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Event-Triggered State Estimation for Discrete-Time
Multi-Delayed Neural Networks with Stochastic

Parameters and Incomplete Measurements
Bo Shen, Zidong Wang and Hong Qiao

Abstract—In this paper, the event-triggered state estimation
problem is investigated for a class of discrete-time multi-delayed
neural networks with stochastic parameters and incomplete mea-
surements. In order to cater for more realistic transmission pro-
cess of the neural signals, we make the first attempt to introduce a
set of stochastic variables to characterize the random fluctuations
of system parameters. In the addressed neural network model, the
delays among the interconnections are allowed to be different,
which are more general than those in existing literature. The
incomplete information under consideration includes randomly
occurring sensor saturations and quantizations. For the purpose
of energy saving, an event-triggered state estimator is constructed
and a sufficient condition is given under which the estimation
error dynamics is exponentially ultimately bounded in the mean
square. It is worth noting that the ultimate boundedness of the
error dynamics is explicitly estimated. The characterization of
the desired estimator gain is designed in terms of the solution
to a certain matrix inequality. Finally, a numerical simulation
example is presented to illustrate the effectiveness of the proposed
event-triggered state estimation scheme.

Index Terms—Event-triggered state estimation; exponentially
ultimate boundedness; incomplete measurements; neural net-
works; quantizations; sensor saturations; stochastic parameters.

I. INTRODUCTION

In the past few years, the dynamical analysis problem of
various neural networks has stirred a great deal of research
interest, and a rich body of research results has been re-
ported in the literature. For example, in [10], [23], [24],
[32], [40], [45], [46], the stability and synchronization issues
have been investigated for different kinds of neural networks.
After decades of constant developments, the context of neural
networks has gone far beyond the traditional biological neural
networks. Nowadays, artificial neural networks have been
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widely applied in a variety of research domains including
statistical signal processing [21], [39], pattern recognition [1],
[8], intelligent data analysis [16], [19], robotics and control
[2], [17], where the conventional meaning of the neurons has
been extended from biological ones to those nodes having
adaptive weights for approximating nonlinear functions of
their inputs. For example, the “neurons” in a recurrent neural
network could be a computing unit as long as it is capable
of biophysical simulation and neuromorphic computing, and
a network of such computing units holds therefore the ad-
vantages of approximation, learning as well as adaption [12].
Depending on the scale of the networked artificial neurons, the
full states of certain primary neurons are vitally important for
achieving certain tasks (e.g. real-time tracking in robotics).
Unfortunately, it is often the case that the states of such
neurons are not immediately available and we are only able
to make a series of observations (e.g. measurement outputs)
transmitted through channels (e.g. in a remote network of lim-
ited bandwidth) subject to communication constraints. In this
case, the network-induced phenomena (e.g., packet dropout,
saturation and quantization) would pose great challenges to
the state estimation issues of the artificial neural networks.

In order to describe the intermittent measurements, consid-
erable research effort has been made and a variety of mea-
surement models have been proposed to reflect the network-
induced phenomena, see, e.g. [5], [11], [15], [20], [26], [29],
[35], [41], [43], where most measurement models are capable
of representing one or two phenomena of the intermittent
measurements. However, in the real communication environ-
ments, more network-induced phenomena could take place
simultaneously and, therefore, it is of great necessity to look
for a novel measurement model that can reflect as more
phenomena as possible in a unified way. To this end, in
[33], a unified measurement model has been established by
using a Kronecker delta function and, based on it, the H∞
state estimation problem has been investigated for complex
networks subject to randomly occurring sensor saturations,
quantizations and missing measurements. For neural networks,
recently, some results have appeared on the state estimation
problem with intermittent measurements. Nevertheless, the
state estimation problem for more general neural networks
with more realistic network-induced phenomena has not yet
received adequate research attention.

Time delays serve as an inherent characteristic in the
implementation process of neural networks which may cause
the system to oscillate. In the past few decades, a great number
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of papers have been published on the neural networks with
various time-delays such as constant or time-varying delays
[36], distributed delays [38] and mixed time-delays [27]. With
respect to the state estimation problem, there have also been a
lot of results available in the existing literature. For example,
in [3], [18], [36], [44], the state estimation problems have been
discussed for the continuous-time delayed neural networks
and, in [31], the similar results have been obtained for the
discrete-time case. Note that the time delays considered above
are simply assumed to be identical when the information
is transmitted from one neuron to others. Actually, in the
communication among the neurons, the occurred delays may
be different since the distances from the certain neuron to
others are different. Of course, the existence of such multi-
delays may complicate the analysis and design of systems,
especially for the performance analysis of the estimation error
in the state estimation problems. This is why, to date, very
little attention has been paid to the state estimation problem
for neural networks with multi-delays and this is the first
motivation in our paper to handle such a problem.

Recently, event-triggered control and estimation schemes
have been a popular research topic in the control community.
Different from the traditional time-triggered scheme, in the
event-triggered strategy, the controller or estimator is modu-
lated only when a certain triggering condition is met, which
can effectively reduce the unnecessary energy consumption.
Energy saving is particularly important in those resource-
limited environments. For example, in multi-agent systems,
due to low communication bandwidth and limited amount
of individual power supply in each node, it is imperative
to design the energy-efficient distributed controller so as to
meet the inherent energy constraints. The distributed event-
triggered control scheme could be a good candidate for the
energy-saving purpose and, in [4], [6], [7], [9], [25], the
distributed event-triggered controllers have been developed
for multi-agent systems. Similarly, neural networks consist
of a large number of neurons (or computing units in case
of recurrent neural networks) and the state estimation of
neural networks may consume large amounts of energy s-
ince each state of neurons should be estimated separately.
In fact, in the implementation of a large-scale of artificial
neural network, considerable processing and storage resources
would have to be committed, and the corresponding resource
allocation/saving becomes a critical issue. In this case, for
the efficiency of energy utilization, it seems to be natural
to introduce the event-triggering mechanism into the state
estimation problem for neural networks. It should be pointed
out that the event-triggered state estimation problem for neural
networks has received very little research attention, and the
corresponding research is still in its early stage.

In the theoretical modeling of traditional neural circuits
[14], [34], each neuron is a simple analog processor and
all neurons are connected by the synapses formed between
neurons. In such a model, the system parameters are deter-
mined by the electric components such as capacitance and
resistance. It is well known that the values of the capacitance
and resistance are unstable that may be subject to unexpected
random changes owing to the undesirable physical environ-

ments such as high humidity and depression environment,
surface oxidation between electrodes and leads, electrical and
heat aging in dielectrics, etc. In other words, the network
parameters (e.g., the capacitance and resistance) may exhibit
unwanted fluctuations which may occur in a probabilistic way
in terms of the factual situations where they are. This is
particularly true for large-scale artificial neural networks where
the system parameters are randomly fluctuated according to
the network loads and communication constraints. Such kind
of random changes of the network parameters may lead to
some fundamental difficulties in dynamical analysis of the
neural networks. For example, how can we establish a tractable
model capable of describing the phenomenon of the random
fluctuations as accurately as possible? How can we choose an
appropriate stochastic analysis tool to deal with the random
fluctuations of system parameters and thus derive the analysis
results of the dynamics of the neural networks? It is, therefore,
the second and primary motivation in our paper to provide
satisfactory answers to the aforementioned two questions by
designing an event-triggered state estimator for the multi-
delayed neural networks with the stochastic parameters.

In view of the above discussion, in this paper, the event-
triggered state estimation problem is addressed for a class of
discrete-time multi-delayed neural networks with stochastic
parameters and incomplete measurements. In the model of
neural networks, we make the first attempt to introduce the
stochastic parameters and study their effects on the dynamics
of neural circuits. The delays among the interconnections are
allowed to be different, which relaxes the assumptions in
existing literature. The adopted measurement model is capable
of representing randomly occurring sensor saturations and
quantizations in a unified way. For the purpose of energy
saving, the event-triggering mechanism is employed and an
event-triggered state estimator is constructed for the neural
networks under consideration. By using the Lyapunov-like
theory, a sufficient condition is obtained under which the
estimation error dynamics is exponentially ultimately bounded
in the sense of mean square and the ultimate boundedness of
the error dynamics can be estimated as well. Subsequently,
the desired state estimator is designed in terms of the solution
to a certain matrix inequality. Finally, a simulation example
is utilized to demonstrate the effectiveness of the proposed
event-triggered state estimation scheme.

Notation The notation used here is fairly standard except
where otherwise stated. Rn denotes the n dimensional Eu-
clidean space. ∥A∥ refers to the norm of a matrix A defined
by ∥A∥ =

√
trace(ATA). The notation X ≥ Y (respectively,

X > Y ), where X and Y are real symmetric matrices,
means that X − Y is positive semi-definite (respectively,
positive definite). MT represents the transpose of the matrix
M . I denotes the identity matrix of compatible dimension.
diag{. . .} stands for a block-diagonal matrix and the notation

diagn{•} is employed to stand for diag{
n︷ ︸︸ ︷

•, . . . , •}. E{x} stands
for the expectation of the stochastic variable x. Prob{·}
means the occurrence probability of the event “·”. ◦ denotes
the Hadamard product defined by [A ◦ B]ij = AijBij . In
symmetric block matrices, “∗” is used as an ellipsis for terms
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induced by symmetry. Matrices, if they are not explicitly
specified, are assumed to have compatible dimensions.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following class of discrete-time multi-delayed
neural networks with n neurons

xi(k + 1) =ai(k)xi(k) +
n∑

j=1

w0
ijgj(xj(k))

+
n∑

j=1

w1
ijgj(xj(k − τij)) + biωi(k),

(1)

for i = 1, 2, · · · , n, where xi(k) ∈ R is the state variable of
neuron i; w0

ij and w1
ij are the interconnection strength and

the delayed interconnection strength between neurons i and
j, respectively; τij is a constant representing the delay from
neuron i to j; gj(·) denotes the neuron activation function;
ωi(k) is a zero mean Gaussian white-noise process; and bi
is a deterministic constant while ai(k) is a random variable
satisfying 0 < ai(k) < 1.

Remark 1: The neural networks given by (1) is in nature
a Hopfield neural network. Differently, we make the first
attempt to introduce a set of stochastic variables ai(k) (i =
1, 2, · · · , n) to describe the fluctuations of the values of the
capacitance and resistance. Moreover, the model of neural
networks given by (1) admits different time delays for different
interconnections. Such kind of multiple delays is more general
than those in the existing literature.

Remark 2: In general, the model of neural network contains
an external input which, in many neural network applications,
is held constant over a time interval of interest [30]. By shifting
the equilibrium point to the origin, the external input can be
eliminated and, the estimate of the real state of neural networks
can be obtained by re-shifting to the equilibrium point. In order
to avoid unnecessary mathematical complexity, in this paper,
we consider the neural networks without external inputs.

The neuron activation function gi satisfies gi(0) = 0 and
the following Lipschitz condition:

|gi(x)− gi(y)| ≤ mi|x− y|. (2)

The random variables ωi(k) and ai(k) have the following
statistical properties

E{ai(k)} = āi,

E{ai(k)aj(k)} = ãij ,

E{ωi(k)ωj(k)} = qij ,

(3)

where āi, ãij and qij are known constants. Moreover, ai(k)
is assumed to be uncorrelated with the initial state xi(0) and
the Gaussian white-noise noise wi(k).

Set

g(x(k)) =
[
g1(x1(k)) g2(x2(k)) · · · gn(xn(k))

]T
,

x(k) =
[
x1(k) x2(k) · · · xn(k)

]T
,

w(k) =
[
ω1(k) ω2(k) · · · ωn(k)

]T
,

A(k) = diag{a1(k), a2(k), · · · , an(k)},
B = diag{b1, b2, · · · , bn}, W0 = [w0

ij ]n×n

Ei = diag{0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, · · · , 0︸ ︷︷ ︸
n−i

}, W1 = [w1
ij ]n×n.

(4)

Then, the neural networks given by (1) can be written as the
following compact form

x(k + 1) =A(k)x(k) +W0g(x(k))

+
n∑

i=1

n∑
j=1

EiW1Ejg(x(k − τij)) +Bw(k).
(5)

In practice, the information about the neuron states is often
incomplete from the network measurements and, meanwhile,
the network measurements might be subject to the issues
induced by limited communication. In this paper, both the
quantization effects and sensor saturations are taken into
account and the network measurement model is given as
follows [33]:

y(k) =δ(α(k), 1)Cx(k) + δ(α(k), 2)s(Cx(k))

+ δ(α(k), 3)q(Cx(k)) + v(k)
(6)

where y(k) ∈ Rm is the measurement output; δ(·, ·) is
the Kronecker delta function whose value is 1 if the two
variables are equal, and 0 otherwise; s(·) is the saturation
nonlinear function; q(·) is the quantization function; C is a
deterministic matrix with appropriate dimensions; v(k) ∈ Rm

is the measurement noise which is a zero mean Gaussian
white-noise process with E{v(k)vT (k)} = Qv; and α(k)
is a stochastic variable satisfying the following probability
distribution:

Prob{α(k) = i} = βi, i = 1, 2, 3. (7)

Here, α(k) is uncorrelated with other noise signals and βi ∈
[0, 1] (i = 1, 2, 3) are constants satisfying β1 + β2 + β3 = 1.

The saturation function s(·) is defined by

s(ϑ) =
[
s(ϑ1) s(ϑ2) . . . s(ϑm)

]
, ∀ϑ ∈ Rm (8)

where s(ϑi) = sign(ϑi)min{ϑmax, |ϑi|} for each i =
1, 2, . . . ,m, with ϑmax denoting the saturation level. The sat-
uration function defined above is actually a nonlinear function
and, for a given scalar τ , we assume that

[s(τ)− k̄τ ][s(τ)− τ ] ≤ 0 (9)

where k̄ is a positive scalar satisfying 0 < k̄ < 1.
Remark 3: According to the definition of saturation func-

tion, it is easily seen that the saturation function s(·) satisfies
the sector-bounded condition (9). The parameter k̄ is used to
characterize the lower bound of the sector-bounded nonlin-
earity and, in theory, parameter k̄ should be taken as zero.
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However, this may be conservative. In practical applications,
we usually choose the parameter k̄ as a known scalar which
can be determined by estimating the practical value of the
measurement y(k).

For the quantization function q(·), we adopt the logarithmic-
type quantizer defined by

q(ϑ) =
[
q1(ϑ1) q2(ϑ2) · · · qm(ϑm)

]T
, ∀ϑ ∈ Rm.

For each qj(·) (1 ≤ j ≤ m), the set of quantization levels is
described by

Uj =
{
±u

(j)
i , u

(j)
i = ρiju

(j)
0 , i = 0, ± 1, ± 2, · · ·

}
∪ {0},

0 < ρj < 1, u
(j)
0 > 0,

and qj(·) is given by

qj(ϑj) =

 u
(j)
i , 1

1+κj
u
(j)
i < ϑj ≤ 1

1−κj
u
(j)
i ,

0, ϑj = 0,
−qj(−ϑj), ϑj ≤ 0

with κj = (1− ρj)/(1 + ρj).
In this paper, we would like to estimate the neuron states

by using the available network measurements given by (6).
In order to save energy, we consider the event-triggered
estimation scheme. Denote by {0 = r0 < r1 < r2 < · · · }
the sequence of event triggering instants determined by

rl+1 = min{k ∈ N|k > rl, ξ
T (k)ξ(k)− δ > 0}

where ξ(k) = y(k)− y(rl) and δ is the triggering threshold.
The estimator structure adopted is given as follows:

x̂(k + 1) =Āx̂(k) +W0g(x̂(k))

+
n∑

i=1

n∑
j=1

EiW1Ejg(x̂(k − τij))

+G(y(rl)− Cx̂(k)),

(10)

for k ∈ [rl, rl+1), where Ā = diag{ā1, ā2, · · · , ān} and G is
the estimator gain to be designed.

Remark 4: The Hopfield neural network is actually a mod-
eling of neural circuits where each neuron is a simple ana-
log processor, while the rich connectivity provided in real
neural circuits by the synapses formed between neurons are
provided by the parallel communication lines in the value-
passing analog processor networks [34]. This kind of neural
networks happen to fall into the category of the artificial
neural networks mentioned in this paper, and the energy-saving
problem seems to be important when the neurons’ states are
estimated. Therefore, the event-triggered estimation scheme
could be a good candidate for the energy-saving purpose.

By letting the estimation error be e(k) = x(k) − x̂(k), it
follows from (5) and (10) that

e(k + 1) =Ã(k)x(k) + (1− β1)GCx(k)

+ (Ā−GC)e(k) +W0g̃(k) +Gξ(k)

+ B̄w̄(k) +
n∑

i=1

n∑
j=1

EiW1Ej g̃(k − τij)

− β2Gs(Cx(k))− β3Gq(Cx(k))

− δ̃α1 (k)GCx(k)− δ̃α2 (k)Gs(Cx(k))

− δ̃α3 (k)Gq(Cx(k)), k ∈ [rl, rl+1),

(11)

where

Ã(k) = A(k)− Ā, g̃(k) = g(x(k))− g(x̂(k)),

B̄ =
[
B −G

]
, w̄(k) =

[
wT (k) vT (k)

]T
,

δ̃αi (k) = δ(α(k), i)− βi, i = 1, 2, 3.

(12)

Furthermore, set η(k) =
[
xT (k) eT (k)

]T
. Then, the dynam-

ics of the neural network (5) and the error system (11) can be
expressed by the following augmented system

η(k + 1) =Aη(k) + W̄0G(k) +
n∑

i=1

n∑
j=1

W̄ 1
ijG(k − τij)

+ Bw̄(k) +H1Gξ(k) + Ã(k)H2η(k)

− β1H1GCH2η(k)

− β2H1Gs(CH2η(k))

− β3H1Gq(CH2η(k))

− δ̃α1 (k)H1GCH2η(k)

− δ̃α2 (k)H1Gs(CH2η(k))

− δ̃α3 (k)H1Gq(CH2η(k))

(13)

where

A =

[
Ā 0
GC Ā−GC

]
, H1 =

[
0
I

]
,

W̄0 = diag2{W0}, W̄ 1
ij = diag2{EiW1Ej},

B =

[
B 0
B −G

]
, Ã(k) =

[
Ã(k)

Ã(k)

]
,

G(k) =
[
g(x(k))
g̃(k)

]
, H2 =

[
I 0

]
.

(14)

Definition 1: [37] The dynamics of the augmented system
(13) is exponentially ultimately bounded in the mean square
if there exist constants 0 < µ < 1, ν > 0, κ̄ > 0 such that

E{∥η(k)∥2} ≤ µkν + κ(k), and lim
k→+∞

κ(k) = κ̄. (15)

The aim of this paper is to design an event-triggered
estimator with the form (10) for the multi-delayed neural
networks (1) with incomplete measurements described by (6).
More specifically, we are interested in looking for the estimator
parameter G such that the dynamics of the augmented system
(13) is exponentially mean-square ultimately bounded with a
satisfactory bound.
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III. MAIN RESULTS

In this section, the boundedness issue is first analyzed for
the augmented system (13). Then, according to the conducted
analysis results, we shall investigate the design problem of the
state estimator and give the desired estimator gain in terms of
the solution to a certain matrix inequality.

For the logarithmic-type quantization function q(·), it is
shown in [11] that qj(ϑj) = (1+∆j)ϑj such that |∆j | ≤ κj .
Setting ∆ = diag{∆1, . . . ,∆m}, Λq = diag{κ1, . . . , κm} and
F = ∆Λ−1

q , the quantization effect can be described as

q(CH2η(k)) = Uη(k) (16)

where U = (I + FΛq)CH2 and FFT = FTF ≤ I .
For the purpose of the notation simplicity, we denote

s(CH2η(k)) by s̄(k) and set

Ḡi(k) =
[
GT (k − τi1) GT (k − τi2) · · · GT (k − τin)

]T
,

Ḡ(k) =
[
ḠT
1 (k) ḠT

2 (k) · · · ḠT
n (k)

]T
,

W̄ 1
i =

[
W̄ 1

i1 W̄ 1
i2 · · · W̄ 1

in

]
,

W̄1 =
[
W̄ 1

1 W̄ 1
2 · · · W̄ 1

n

]
.

Then, the augmented system given by (13) can be rewritten
as the following concise form:

η(k + 1) =Aη(k) + W̄0G(k) + W̄1Ḡ(k) + Bw̄(k)
+H1Gξ(k) + Ã(k)H2η(k)

− β1H1GCH2η(k)− β2H1Gs̄(k)

− β3H1GUη(k)− δ̃α1 (k)H1GCH2η(k)

− δ̃α2 (k)H1Gs̄(k)− δ̃α3 (k)H1GUη(k).

(17)

The following lemma will be used in the proof of our main
results.

Lemma 1: Under the condition (2), we have

GT (k)G(k)− ηT (k)M̄η(k) ≤ 0 (18)

where M̄ = diag2{M} and M = diag{m2
1,m

2
2, · · · ,m2

n}.
Proof: From the definitions of e(k) and η(k) together

with (4), (12) and (14), it can be obtained that

GT (k)G(k)− ηT (k)M̄η(k)

=gT (x(k))g(x(k))− xT (k)Mx(k)

+ g̃T (k)g̃(k)− eT (k)Me(k)

=

n∑
i=1

(
g2i (xi(k))−m2

ix
2
i (k)

)
+

n∑
i=1

(
(gi(xi(k))− gi(x̂i(k)))

2

−m2
i (xi(k)− x̂i(k))

2
)
.

It is easily seen from (2) that g2i (xi(k))−m2
ix

2
i (k) < 0 and

(gi(xi(k))− gi(x̂i(k)))
2 − m2

i (xi(k)− x̂i(k))
2

< 0, from
which the inequality (18) follows directly. Therefore, the proof
of this lemma is complete.

Setting M̂ = diagn2{M̄}, we further have

ḠT (k)Ḡ(k)− ηTd (k)M̂ηd(k) ≤ 0 (19)

where ηd(k) =
[
η̄T1 (k) η̄T2 (k) · · · η̄Tn (k)

]T
and

η̄i(k) =
[
ηT (k − τi1) ηT (k − τi2) · · · ηT (k − τin)

]T
.

Lemma 2: The saturation function s̄(k) satisfies

s̄T (k)s̄(k)− ηT (k)HT
2 C

T (KT + I)s̄(k)

+ ηT (k)HT
2 C

TKTCH2η(k) ≤ 0
(20)

where K = diagm{k̄}.
Proof: According to (9), we have(

s(ϑ)−Kϑ
)T (

s(ϑ)− ϑ
)

=

m∑
i=1

((
s(ϑi)− k̄ϑi

)T (
s(ϑi)− ϑi

))
≤0.

Letting ϑ be ϑ = CH2η(k) and noting s̄(k) =
s(CH2η(k)), it immediately follows from the above inequality
that (

s̄(k)−KCH2η(k)
)T

(s̄(k)− CH2η(k)
)
≤ 0

which is the exactly same as inequality (20) and hence the
proof of this lemma is accomplished.

Lemma 3: [13] For a stochastic variable α(k) satisfying
the probability distribution given by (7), we have

E{δ̃αi (k)δ̃αj (k)} =

{
βi(1− βi), i = j,

− βiβj , i ̸= j.
(21)

for i, j = 1, 2, 3.
Lemma 4: Let T , N and F be real matrices of appropriate

dimensions with F satisfying FTF ≤ I . Then, for any scalar
ϵ > 0, we have

TFN + (TFN)T ≤ ϵ−1TTT + ϵNTN.

In the following theorem, a sufficient condition is provided
under which the augmented system (13) is exponentially
ultimately bounded in the mean square.

Theorem 1: For the given estimator parameter G, the aug-
mented system (13) is exponentially ultimately bounded in
the mean square if there exist positive definite matrices P =
[Pij ]2×2, Qij (i, j = 1, 2, · · · , n) and positive scalars λ1, λ2,
λ3, λ4 satisfying the following inequality:

Φ =


Θ11 Θ12 Θ13 Θ14 Θ15 0
∗ Θ22 Θ23 Θ24 Θ25 0
∗ ∗ Θ33 Θ34 Θ35 0
∗ ∗ ∗ Θ44 0 0
∗ ∗ ∗ ∗ Θ55 0
∗ ∗ ∗ ∗ ∗ Θ66

 < 0 (22)

where

Θ11 =(1 + β2 + β3)ATPA+HT
2 P̃H2

+ 5β3U
TGTHT

1 PH1GU

+ β1H
T
2 C

TGTHT
1 PH1GCH2

− β1ATPH1GCH2

− β1H
T
2 C

TGTHT
1 PA− P + λ1M̄

+

n∑
i=1

n∑
j=1

Qij − λ3H
T
2 C

TKTCH2,
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Θ12 =ATPW̄0 − β1H
T
2 C

TGTHT
1 PW̄0,

Θ13 =ATPW̄1 − β1H
T
2 C

TGTHT
1 PW̄1,

Θ14 =ATPH1G− β1H
T
2 C

TGTHT
1 PH1G,

Θ15 =
1

2
λ3H

T
2 C

T (KT + I),

Θ22 =(1 + β3)W̄
T
0 PW̄0 − λ1I,

Θ23 =W̄T
0 PW̄1, Θ24 = W̄T

0 PH1G,

Θ25 =− β2W̄
T
0 PH1G,

Θ33 =(1 + β3)W̄
T
1 PW̄1 − λ2I,

Θ34 =W̄T
1 PH1G, Θ35 = −β2W̄

T
1 PH1G,

Θ44 =(1 + β2 + β3)G
THT

1 PH1G− λ4I,

Θ55 =3β2G
THT

1 PH1G− λ3I,

Θ66 =−Q+ λ2M̂, E = [ãij − āiāj ]n×n,

Qi =diag{Qi1, Qi2, · · · , Qin},
Q =diag{Q1, Q2, · · · , Qn},
P̃ =E ◦ (P11 + P12 + P21 + P22).

Furthermore, if the inequality (22) is solvable, the ultimate
bound of the dynamics of the augmented system (13) is given
by

κ̄ =
α0

(α0 − 1)λmin(P )
(λ4δ + ϑ) (23)

where ϑ = λmax(BTPB)(
∑n

i=1 qii + trace(Qv)) and α0 > 1
satisfies

ϕ(α0) +
1

α0 − 1

n∑
i=1

n∑
j=1

φij(α0)

× (α
τij+1
0 + α

τij
0 − 2α0) = 0

(24)

with

ϕ(α0) = (α0 − 1)λmax(P )− α0λmin(−Φ),

φij(α0) = (α0 − 1)λmax(Qij).
(25)

Proof: See Appendix I.
Remark 5: In Theorem 1, a sufficient condition is provided

under which the dynamics of the augmented system (13) is ex-
ponentially mean-square ultimately bounded and the ultimate
bound of the error dynamics is given. It can be seen from
(23) that the ultimate bound is dependent on both the event-
triggering threshold and the variances of external/measurement
noises. Such a bound can be reduced by decreasing the event-
triggering threshold or depressing the noises’ variances. Note
that the ultimate boundedness is also related to other matrix
parameters.

Remark 6: The measurement model (6) has been firstly
proposed in [33]. In the proof of the main results of [33],
the last three terms of (17) were assumed to be unrelated,
which is actually not the case. Fortunately, by using Lemma
3 and following the lines in the proof of Theorem 1 in this
paper, the main results in [33] can be easily rectified.

By means of Theorem 1, the design problem of the desired
estimator shall be investigated. For the convenience of design,
the positive definite matrix P is taken as P = diag{P11, P22}
where P11 and P22 are positive definite matrices.

In the following theorem, the design method of the desired
estimator gain is given in terms of the solution to a linear
matrix inequality.

Theorem 2: Consider the stochastic neural network given
by (1) with the incomplete measurements described by (6). If
there exist positive definite matrices P = diag{P11, P22}, Qij
(i, j = 1, 2, · · · , n), matrix Y and positive scalars λ1, λ2, λ3,
λ4, ϵ satisfying the following inequality:

Υ =

Ξ11 0 Ξ13 0 Ξ15 Ξ16 Ξ17 0 0 0
∗ Ξ22 Ξ23 0 Ξ25 0 0 Ξ28 0 0
∗ ∗ Ξ33 0 0 0 0 0 Ξ39 0
∗ ∗ ∗ Ξ44 0 0 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0 Ξ70

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ00


< 0 (26)

where

Ξ11 =HT
2 P̃H2 − P + λ1M̄ +

n∑
i=1

n∑
j=1

Qij

− λ3H
T
2 C

TKCH2 + ϵHT
2 C

TΛ2
qCH2,

Ξ13 =
1

2
λ3H

T
2 C

T (KT + I), Ξ15 = AT
Y − β1H

T
2 C

TGT
Y ,

Ξ16 =
[√

β2 + β3AT
Y

√
β1(1− β1)H

T
2 C

TGT
Y

]
,

Ξ17 =
√
5β3H

T
2 C

TGT
Y ,

Ξ23 =
[
−β2G

T
Y W̄0 −β2G

T
Y W̄1 0

]T
,

Ξ25 =
[
PW̄0 PW̄1 GY

]T
,

Ξ28 =
[
0 0

√
β2 + β3GY

]T
,

Ξ22 =diag{β3W̄
T
0 PW̄0 − λ1I, β3W̄

T
1 PW̄1 − λ2I,−λ4I},

Ξ33 =− λ3I, Ξ39 =
√
3β2G

T
Y , Ξ44 = −Q+ λ2M̂,

Ξ55 =Ξ77 = Ξ88 = Ξ99 = −P, Ξ66 = diag2{−P},

Ξ70 =
√
5β3GY , Ξ00 = −ϵI, GY =

[
0 Y T

]T
,

AY =

[
P11Ā 0
Y C P22Ā− Y C

]
,

then, the design problem of the desired state estimator (10)
is solvable. Furthermore, if the inequality (26) is feasible, the
desired state estimator gain is given by

G = P−1
22 Y. (27)

Proof: See Appendix II.
Remark 7: In this paper, the event-triggered state estimation

problem is investigated for a class of multi-delayed neural
networks with stochastic parameters and incomplete measure-
ments. The main novelty can be summarized as follows: 1)
the stochastic parameters are introduce for the first time to
account for the fluctuations of the capacitance and resistance
in the neural circuits, 2) different time delays for different
interconnections are taken into account which extends ones in
the existing literature, and 3) the event-triggering mechanism
is employed to estimate the neuron’s states of multi-delayed
neural networks with stochastic parameters. Moreover, we
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adopt a unified measurement model which is capable of
reflecting randomly occurring sensor saturations and randomly
occurring quantizations. Finally, the state estimator is designed
such that, for all admissible incomplete measurements as well
as the stochastic parameters, the estimation error dynamics
is exponentially mean-square ultimately bounded. In the next
section, a simulation example is given to illustrative the
effectiveness of the proposed state estimation scheme.

IV. AN ILLUSTRATIVE EXAMPLE

In this section, a numerical simulation example is present-
ed to demonstrate the effectiveness of the proposed event-
triggered state estimation scheme for the multi-delayed neural
networks with the stochastic parameters, randomly occurring
sensor saturations as well as randomly occurring quantizations.

Consider a class of discrete-time multi-delayed neural net-
works described by (1) with three neurons. The deterministic
system parameters are chosen as b1 = b3 = 0.2 and b2 = 0.1
and the expectations of the stochastic parameters are set as
ā1 = 0.2, ā2 = 0.3 and ā3 = 0.4. The delays among the
interconnections are taken as τ11 = τ13 = τ22 = τ23 =
τ31 = τ32 = τ33 = 1 and τ12 = τ21 = 2. The coupled
configuration matrix and the delayed coupled configuration
matrix are, respectively, given by

W0 =

−0.3 0.1 0.2
0.1 −0.2 0.1
0.2 0.1 −0.3

 , W1 =

−0.2 0.1 0.1
0.1 −0.2 0.1
0.1 0.1 −0.2


The neuron activation functions are assumed to be of the
following form:

g1(x1(k)) = tanh(0.2x1(k)),

g2(x2(k)) = tanh(−0.15x2(k)),

g3(x3(k)) = tanh(0.23x3(k))

which satisfy (2) with

m1 = 0.2, m2 = 0.15, m3 = 0.23.

In the measurement model described by (6), the parameter
matrix C is taken as C =

[
0.5 −0.3 0.4

]
, the parameters of

saturation function are selected as k = 0.4 and ϑmax = 0.05,
the quantizer parameters are set as κ = 0.25 and u

(1)
0 = 3,

and the probabilities are given by β1 = 0.5, β2 = 0.2 and
β3 = 0.3.

In this example, the bound of the triggering condition is
chosen as δ = 1. With the above parameters, by using the
Matlab with LMI Toolbox, we solve the matrix inequality
(26) and obtain a feasible solution as follows (only the main
parameters are listed):

P22 =

4.4917 0.0902 0.8268
0.0902 4.8111 0.1857
0.8268 0.1857 4.0158

 , Y =

 0.0759
−0.0530
0.0786

 .

Then, according to (27), the desired estimator gain is designed
as

G =

 0.0140
−0.0120
0.0173

 .
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Fig. 1. State x1(k), its estimate and estimation error.
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Fig. 2. State x2(k), its estimate and estimation error.

In the simulation, the initial values of the states are taken
as x1(s) = 0.2, x2(s) = 0.2 and x3(s) = −0.3 for s ∈
[0, 2] and the variances of Gaussian white-noises are set as
q11 = q22 = 0.2, q33 = 0.3, qij = 0 (i ̸= j) and Qv =
2. Simulation results are shown in Figs. 1-4. In Fig. 1, the
above picture plots the real state x1(k) and its estimate x̂1(k)
and the state estimation error e1(k) is depicted in the picture
below. Same results are shown in Figs. 2 and 3 for states
x2(k) and x3(k), respectively. Fig. 4 draws the event-based
release instants and the corresponding release intervals. The
simulation results have demonstrated that the designed state
estimator performs very well.

V. CONCLUSIONS

In this paper, we have investigated the event-triggered state
estimation problem for a class of discrete-time multi-delayed
neural networks with stochastic parameters and incomplete
measurements. In the model of neural networks, a set of
stochastic variables has been introduced to characterize the
random fluctuations of the system parameters and the delays
among the interconnections have been assumed to be different
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Fig. 3. State x3(k), its estimate and estimation error
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Fig. 4. Event-based release instants and release intervals

in order to cater to more realistic neural networks. Based on an
unified measurement model that describes randomly occurring
sensor saturations and quantizations, an event-triggered state
estimator has been constructed. By using the Lyapunov-like
theory, the desired state estimator has been designed such
that the estimation error dynamics is exponentially ultimately
bounded in the mean square and the ultimate boundedness of
the error dynamics has been given. Finally, the effectiveness
of the proposed event-triggered state estimation approach has
been demonstrated by a simulation example. Future research
topics include the extension of the results to the continuous-
time delayed neural networks (see e.g. [22], [28]) with incom-
plete information.

APPENDIX I

PROOF OF THEOREM 1

Proof: In this proof, the exponentially mean-square ul-
timate boundedness of the augmented system (13) is shown
with the help of Lyapynov functional-like theory.

Define the following functional

V (k) = ηT (k)Pη(k) +
n∑

i=1

n∑
j=1

k−1∑
l=k−τij

ηT (l)Qijη(l) (28)

and calculate the difference of V (k) along the system (17) as
follows:

E{V (k + 1)− V (k)}

=E
{
ηT (k)ATPAη(k) + GT (k)W̄T

0 PW̄0G(k)

+ ḠT (k)W̄T
1 PW̄1Ḡ(k) + ξT (k)GTHT

1 PH1Gξ(k)

+ ηT (k)HT
2 ÃT (k)P Ã(k)H2η(k)

+ β2
1η

T (k)HT
2 C

TGTHT
1 PH1GCH2η(k)

+ β2
2 s̄

T (k)GTHT
1 PH1Gs̄(k) + w̄T (k)BTPBw̄(k)

+ β2
3η

T (k)UTGTHT
1 PH1GUη(k)

+ δ̃α21 (k)ηT (k)HT
2 C

TGTHT
1 PH1GCH2η(k)

+ δ̃α22 (k)s̄T (k)GTHT
1 PH1Gs̄(k)

+ δ̃α23 (k)ηT (k)UTGTHT
1 PH1GUη(k)

+ 2ηT (k)ATPW̄0G(k) + 2ηT (k)ATPW̄1Ḡ(k)
+ 2ηT (k)ATPH1Gξ(k)

− 2β1η
T (k)ATPH1GCH2η(k)

− 2β2η
T (k)ATPH1Gs̄(k)

− 2β3η
T (k)ATPH1GUη(k)

+ 2GT (k)W̄T
0 PW̄1Ḡ(k)

+ 2GT (k)W̄T
0 PH1Gξ(k)

− 2β1GT (k)W̄T
0 PH1GCH2η(k)

− 2β2GT (k)W̄T
0 PH1Gs̄(k)

− 2β3GT (k)W̄T
0 PH1GUη(k)

+ 2ḠT (k)W̄T
1 PH1Gξ(k)

− 2β1ḠT (k)W̄T
1 PH1GCH2η(k)

− 2β2ḠT (k)W̄T
1 PH1Gs̄(k)

− 2β3ḠT (k)W̄T
1 PH1GUη(k)

− 2β1ξ
T (k)GTHT

1 PH1GCH2η(k)

− 2β2ξ
T (k)GTHT

1 PH1Gs̄(k)

− 2β3ξ
T (k)GTHT

1 PH1GUη(k)

+ 2β1β2η
T (k)HT

2 C
TGTHT

1 PH1Gs̄(k)

+ 2β1β3η
T (k)HT

2 C
TGTHT

1 PH1GUη(k)

+ 2β2β3s̄
T (k)GTHT

1 PH1GUη(k)

+ 2δ̃α2 (k)δ̃
α
3 (k)s̄

T (k)GTHT
1 PH1GUη(k)

+ 2δ̃α1 (k)δ̃
α
3 (k)η

T (k)HT
2 C

TGTHT
1 PH1GUη(k)

+ 2δ̃α1 (k)δ̃
α
2 (k)η

T (k)HT
2 C

TGTHT
1 PH1Gs̄(k)

+

n∑
i=1

n∑
j=1

ηT (k)Qijη(k)− ηTd (k)Qηd(k)

− ηT (k)Pη(k)
}
.

(29)

By noting (3) and (14), the term containing ÃT (k)P Ã(k)
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can be computed as follows:

E{ηT (k)HT
2 ÃT (k)P Ã(k)H2η(k)}

=E{ηT (k)HT
2

[
Ã(k)

Ã(k)

]T [
P11 P12

P21 P22

] [
Ã(k)

Ã(k)

]
H2η(k)}

=E{ηT (k)HT
2 (Ã

T (k)P11Ã(k) + 2ÃT (k)P12Ã(k)

+ ÃT (k)P22Ã(k))H2η(k)}
=E{ηT (k)HT

2 (E ◦ (P11 + P12 + P21 + P22))H2η(k)}
=E{ηT (k)HT

2 P̃H2η(k)}.
(30)

For the term w̄T (k)BTPBw̄(k), we have

E{w̄T (k)BTPBw̄(k)}
≤λmax(BTPB)E{wT (k)w(k) + vT (k)v(k)}
=ϑ.

(31)

By using the elementary inequality −2ab ≤ a2 + b2, it can
be obtained that

E{−2β3η
T (k)ATPH1GUη(k)}

≤ E{β3η
T (k)ATPAη(k)

+β3η
T (k)UTGTHT

1 PH1GUη(k)}, (32)
E{−2β2η

T (k)ATPH1Gs̄(k)}
≤ E{β2η

T (k)ATPAη(k)

+β2s̄
T (k)GTHT

1 PH1Gs̄(k)}, (33)
E{−2β2ξ

T (k)GTHT
1 PH1Gs̄(k)}

≤ E{β2ξ
T (k)GTHT

1 PH1Gξ(k)

+β2s̄
T (k)GTHT

1 PH1Gs̄(k)}, (34)
E{−2β3GT (k)W̄T

0 PH1GUη(k)}
≤ E{β3GT (k)W̄T

0 PW̄0G(k)
+β3η

T (k)UTGTHT
1 PH1GUη(k)}, (35)

E{−2β3ḠT (k)W̄T
1 PH1GUη(k)}

≤ E{β3ḠT (k)W̄T
1 PW̄1Ḡ(k)

+β3η
T (k)UTGTHT

1 PH1GUη(k)}, (36)
E{−2β3ξ

T (k)GTHT
1 PH1GUη(k)}

≤ E{β3ξ
T (k)GTHT

1 PH1Gξ(k)

+β3η
T (k)UTGTHT

1 PH1GUη(k)}. (37)

Substituting (30)-(32) into (29) and using Lemma 3 yield

E{V (k + 1)− V (k)}

=E
{
(1 + β2 + β3)η

T (k)ATPAη(k)

+ (1 + β3)GT (k)W̄T
0 PW̄0G(k)

+ (1 + β3)ḠT (k)W̄T
1 PW̄1Ḡ(k)

+ (1 + β2 + β3)ξ
T (k)GTHT

1 PH1Gξ(k)

+ ηT (k)HT
2 P̃H2η(k)

+ β1η
T (k)HT

2 C
TGTHT

1 PH1GCH2η(k)

+ 3β2s̄
T (k)GTHT

1 PH1Gs̄(k)

+ 5β3η
T (k)UTGTHT

1 PH1GUη(k)

+ 2ηT (k)ATPW̄0G(k) + 2ηT (k)ATPW̄1Ḡ(k)

+ 2ηT (k)ATPH1Gξ(k)

− 2β1η
T (k)ATPH1GCH2η(k)

+ 2GT (k)W̄T
0 PW̄1Ḡ(k)

+ 2GT (k)W̄T
0 PH1Gξ(k)

− 2β1GT (k)W̄T
0 PH1GCH2η(k)

− 2β2GT (k)W̄T
0 PH1Gs̄(k)

+ 2ḠT (k)W̄T
1 PH1Gξ(k)

− 2β1ḠT (k)W̄T
1 PH1GCH2η(k)

− 2β2ḠT (k)W̄T
1 PH1Gs̄(k)

− 2β1ξ
T (k)GTHT

1 PH1GCH2η(k)

+

n∑
i=1

n∑
j=1

ηT (k)Qijη(k)

− ηTd (k)Qηd(k)− ηT (k)Pη(k) + ϑ
}

≤E{ζT (k)Φ̄ζ(k) + ϑ}
where

ζ(k) =
[
ηT (k) GT (k) ḠT (k) ξT (k) s̄T (k) ηTd (k)

]T

Φ̄ =


Θ̄11 Θ12 Θ13 Θ14 0 0
∗ Θ̄22 Θ23 Θ24 Θ25 0
∗ ∗ Θ̄33 Θ34 Θ35 0
∗ ∗ ∗ Θ̄44 0 0
∗ ∗ ∗ ∗ Θ̄55 0
∗ ∗ ∗ ∗ ∗ −Q

 ,

Θ̄11 =(1 + β2 + β3)ATPA+HT
2 P̃H2

+ 5β3U
TGTHT

1 PH1GU

+ β1H
T
2 C

TGTHT
1 PH1GCH2 − β1ATPH1GCH2

− β1H
T
2 C

TGTHT
1 PA− P +

n∑
i=1

n∑
j=1

Qij ,

Θ̄22 =(1 + β3)W̄
T
0 PW̄0,

Θ̄44 =(1 + β2 + β3)G
THT

1 PH1G,

Θ̄33 =(1 + β3)W̄
T
1 PW̄1, Θ̄55 = 3β2G

THT
1 PH1G.

Under the triggering condition, it follows from (18), (19) and
(20) that

E{V (k + 1)− V (k)}
≤E{ζT (k)Φ̄ζ(k)− λ1(GT (k)G(k)− ηT (k)M̄η(k))

− λ2(ḠT (k)Ḡ(k)− ηTd (k)M̂ηd(k))

− λ3(s̄
T (k)s̄(k)− ηT (k)HT

2 C
T (KT + I)s̄(k)

+ ηT (k)HT
2 C

TKTCH2η(k))

− λ4(ξ
T (k)ξ(k)− δ) + ϑ}

=E{ζT (k)Φζ(k)}}+ λ4δ + ϑ

≤− λmin(−Φ)E{ηT (k)η(k)}+ λ4δ + ϑ.

(38)

Next, let’s estimate the upper bound of E{∥η(T )∥2}. Ac-
cording to the definition of functional V (k), it can be obtained
that

V (k) ≤λmax(P )∥η(k)∥2

+
n∑

i=1

n∑
j=1

λmax(Qij)
k−1∑

l=k−τij

∥η(l)∥2. (39)
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Introducing a scalar α > 1, we compute

E{αk+1V (k + 1)− αkV (k)}
=E{αk+1(V (k + 1)− V (k)) + αk(α− 1)V (k)}
≤αkϕ(α)E{∥η(k)∥2}+ αk+1(λ4δ + ϑ)

+ αk
n∑

i=1

n∑
j=1

φij(α)
k−1∑

l=k−τij

E{∥η(l)∥2}.

(40)

where ϕ(α) and φij(α) are defined in (25).
Denote d = max1≤i,j≤n{τij}. For any integer T ≥ d+ 1 ,

summing up both sides of (40) from 0 to T − 1 with respect
to k, we have

E{αTV (T )} − E{V (0)}

≤ϕ(α)
T−1∑
k=0

αkE{∥η(k)∥2}+ α(1− αT )

1− α
(λ4δ + ϑ)

+
n∑

i=1

n∑
j=1

φij(α)
T−1∑
k=0

k−1∑
l=k−τij

αkE{∥η(l)∥2}.

(41)

For the last term in (41), we further have

T−1∑
k=0

k−1∑
l=k−τij

αkE{∥η(l)∥2}

≤
( −1∑

l=−τij

l+τij∑
k=0

+

T−τij−1∑
l=0

l+τij∑
k=l+1

+
T−1∑

l=T−τij

T−1∑
k=l+1

)
αkE{∥η(l)∥2}

≤ατij − 1

α− 1

−1∑
l=−τij

E{∥η(l)∥2}

+
α(ατij − 1)

α− 1

T−1∑
l=0

αlE{∥η(l)∥2}

+
α(ατij−1 − 1)

α− 1

T−1∑
l=0

αlE{∥η(l)∥2}.

(42)

From (41) and (42), it is easily known that

E{αTV (T )} − E{V (0)}

≤ϕ(α)
T−1∑
k=0

αkE{∥η(k)∥2}+ α(1− αT )

1− α
(λ4δ + ϑ)

+
n∑

i=1

n∑
j=1

φij(α)
(ατij − 1

α− 1

−1∑
l=−τij

E{∥η(l)∥2}

+
α(ατij − 1)

α− 1

T−1∑
l=0

αlE{∥η(l)∥2}

+
α(ατij−1 − 1)

α− 1

T−1∑
l=0

αlE{∥η(l)∥2}
)

≤ζ(α)
T−1∑
k=0

αkE{∥η(k)∥2}+ α(1− αT )

1− α
(λ4δ + ϑ)

+
1

α− 1

n∑
i=1

n∑
j=1

φij(α)τij(α
τij − 1)

× max
−τij≤l≤0

E{∥η(l)∥2}

(43)

where

ζ(α) =ϕ(α) +
1

α− 1

n∑
i=1

n∑
j=1

φij(α)

× (ατij+1 + ατij − 2α).

(44)

Note that ζ(1) = −λmin(−Φ) < 0 and limα→+∞ ζ(α) =
+∞. Therefore, there exists a scalar α0 > 1 such that ζ(α0) =
0. Then, it follows from (43) that

E{αT
0 V (T )} − E{V (0)}

≤α0(1− αT
0 )

1− α0
(λ4δ + ϑ)

+
1

α0 − 1

n∑
i=1

n∑
j=1

τijφij(α0)

× (α
τij
0 − 1) max

−τij≤l≤0
E{∥η(l)∥2}

(45)

Considering

E{V (0)}
≤λmax(P )E{∥η(0)∥2}

+

n∑
i=1

n∑
j=1

λmax(Qij)

−1∑
l=−τij

∥η(l)∥2

≤
n∑

i=1

n∑
j=1

1

n2
λmax(P ) max

−τij≤l≤0
E{∥η(l)∥2}

+
n∑

i=1

n∑
j=1

τijλmax(Qij) max
−τij≤l≤0

E{∥η(l)∥2}

≤
n∑

i=1

n∑
j=1

max
( 1

n2
λmax(P ), τijλmax(Qij)

)
× max

−τij≤l≤0
E{∥η(l)∥2}

(46)

and

E{αT
0 V (T )} ≥ λmin(P )αT

0 E{∥η(T )∥2}, (47)

we have

E{∥η(T )∥2} ≤ αT
0 − 1

αT−1
0 (α0 − 1)λmin(P )

(λ4δ + ϑ)

+
ϖ(α0)

αT
0 λmin(P )

(48)

where

ϖ(α0) =
n∑

i=1

n∑
j=1

(τijφij(α0)(α
τij
0 − 1)

α0 − 1

+ max
( 1

n2
λmax(P ), τijλmax(Qij)

))
× max

−τij≤l≤0
E{∥η(l)∥2}.

(49)
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By taking µ = 1
α0

, κ(T ) =
αT

0 −1

αT−1
0 (α0−1)λmin(P )

(λ4δ + ϑ),

and ν = ϖ(α0)
λmin(P ) , it follows easily from Definition 1 that the

augmented system (13) is exponentially mean-square ultimate-
ly bounded and the ultimate bounded is given by

κ̄ = lim
T→+∞

κ(T ) =
α0

(α0 − 1)λmin(P )
(λ4δ + ϑ). (50)

The proof of Theorem 1 is complete.

APPENDIX II

PROOF OF THEOREM 2

Proof: In terms of Theorem 1, we just need to show that
inequality (26) in Theorem 2 holds implies inequality (22) in
Therem 1 holds.

By using the Schur complement lemma, it is easily known
that Φ < 0 is equivalent to

Ψ̃ =

Ξ̄11 0 Ξ13 0 Ξ̄15 Ξ̄16 Ξ̄17 0 0
∗ Ξ22 Ξ̄23 0 Ξ̄25 0 0 Ξ̄28 0
∗ ∗ Ξ33 0 0 0 0 0 Ξ̄39

∗ ∗ ∗ Ξ44 0 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99


< 0

where

Ξ̄11 =HT
2 P̃H2 − P + λ1M̄ +

n∑
i=1

n∑
j=1

Qij

− λ3H
T
2 C

TKCH2,

Ξ̄15 =ATP − β1H
T
2 C

TGTHT
1 P, Ξ̄17 =

√
5β3U

TGTHT
1 P,

Ξ̄16 =
[√

β2 + β3ATP
√
β1(1− β1)H

T
2 C

TGTHT
1 P

]
,

Ξ̄23 =
[
−β2G

THT
1 PW̄0 −β2G

THT
1 PW̄1 0

]T
,

Ξ̄25 =
[
PW̄0 PW̄1 PH1G

]T
, Ξ̄39 =

√
3β2G

THT
1 P,

Ξ̄28 =
[
0 0

√
β2 + β3PH1G

]T
.

Let’s now deal with the uncertainty induced by quantization
effect. Set

T =
[
0 0 0 0 0 0

√
5β3G

THT
1 P 0 0

]T
,

N =
[
ΛqCH2 0 0 0 0 0 0 0 0

]
.

The matrix Ψ̃ can then be written as

Ψ̃ = Ψ̄ + TFN + (TFN)T

where

Ψ̄ =



Ξ̄11 0 Ξ13 0 Ξ̄15 Ξ̄16 Ξ̃17 0 0
∗ Ξ22 Ξ̄23 0 Ξ̄25 0 0 Ξ̄28 0
∗ ∗ Ξ33 0 0 0 0 0 Ξ̄39

∗ ∗ ∗ Ξ44 0 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99


with Ξ̃17 =

√
5β3H

T
2 C

TGTHT
1 P .

By using Lemma 4 and the Schur complement lemma again,
it is shown that Ψ̃ < 0 if and only if

Υ̃ =

Ξ11 0 Ξ13 0 Ξ̄15 Ξ̄16 Ξ̃17 0 0 0
∗ Ξ22 Ξ̄23 0 Ξ̄25 0 0 Ξ̄28 0 0
∗ ∗ Ξ33 0 0 0 0 0 Ξ̄39 0
∗ ∗ ∗ Ξ44 0 0 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0 Ξ̄70

∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ00


< 0 (51)

where Ξ̄70 =
√
5β3PH1G.

By considering the relation Y = P22G, it can be seen that
matrix Υ defined in Theorem 2 is the exactly same as matrix
Υ̃ given in (51) which means that inequality (26) holds implies
inequality (22) holds. Therefore, the rest of the proof follows
from that of Theorem 1 immediately.
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