + gu∗(x̂k) + hυ∗(x̂k))

= ∇V∗T(x)g(u∗(x̂k)− u∗(x)) +∇V∗T(x)h(υ∗(x̂k)− υ∗(x))

+∇V∗T(x)( f + gu∗(x) + hυ∗(x))

(24)

From (6), we can acquire

∇V∗T(x)( f + gu∗(x) + hυ∗(x)) = −xTQx−M(u∗(x)) + γ2υ∗Tυ∗ (25)

Then, (8) and (9) can be transformed as

∇V∗T(x)g = −2uMR tanh−T
(

u∗(x)
uM

)
(26)

∇V∗T(x)h = 2γ2υ∗T(x) (27)

According to (25)–(27), (24) can be rewritten as

V̇∗(x) = 2uMR tanh−T
(

u∗(x)
uM

)
(u∗(x)− u∗(x̂k))︸ ︷︷ ︸

s1

−xTQx

+ 2γ2υ∗T(x)(υ∗(x̂k)− υ∗(x))︸ ︷︷ ︸
s2

−M
(
u∗(x)

)
+ γ2υ∗Tυ∗

(28)

By the weighted form of Young’s inequality, we have

s1 ≤
∥∥∥uMR tanh−T

(
u∗(x)

uM

)∥∥∥2
+ ‖u∗(x)− u∗(x̂k)‖2

≤ 1
4

∥∥∥∇V∗T(x)g
∥∥∥2

+ L2
u‖ek(t)‖2

(29)

Similarly, we can obtain

s2 ≤ γ2‖υ∗‖2 + γ2‖υ∗(x̂k)− υ∗(x)‖2

≤ γ2‖υ∗‖2 + γ2L2
υ‖ek(t)‖2

(30)

Let Assumption 1–3 holding and note xTQx ≥ λ(Q)‖x‖2, we have
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V̇∗(x) = −xTQx−M
(
u∗(x)

)
+ 2γ2‖υ∗(x)‖2 + γ2L2

υ‖ek(t)‖2

+
1
4

∥∥∥∇V∗T(x)g
∥∥∥2

+ L2
u‖ek(t)‖2

≤ −(1− σ2)λ(Q)‖x‖2 − σ2λ(Q)‖x‖2 + (L2
u + γ2L2

υ)‖ek‖2

+
1
4

∥∥∥∇V∗T(x)g
∥∥∥2

+
1

2γ2

∥∥∥∇V∗T(x)h
∥∥∥2
−M

(
u∗(x)

)
≤ −(1− σ2)λ(Q)‖x‖2 −M

(
u∗(x)

)
+ (L2

u + γ2L2
υ)‖ek‖2 − σ2λ(Q)‖x‖2 + ω0

(31)

where ω0 = (1/4)η2
0 g2

M + (η2
0h2

M)/(2γ2). From (10), we can obtain −M
(
u∗
)
≤ 0. If the

triggering condition is given by (23), we can obtain

V̇∗(x) ≤ −σ2λ(Q)‖x‖2 + ω0 (32)

Thus, it can conclude that V̇∗(x) < 0 for ‖x‖ >
√

ω0/(σ2λ(Q)). Therefore, the opti-
mal laws u∗(x̂k) and υ∗(x̂k) can ensure that the closed-loop system (1) is asymptotically
stable by the Lyapunov theory. The proof is completed.

From (23), we can acquire the triggering interval currently when the event is triggered.
The difference between the two triggering instants is recorded as the triggering interval.
The interval can be expressed as τk = tk+1 − tk. However, the Zeno behavior occurs if there
exists (τk)min = 0.

Remark 3. Zeno behavior is a special dynamic behavior in hybrid systems in which an infinite
number of discrete transitions occur in a finite amount of time [40]. The existence of the Zeno
behavior does not guarantee that the system can be asymptotically stable. Therefore, it is required to
avoid Zeno behavior.

Theorem 2. Under the triggering conditions (23) given in Theorem 1, the inter-execution time
exists τk = tk+1 − tk and satisfies

τk ≥
Γ(t)

Lx
(
1 + Γ(t)

) (33)

where Γ(t) = ‖ek(t)‖/‖x(t)‖, then the minimum interval time is not less than the positive con-
stant.

Proof. Based on [41,42], for t ∈ (tk, tk+1), we have

Γ̇(t) =
d
dt
‖ek‖
‖x‖ =

d
dt

(eTk ek)
1
2

(xTx)
1
2

=
(eTk ek)

− 1
2 eTk ėk(xTx)

1
2

‖x‖2 −
(xTx)

− 1
2 xT ẋ(eTk ek)

1
2

‖x‖2

= −
eTk ẋ
‖ek‖‖x‖

− xT ẋ‖ek‖
‖x‖3

(34)

According to (15) and its gradient is ėk(t) = ˙̂xk − ẋ(t). Since x̂k is a constant for
t ∈ [tk, tk+1), we obtain ėk(t) = −ẋ(t). For the drift dynamid f (x) is Lipschitz continuous,
there exists Lx > 0 and satisfies ‖ f (x)‖ ≤ Lx‖x‖, such that the following inequality
holds [36]
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‖ẋ‖ = ‖ėk‖ =
∥∥ f (x) + g(x)u(x̂k) + h(x)υ(x̂k)

∥∥
≤ ‖ f (x)‖+ ‖g(x)u(x̂k)‖+ ‖h(x)υ(x̂k)‖
≤ Lx‖x + ek‖

(35)

Thus, we can obtain

Γ̇(t) ≤ ‖ek‖‖ẋ‖
‖ek‖‖x‖

+
‖x‖‖ẋ‖
‖x‖‖x‖

‖ek‖
‖x‖

=
‖ẋ‖
‖x‖

(
1 +
‖ek‖
‖x‖

)
≤ Lx‖ek‖+ Lx‖x‖

‖x‖ (1 +
‖ek‖
‖x‖ )

= Lx

(
1 +
‖ek‖
‖x‖

)2

(36)

From (33) and (36) can be rewritten as Γ̇(t) ≤ Lx
(
1 + Γ(t)

)2. Let $(t) be the solution

to $̇(t) = Lx
(
1 + $(t)

)2 and satisfying $(0)=0. Then, its solution can be expressed as
$(t) = Lx(t − tk)/

(
1− Lx(t − tk)

)
where t ≥ tk. Therefore, we obtain Γ(t) ≤ $(t) by

comparison principle. Assume that the instant time ξ ∈ R+, and have tk ≤ ξ ≤ tk+1, we
can obtain Γ(ξ) ≤ $(ξ). Then, we obtain ξ ≥ η + tk with η = Γ(t)/

(
Lx(1 + Γ(t))

)
. Since

η + tk ≤ ξ ≤ tk+1, we have τk = tk+1 − tk ≥ η. For the asymptotically stable closed-loop
system, we can obtain ek(t) > 0 for any ‖x(t)‖ 6= 0. Therefore, Γ(t) > 0 is held, which is
guaranteed to have a lower bound with (τk)min ≥ η > 0. The proof is accomplished.

4. Approximate Solution of Event-Triggered HJI Equation

An ADP-based event-triggered algorithm is shown before. In this section, an event-
based single neural network with the approximation function is constructed, namely critic
NN, to approximately solve the HJI equation.

Based on the general approximation of neural networks. The value function V(x) and
its gradient ∇V(x) can be obtained by the neural network as

V(x) = WT
c φ(x) + εV(x) (37)

∇V(x) = ∇φ(x)TWc +∇εV(x) (38)

where Wc ∈ RL1 is the ideal weight the critic NN, L1 is the number of neurons, φ(x) ∈ RL1

is the suitable activation function of NN. εV(x) indicates the reconstruction error.
The approximate value function can be obtained from (37), and substituted it into (12)

to obtain the following Bellman equation∫ t

t−T

(
xTQx + M(u)− γ2υTυ

)
dτ + WT

c ∆φ(x) , eB(t) (39)

where ∆φ(x) = φ(x(t))− φ(x(t− T)). Due to the existence of the NN approximation error,
the Bellman equation error is

εB(t) = εV(t)− εV(t− T) = −
∫ t

t−T

(
∇εTV( f (x) + g(x)u + h(x)υ)

)
dτ (40)

For (39), the optimal value is obtained only when eB goes to zero indefinitely. However,
the ideal weights Wc are unknown, they can be estimated by the current weights Ŵc. The
actual value function of the approximate network can be expressed as

V̂(x) = ŴT
c φ(x) (41)
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∇V̂(x) = ∇φ(x)TŴc (42)

To solve the optimal control problem, the value function is obtained by solving the
Bellman equation in the policy evaluation, and then the new control laws are obtained by
the present value function in the policy improvement. Combined with (20), (21), and (42),
the event-triggered control law and disturbance law become

û(x̂k) = −uM tanh
( 1

2uM
R−1gT(x̂k)∇φT(x̂k)Ŵc

)
(43)

υ̂(x̂k) =
1
2

γ−2hT(x̂k)∇φT(x̂k)Ŵc (44)

Combining (12) with (41), the approximate Bellman equation is described as

q̂(t) + ŴT
c ∆φ(x) , ec (45)

where the reinforcement signal during the integral interval can be defined as

q̂(t) =
∫ t

t−T

(
xTQx + M(û(x̂k))− γ2υT(x̂k)υ(x̂k)

)
dτ (46)

In the iterative process of NN, its purpose is to minimize the value function. The gradient-
descent method is used in this paper. Then, the critic network weights are adjusted online
by minimizing the objective function E = (1/2)eTc ec. Thus, the turning law of the critic NN
weight can be expressed as

˙̂Wc = −αc
∂E

∂Ŵc
= −αc

∂E
∂ec

∂ec

∂Ŵc
= −αc

∆φ

(1 + ∆φT∆φ)
2

×
{ ∫ t

t−T

(
xTQx + M(û(x̂k))− γ2υT(x̂k)υ(x̂k)

)
dτ + ∆φT(x)Ŵc

} (47)

where αc > 0 is an adaptive learning rate and (1 + ∆φT∆φ)
2

is used for normalization.
Define the critic weight approximation error as W̃c = Wc − Ŵc, and the square of the
denominator in (47) is used to guarantee W̃c is bounded. Then, the critic weight error
dynamic is presented by

˙̃Wc = −αc∆̄φ(t)∆̄φT(t)W̃c + αc∆̄φ(t)meB(t) (48)

where m = 1/(1 + ∆φT∆φ), ∆̄φ = ∆φ/(1 + ∆φT∆φ).

Remark 4. This paper designs an online event-triggered ADP learning algorithm, the activation
function must be continuously excited to ensure that the NN weights can be converged. Then,
the value function and control laws are obtained. Therefore, the probing noise signal with dif-
ferent amplitudes and diverse frequencies is constructed as d(t) = 0.5(sin(0.08t)2 cos(1.5t) +
0.3 sin(2.3t)4 cos(7t)).

Remark 5. Under the triggering condition (23), the adaptive learning law of the critic network (47)
updates its weight by the reinforcement signal from (46), then the control law (43), and perturbation
law (44) are updated at the triggering instant. In order to intuitively clarify the main idea of the
algorithm, Figure 1 shows the block diagram of the event-triggered ADP H∞-constraint control.
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Figure 1. The structure diagram of Event-triggered ADP algorithm.

Assumption 4 ([26]).

1. g(x) and h(x) are Lipschitz continuous and satisfy ‖g(x) − g(x̂k)‖ ≤ Lg‖ek(t)‖ and
‖h(x)− h(x̂k)‖ ≤ Lh‖ek(t)‖.

2. ∇φ(x) is Lipschitz continuous, that is ‖∇φ(x)−∇φ(x̂k)‖ ≤ Lφ‖ek(t)‖, Lφ is a positive
constant.

Assumption 5 ([34–36]).

1. The NN activation function and its gradient are bounded by positive constants so that
‖φ(x)‖ ≤ φm,‖∇φ(x)‖ ≤ φM.

2. The critic NNs approximation error and its gradient are all bounded by a constant and satisfied
‖εV‖ ≤ εm, ‖∇εV‖ ≤ εM.

The control law u(x) is admissible control. The approximate weight Ŵc can be guaran-
teed to converge to ideal weight Wc under persistent excitation (PE) condition. Assume
that the activation function ∆φ is continuously exciting in the interval [t− T, t]. Let the
residual error due to the approximation error satisfies ‖eB‖ ≤ eM, and it can ensure that the
critic network weight is UUB. The boundedness condition of critic NN weight is expressed
at (50).

Theorem 3. Let Assumption 1–5 be valid, and the control laws and the turning law of critic NN
are implemented by (43), (44), and (47). The closed-loop system (1) is asymptotically stable and the
weight approximation error (48) is UUB only when the triggering condition in (23) is used and the
following inequalities condition holds

(
αc −

1
2
)
λ(∆̄φ(t)∆̄φT(t))−v2 > 0 (49)

where v2 and v4 are constants from (60) and (63).

Proof. The initial control for the dynamical system (1) is admissible. For the value func-
tion (4) of the system, the Lyapunov function is constructed as

L(t) = L1 + L2 + L3 (50)

where L1 = V∗(x), L2 = V∗(x̂k), L3 = (1/2)W̃T
c W̃c.
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The process of NN learning is mainly divided into two cases under event-triggered
control: (1) During the flow dynamic on t ∈ [tk, tk+1). (2) At the triggering instant t = tk.
Case 1. When the triggering condition is not satisfied and the derivative of L1 can be
given as

L̇1 = ∇V∗T(x)
(

f (x) + g(x)û(x̂k) + h(x)υ̂(x̂k)
)

= ∇V∗T(x)g(x)(û(x̂k)− u∗(x)) +∇V∗T(x)h(x)(υ̂(x̂k)− υ∗(x))

+∇V∗T(x)
(

f (x) + g(x)u∗(x) + h(x)υ∗(x)
) (51)

According to (25)–(27) and (51) can be transformed as

L̇1 = 2uMR tanh−T
(

u∗(x)
uM

)
(û(x̂k)− u∗(x)) + 2γ2υ∗T(x)(υ̂(x̂k)− υ∗(x))

− xTQx−M
(
u∗(x)

)
+ γ2υ∗(x)Tυ∗(x)

(52)

Similarly, using Young’s inequality, we have

L̇1 ≤
∥∥∥uMR tanh−T

(
u∗(x)

uM

)∥∥∥2
+ ‖û(x̂k)− u∗(x)‖2 + γ2‖υ∗(x)‖2

+ γ2‖υ̂(x̂k)− υ∗(x)‖2 − xTQx−M
(
u∗(x)

)
+ γ2υ∗T(x)υ∗(x)

≤ 1
4

∥∥∥∇V∗T(x)g
∥∥∥2

+ 2γ2‖υ(x)∗‖2 − xTQx−M
(
u∗(x)

)
+ ‖û(x̂k)− u∗(x)‖2︸ ︷︷ ︸

o1

+γ2 ‖υ̂(x̂k)− υ∗(x)‖2︸ ︷︷ ︸
o2

(53)

Combining (8) with (38), then we obtain

u∗(x) = −uM tanh
( 1

2uM
R−1gT(x)∇V∗(x)

)
= −uM tanh

( 1
2uM

R−1gT(x)∇φT(x)
{

Wc +∇εV(x)
}) (54)

Note that | tanh(x)| ≤ 1 and |x− y| ≤ |x|+ |y|, Then, we have

o1 =

∥∥∥∥uM tanh
( 1

2uM
R−1gT(x)

(
∇φT(x)Wc +∇εV(x)

))
− uM tanh

( 1
2uM

R−1gT(x̂k)∇φT(x̂k)(Wc − W̃c)
)∥∥∥∥2

≤ u2
M

∥∥∥∥ 1
2uM

R−1gT(x)
(
∇φT(x)Wc +∇εV(x)

)
+

1
2uM

R−1gT(x̂k)∇φT(x̂k)(W̃c −Wc)

∥∥∥∥2

≤ 1
4
‖R−1‖2

∥∥∥(∇φ(x)g(x)−∇φ(x̂k)g(x̂k)
)
Wc + gT(x)∇εV(x) +∇φ(x̂k)g(x̂k)W̃c

∥∥∥2

≤ 1
2
‖R−1‖2

(
‖∇φ(x)g(x)−∇φ(x̂k)g(x̂k)‖2︸ ︷︷ ︸

F1

‖Wc‖2 +
∥∥∥gT(x)∇εV(x) +∇φ(x̂k)g(x̂k)W̃c

∥∥∥2

︸ ︷︷ ︸
F2

)
(55)

According to Assumption 4 and Assumption 5, we obtain

F1 = ‖∇φ(x)g(x)−∇φ(x̂k)g(x) +∇φ(x̂k)g(x)−∇φ(x̂k)g(x̂k)‖2

= ‖(∇φ(x)−∇φ(x̂k))g(x) +∇φ(x̂k)(g(x)− g(x̂k))‖2

≤ 2‖(∇φ(x)−∇φ(x̂k))g(x)‖2 + 2‖∇φ(x̂k)(g(x)− g(x̂k))‖2

≤ 2
(

L2
φg2

M + φ2
ML2

g

)
‖ek‖2

(56)
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Similarly, it can be obtained

F2 =
∥∥∥gT(x)∇εV(x) +∇φ(x̂k)g(x̂k)W̃c

∥∥∥2

≤ 2
∥∥∥gT(x)∇εV(x)

∥∥∥2
+ 2
∥∥∇φ(x̂k)g(x̂k)W̃c

∥∥2

≤ 2
(

g2
Mε2

M + g2
Mφ2

M
∥∥W̃c

∥∥2
) (57)

According to (55)–(57), o1 rewrite as

o1 ≤ ‖R−1‖2
(

L2
φg2

M + φ2
ML2

g

)
‖ek‖2‖Wc‖2 + ‖R−1‖2(g2

Mε2
M + g2

Mφ2
M
∥∥W̃c

∥∥2
) (58)

Lisewise, combining (9) with (37), o2 can be given as

o2 ≤
∥∥1

2
γ−2hT(x)

(
∇φT(x)Wc +∇εV(x)

)
− 1

2
γ−2hT(x̂k)∇φT(x̂k)Ŵc

∥∥2

≤ 1
2
‖∇φ(x)h(x)−∇φ(x̂k)h(x̂k)‖2‖Wc‖2 + ‖hT(x)∇εV(x)‖2 + ‖∇φ(x̂k)h(x̂k)W̃c‖2

≤ (L2
φh2

M + φ2
ML2

h)‖ek‖2‖Wc‖2 + h2
Mε2

M + h2
Mφ2

M
∥∥W̃c

∥∥2

(59)

According to (53), (58) and (59), we have

L̇1 ≤ −xTQx−M
(
u∗(x)

)
+ v1‖ek‖2‖Wc‖2 + v2‖W̃c‖

2
+ v3

≤ −(1− σ2)λ(Q)‖x‖2 − σ2λ(Q)‖x‖2 + v1‖ek‖2‖Wc‖2 + v2‖W̃c‖
2
+ v3

(60)

where v1 = ‖R−1‖2
(

L2
φg2

M + φ2
ML2

g

)
+γ2(L2

φh2
M +φ2

ML2
h), v2 = ‖R−1‖2g2

Mφ2
M +γ2h2

Mφ2
M,

v3 = 1
4 g2

Mη0 + 2γ2υ2
M + ‖R−1‖2g2

Mε2
M + γ2h2

Mε2
M.

If the event is not triggered, we have L̇2 = 0. Note that 1/(1 + ∆φT∆φ) ≤ 1, thus,
m, ∆̄φ(t) from (48) are bounded. Then, according to Wc = Ŵc + W̃c, the part of L̇3 can be
given as

L̇3 = W̃T
c

˙̃Wc = −αcW̃T
c ∆̄φ(t)∆̄φT(t)W̃c + αcW̃T

c ∆̄φ(t)mεB(t)

≤ −αcλ(∆̄φ(t)∆̄φT(t))‖W̃c‖2 +
1
2

α2
c e2

M +
1
2

λ(∆̄φ(t)∆̄φT(t))‖W̃c‖2

≤ −(αc −
1
2
)λ(∆̄φ(t)∆̄φT(t))‖W̃c‖2 +

1
2

α2
c e2

M

(61)

Combining (60) and (61), we have

L̇ ≤ − (1− σ2)λ(Q)‖x‖2 − σ2λ(Q)‖x‖2 + v1‖ek‖2‖Wc‖2 + v2‖W̃c‖
2

−
(
αc −

1
2
)
λ(∆̄φ(t)∆̄φT(t))‖W̃c‖

2
+

1
2

α2
c e2

M + v3

(62)

Let the triggering condition (23) holding the derivative of L become

L̇ ≤ −σ2λ(Q)‖x‖2 −
((

αc −
1
2
)
λ(∆̄φ(t)∆̄φT(t))−v2

)
‖W̃c‖

2
+ v4 (63)

where v4 = (1/2)α2
c e2

M + v3. Let the triggering condition (23) and the inequality condi-
tion (49) hold. We can conclude that L̇ < 0 if the ‖x(t)‖ and ‖W̃c‖ are satisfied with

‖x‖ >
√

v4

σ2λ(Q)
(64)
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∥∥W̃c
∥∥ >

√
2v4(

2αc − 1
)
λ(∆̄φ(t)∆̄φT(t))− 2v2

(65)

Therefore, by the Lyapunov theory, the state x and the NN weight error W̃c are
uniformly ultimately bounded.
Case 2. The event is triggered at t = tk+1. A new Lyapunov function is constructed as

∆L(t) = ∆L1 + ∆L2 + ∆L3 (66)

where ∆L1 = V∗(x+) − V∗(x̂k), ∆L2 = V∗(x̂k+1) − V∗(x̂k), ∆L3 = 1/2(W̃+
c
TW̃+

c −
W̃T

c W̃c). If ξ → 0+, then we have x+ = x(t+k ) → x(tk + ξ) with ξ ∈ (0, tk+1 − tk). It
can be concluded x and W̃c are UUB in the flow dynamic from Case 1 such that the closed-
loop system (1) is asymptotically stable. Since V∗(x) and W̃c are continuous, then we can
obtain ∆L1 = 0 and ∆L3 = 0. At the triggering instant t = tk+1, we have

∆L2 = V∗(x̂k+1)−V∗(x̂k) ≤ −ω(‖ek+1(tk)‖) < 0 (67)

where ek+1(tk) = x̂k+1 − x̂k, and ω(·) is a class-κ function [43]. Therefore, we can obtain
∆L < 0. The above two cases ensure that the closed-loop system under the event-triggered
strategy is asymptotically stable and the NN weight error is UUB if the triggering condition
(23) and the inequality (49) are held. The proof is completed.

Remark 6. The theoretical description has been shown. Algorithm 2 can be implemented by using
a single critic NN, which updates the critic weight using the turning law (47). Then, the new
control laws u(x) and υ(x) are obtained by (43) and (44) when an event occurs. Compared
with [12,26,35,44], we propose the event-triggered ADP method which solves the zero-sum prob-
lem with actuator saturation and partially unknown dynamic. Based on event-triggered control,
the control laws of the two-player are presented in segments by the designed triggering condition
(23). Thus, the event-triggered control avoids unnecessary data transmission and calculation costs.

5. Simulation Results

In this section, two simulation examples of the linear system and the nonlinear system
are provided to verify the effectiveness of the online event-triggered adaptive dynamic
programming algorithm for the continuous-time system.

5.1. Linear Sytsem

Consider the F-16 aircraft continuous-time linear system with external perturbation
as [12]

ẋ = Ax(t) + Bu(t) + Hυ(t) (68)

where

A =

−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

, B = [0, 0, 1]T, H = [1, 0, 1]T

The three state vectors are denoted as x = [x1, x2, x3]
T, and the initial state is

x0 = [1,−1, 2]T. Choose a matrix of the appropriate dimension, where Q = I3 and
R = I1. The constrained control can be satisfied with u ∈ {u ∈ R : ‖u‖ ≤ 1}. The activa-
tion function of single NNs is φ(x) = [x2

1, x2
2, x2

3, x1x2, x1x3, x2x3]
T. Then, the approximated

weight vectors are denoted as Ŵc = [Ŵc1 , Ŵc2 , Ŵc3 , Ŵc4 , Ŵc5 , Ŵc6 ], which is the solution of
the algebraic Riccati equation (ARE): ATP + PA− PBR−1BTP + Q = 0. The NN learning
and triggering parameters are needed in this paper: γ = 0.5, L ∈ (0, 1), T = 0.1, αc = 0.35.
The external disturbance is selected as υ(t) = 5 cos(t)e−t.

Figure 2 shows the convergence of three state vectors. It is obvious that the states
tend to be asymptotically stable. The iterative process of critic NN is illustrated in
Figure 3. The critic weight vectors are converged to Ŵc = [−0.0349,−0.0128,−0.1575,
1.4738, 0.6577, 0.2075]T under the PE condition after 60s. Therefore, the PE condition
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is effectively guaranteed by adding detection noise. Under the event-triggered strat-
egy, the control law and the perturbation law are updated in a nonperiodical manner.
The evolution of ETC laws u(x̂k) and υ(x̂k) is described in Figure 4. Under the condition of
constrained input, the control law remains no more than 1, that is ‖umax‖ < 1. The trajec-
tory of event error (15) and the triggering threshold (23) is shown in Figure 5, which verifies
the working effect of the triggering condition. Figure 6 presents the event-triggered sample
intervals and periods under the triggering condition. Compared with 1000 sampling states
based on the time-triggered strategy, only 85 state samples are performed based on the
event-triggered strategy. From Table 1, the minimum interval time (τk)min = 0.1, and the
Zeno phenomenon is avoided. As a result, the updated frequencies and computations of
the controller are greatly reduced.

Table 1. State Sampling of Two Strategies.

Methods Event-Triggered Time-Triggered

Samples 85 1000
Minimal interval (s) 0.1 0.1
Average interval (s) 1.0165 0.1

Figure 2. Three state vectors of linear system.
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Figure 3. The weight trajectories of a single NNs.

Figure 4. The control law u(x̂k) and the perturbation law υ(x̂k).
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Figure 5. The event error ‖ek‖2 and the triggering threshold eT .

(a)

(b)

Figure 6. Sample intervals of two strategies. (a) The time-triggered control. (b) The event-
triggered control.
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5.2. Nonlinear Sytsem

Consider a continuous-time nonlinear system with the external disturbance given as

ẋ = f (x(t)) + g(x(t))u(t) + h(x(t))υ(t) (69)

where

f (x) =
[

−x1 + x2
−0.5x1 − 0.5x2

(
1− cos((2x1) + 2)2)]

g(x) =
[

0
cos(2x1) + 2

]
, h(x) =

[
0

sin(4x1 + 2)

]
The state vectors are denoted as x = [x1, x2]

T, and the initial state is x0 = [1,−1]T.
The constrained input control is satisfied with u ∈ {u ∈ R : ‖u‖ ≤ 1}. Choose Q = I2
and R = I1. The activation function is selected as φ(x) = [x2

1, x1x2, x2
2]
T. Then, the approxi-

mated weight vectors are denoted as Ŵc = [Ŵc1 , Ŵc2 , Ŵc3 ]. The NN learning and triggering
parameters are needed in this paper: γ = 0.4, L ∈ (0, 1), T = 0.1, αc = 0.25. The external
disturbance is selected as υ(t) = 5 cos(t)e−t similarly.

The two state trajectories of the closed-loop system are described in Figure 7. It
is obvious that x1 and x2 gradually converge to asymptotically stable. The ideal critic
weight is [Wc1 , Wc2 , Wc3 ]

T. The NNs can be ensured to converge under the action of PE
condition. Figure 8 demonstrates the approximable critic weight vectors are converged
to [0.5468, 0.8876,−0.4125]T after learning. From Figure 9, we can obtain the evolution
of ETC policies u(x̂k) and υ(x̂k). Under the condition of constrained input, the control
law remains no more than 1, that is ‖umax‖ < 1. The trajectory of the event error and
the triggering threshold are shown in Figure 10. It can be seen intuitively that the event-
triggered errors are always within the triggering thresholds. Figure 11 indicates the event-
triggered sampling intervals under the event-triggered mechanism. From Table 2, it has
only 157 sampling states are performed based on an event-triggered strategy. Likewise,
states will be sampled at each time by using a time-triggered strategy.

Figure 7. The evolution of x1(t) and x2(t).
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Figure 8. Three vectors for a single-critic network.

Figure 9. The control law u(x̂k) and the perturbation law υ(x̂k).
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Figure 10. The event error ‖ek‖2 and the triggering threshold eT .

Figure 11. The event-triggered sampling intervals



Appl. Sci. 2023, 13, 2140 21 of 23

Table 2. Comparison of Nonlinear System Sampling

Methods Event-Triggered Time-Triggered

Samples 157 1000
Minimal interval (s) 0.1 0.1
Average interval (s) 0.527 0.1

6. Conclusions

This paper has proposed an event-triggered ADP algorithm to solve the locally un-
known zero-sum game problem with constrained input. Using the IRL technique to obtain
the unknown dynamic system, and a single-critic NN is structured to solve the HJI equa-
tion. The event-based H∞ controller is designed to ensure that the state of the system is
sampled only at the triggering instant. Furthermore, the triggering condition guarantees
the dynamic system state and the critic weight are uniformly ultimately bounded. Two
examples are used to verify the feasibility of the algorithm. However, with the complexity
and nonlinearity of the system, this algorithm is not enough to solve systems with model-
free or parameter uncertainties. Therefore, the direction of future research is how to solve
the above problem.
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