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Abstract— This paper considers a distributed estimation
problem in which a sensor sporadically transmits information
to a remote-observer. An event-triggered approach is used to
trigger the transmission of information from the sensor to the
remote-observer. The event-trigger is chosen to minimize the
mean square estimation error at the remote-observer subject
to a constraint on how frequently the information can be
transmitted. This problem was studied by O.C. Imer et al. [1]
and M. Rabi et al. [2] where the observed process was a scalar
linear system over a finite time interval. This paper extends
those earlier results by relaxing the prior assumption thatthe
initial condition is zero-mean with no measurement noise. It
extends those earlier results to vector linear systems through a
computationally efficient way of computing sub-optimal event-
triggering thresholds.

I. I NTRODUCTION

A major challenge faced by wireless sensor networks
is that they have limited throughput capacity. Moreover, a
wireless link’s capacity may vary over time due to changes
in the external environment. Time-varying link capacity may
negatively impact overall system behavior. This is true in
networked control systems, where the quality of the feedback
data has a direct impact on the physical plant’s stability
and performance [3]. This is also true for embedded sensor
networks where sensor measurements are transmitted over
ad hoc wireless networks to a data fusion center [4].

Many networked control systems presume the periodic
transmission of information. Periodic transmission, however,
may consume more network bandwidth than necessary. Since
the period is chosen prior to system deployment, it must be
robust over all variations in network and system behavior and
this open-loopapproach to period selection can be overly
conservative in its use of network bandwidth.

The recognition of the inherent conservatism in open-loop
periodic transmission policies has led numerous researchers
to move towards thesporadic transmission of information
throughevent-triggeredformalisms. Event-triggering has an
agent transmit information to its neighbors when some mea-
sure of the novelty in that information exceeds a specified
threshold. Early examples of event-triggering were used
in relay control systems and recent work has looked at
event-triggered PID controllers [5]. Early event-triggered
controllers assumed event-triggers with constant triggering
thresholds. It was recently shown that state-dependent event
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triggers could be used to enforce stability concepts such as
input-to-state stability [6] orL2 stability [7]. Experimen-
tal evidence [8] suggests that event-triggering can reduce
communication bandwidth while preserving overall system
performance. Event-triggering therefore provides a useful
approach for reducing an application’s use of the commu-
nication network.

This paper considers a canonical problem that was recently
studied in [1], [2]. This problem considers a discrete-time
scalar linear process over a finite interval of time. The
process is observed by a sensor that constructs local estimates
of the process state and must decide when to transmit those
local estimates to a remote-observer so that the mean square
estimation error at the remote-observer is minimized. To keep
the problem interesting, transmission decisions must satisfy
a bandwidth constraint that limits the number of messages
that the sensor can send to the remote-observer. This paper
extends the earlier work [1], [2] by dropping the assumption
of zero mean initial conditions with no measurement noise
and developing an efficient way of computing event-triggers
for vector systems.

II. PRIOR WORK

It has long been recognized that the sporadic flow of
information can be incorporated into Kalman filters [9].
Rather than simply analyzing the impact that nondetermin-
istic network artifacts have on estimator performance, one
may control the way information is transmitted. In multi-
sensor networks, for example, one may schedule sensor
transmissions [10]. The potential benefits of controlling
transmission time were experimentally documented in [11].
Formal analyses of this tradeoff were done in [12] for infinite
horizon estimation problems. Finite horizon problems were
treated in [1], [2]. This paper uses event-triggering to control
transmission times across a single communication link.

Network nodes communicate with each other in the system
architecture in [11]. Each node estimates the state of its
neighboring nodes. When a node finds that the estimation
error of its state is greater than a pre-specified threshold,
the true local state is broadcast to its neighbors. It was
shown through simulations that network bandwidth can be
significantly reduced while the performance of the system is
only slightly impacted. This paper therefore provides a good
motivation for controlling transmission times.

Based on the same system architecture, an optimal event-
trigger was derived in [12] that minimizes the sum of the
mean square estimation error (MSEE) and communication
cost over an infinite horizon. The optimal event-triggering



threshold, however, was expensive to compute and compu-
tationally tractable approximations were proposed in [13].

A related problem was studied in [1], [2]. This work
characterized event-triggers that minimized MSEE over a
finite horizon subject to a constraint on the maximum number
of transmissions. The work was confined to discrete-time
scalar linear systems with zero initial condition and no
measurement noise. The problem was solved in [1] using
dynamic programming concepts. The problem was solved
in [2] using optimal stopping concepts for the multiple
transmission problem. While this work asserted that the
extension to multiple transmissions and vector systems was
relatively easy, those assertions were supported with only
partial characterizations of the proofs and algorithms.

This paper uses dynamic programming to solve the finite-
horizon multi-sample problem treated in [2]. We recover the
original results in [2] that determine an optimal time-varying
event-triggering threshold. We also generalize the results in
[2] to cases where the initial state is non-zero mean and the
sensor data is corrupted by measurement noise. This paper’s
results apply to the scalar systems treated in [2] as well as
more general vector linear systems. Solving for the event-
triggers in vector systems, however, has a computational
complexity that is exponential in the state space dimension.
This paper, therefore, introduces a computationally tractable
method for determining event-triggers using families of
quadratic forms to bound the problem’s value function.

III. PROBLEM STATEMENT

Consider a sensor that is observing a linear discrete-time
process over a finite horizon of lengthM + 1. The process
statex : [0, 1, . . . ,M ] → R

n satisfies the difference equation

xk+1 = Axk + wk

for k ∈ [0, 1, . . . ,M ] whereA is ann× n real matrix ,w :
[0, 1, . . . ,M ] → R

n is a zero mean white noise process with
covariance matrixQ. The initial state,x0, is assumed to be
a Gaussian random variable with meanµ0 and varianceΠ0.
The sensor generates a measurementy : [0, 1, . . . ,M ] → R

m

that is a corrupted version of the process state. The sensor
measurement at timek is

yk = Cxk + vk

for k ∈ [0, 1, . . . ,M ] and wherev : [0, 1, . . . ,M ] → R
m

is another zero mean white noise process with varianceR
that is uncorrelated with the process noisew. We assume
that (A,C) is observable. The process and sensor blocks are
shown in figure 1. In this figure, the output of the sensor
feeds into a transmission subsystem that decides when to
transmit information to a remote-observer.

The transmission subsystem consists of three components;
an event-detector, a filter, and alocal-observer. The event-
detector decides when to transmit information atB ∈
[0, 1, . . . ,M +1] time instants to the remote-observer. SoB
represents the total number of transmissions that the sensor
is allowed to make to the remote-observer. We let{τ l}Bl=1

denote a sequence of increasing times (τ l ∈ [0, 1, . . . ,M ])
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Fig. 1. Structure of event triggered networked state estimator

when information is transmitted from the sensor to the
remote-observer. The decision to transmit is based on es-
timates that are generated by the filter and local-observer.

Let Yk = {y0, y1, · · · , yk} denote the measurement in-
formation available at timek. The filter generates a state
estimatex : [0, 1, . . . ,M ] → R

n that minimizes the mean
square estimation errorE

[

(xk − xk)
2 | Yk

]

at each time step
conditioned on all of the sensor information received up to
and including timek. These estimates are computed using a
Kalman filter. The filter equations for the system are,

xk = E [xk | Yk] = Axk−1 + Lk(yk − CAxk−1)

P k = E
[

(xk − xk)
2 | Yk

]

(1)

= AP k−1A
T +Q− LkC(AP k−1A

T +Q) (2)

whereLk is the Kalman filter gain andk = 1, 2, . . . ,M .
The initial conditionx0 is the first a posteriori update based
on y0 andP 0 is the covariance of this initial estimate.

The event-detector uses the filter’s state estimate,x, and
another estimate generated by alocal-observerto decide
when to transmit the filtered statex to the remote-observer.
Given a set of transmission times{τ l}Bl=1, let X k =
{xτ1 , xτ2 , . . . , xτℓ(k)} denote the filter estimates that were
transmitted to the remote-observer by timek whereℓ(k) =
max

{

ℓ : τ ℓ ≤ k
}

. This is theinformation setavailable to
the remote-observer at timek. The remote-observer generates
an a posteriori estimatêx : [0, 1, . . . ,M ] → R

n of the pro-
cess state that minimizes the MSEE,E

[

(xk − x̂k)
2 | X k

]

,
at time k conditioned on the information received up
to and including timek. The a priori estimate of the
remote-observer,̂x− : [0, 1, . . . ,M ] → R

n, minimizes
E
[

(xk − x̂k)
2 | X k−1

]

, the MSEE at timek conditioned on
the information received up to and including timek − 1.
These estimates take the form

x̂−
k = E

[

xk | X k−1

]

= Ax̂k−1

x̂k = E
[

xk | X k

]

=

{

x̂−
k don’t transmit at stepk

xk transmit at stepk

wherex̂−
0 = µ0.

The event-triggering strategy that is used to select the
transmission timesτ l is based on observing thegap, e−k =
xk − x̂−

k between the filter’s estimatex and the remote-
observer’s a priori estimatêx−. Note that even though the
gap is a function of the remote-observer’s estimate, this
signal will be available to the sensor. This is because the
sensor has access to all of the information,X k, that it sent
to the remote-observer. As a result, the sensor can use a



local-observer to construct a copy ofx̂ that can be locally
accessed by the event-detector to compute the gap. This
local-observer is shown as part of the transmission subsystem
in figure 1. The event-detector’s transmission is triggered
when the estimate’s gape−k leaves the time-varying trigger
set Spk

k wherek ∈ [0, 1, . . . ,M ] and pk is the number of
transmissions that are remaining at stepk. As noted in [2],
this type of decision logic treats the transmission time as a
random variable that forms a stopping time of the stochastic
process being monitored. These sets can be computed using
optimal stopping theory. The result, however, is a backward
recursion that bears great similarity to dynamic programming
recursions. So this paper uses stochastic dynamic program-
ming to obtain these trigger sets.

For later convenience, the following notational conven-
tions are used throughout this paper, The estimation error at
step k is êk = xk − x̂k and the filter’s error at stepk is
ek = xk − xk. We let e−k = xk − x̂−

k and ek = xk − x̂k

denote the a priori and a posteriori gap, respectively. The
a priori information available to the event-detector at time
k is denoted asI−k = (e−k , pk), an ordered pair consist-
ing of the a priori gap and the number of transmissions
remaining to be made. The a posteriori information available
to the event-detector isIk = (ek, pk+1). We let Sb

r(k) =
{

S
max{0,b−k+r}
k , . . . , S

min{b,M+1−k}
k

}

denote the triggering
sets to be used at stepk when there areb transmissions
remaining at stepr ≤ k. We letSb

r =
{

Sb
r(r), . . . ,Sb

r(M)
}

.
We are now in a position to formally state the problem

being addressed in this paper. Consider a cost function of
the form

JM (B;SB
0 ) = E

[

M
∑

k=0

ê2k | p0 = B

]

(3)

where the expectation is taken over̂e0, . . . , êM and
τ1, · · · , τB . The objective is to find the optimal trigger sets
minimizing the cost function:

JM (B∗) = min
SB

0

JM (B;SB
0 ). (4)

IV. CHARACTERIZATION OF VALUE FUNCTION

The problem in equation (4) may be treated as the optimal
control of a stochastic process. The control variable is the
trigger setSb

r . We use a stochastic version of Bellman’s
principle of optimality to obtain a backward recursion that
generates the value function for our problem. The value
function characterizes the cost (as measured by the MSEE
at the remote-observer) from any initial system state.

The problem’s value function is defined as

v(ζ, b; r) = min
Sb
r

E

(

M
∑

k=r

ê2k | I−r = (ζ, b)

)

, (5)

which is the minimal expected cost conditioned on the
information I−r = (e−r , pr) at time r. The optimal value
satisfiesJM (B∗) = E (v(ζ, B; 0)).

It can be shown that the information sequence
{I−0 , I0, ..., I

−
M , IM} is Markov, so the value function in

equation (5) is only conditioned on the current information,
rather than all past information. This section’s main result
is a theorem characterizing the backward recursion used to
calculate the value function. The theorem’s proof is given in
the appendix.

Theorem 4.1:The value function (5) satisfies the back-
ward recursive equation:

v(ζ, b; r) = min {vnt(ζ, b, r), vt(ζ, b, r)} , (6)

where

vnt(·) = tr
(

P r

)

+ ‖ζ‖22 + E
(

v(e−r+1, b; r + 1)|Ir = (ζ, b)
)

vt(·) = tr
(

P r

)

+ E
(

v(e−r+1, b− 1; r + 1)|Ir = (0, b− 1)
)

with initial conditions

v(ζ, 0; r) = ζTΛ0
r,1ζ + c0r,1 (7)

v(ζ, b;M + 1− b) = ρbM+1−b, (8)

in which

Λ0
r,1 =

M
∑

k=r

(AT )k−rAk−r,

c0r,1 =
M
∑

k=r

(

k
∑

j=r+1

tr
(

Σj−1L
T
j (A

T )k−jAk−jLj

)

+ tr(P k)

)

;

ρbM+1−b = tr

(

M
∑

k=M+1−b

P k

)

,

andΣj = CAP jA
TCT+CQCT+R. The optimal triggering

set is
Sb∗
r = {ζ : vnt(ζ, b, r) ≤ vt(ζ, b, r)}, (9)

with S0∗
r = R

n for all r = B,B+1, . . . ,M andSb∗
M+1−b =

∅ for all b = 1, 2, . . . , B.
What should be apparent in examining equation (6) is that

the optimal cost at time stepr is based on the choice between
the costs of transmitting (i.e.,vt(·)) or not transmitting (i.e.
vnt(·)) at stepr. The actual values that those two costs take
is conditioned on the value,ζ, that the a priori gap,e−r , takes
at time stepr. This means we can use the choice in equation
(6) to identify two mutually disjoint sets; the trigger setSb∗

r

and its complement. Ife−r is not in the setSb∗
r , then we

trigger a transmission otherwise the sensor decides not to
transmit its information.

Equation (6) recurses over two set of indices; the time
steps, r, and the remaining transmissionsb. The value
function, v(ζ, b; r) is computed from the value functions,
v(ζ, b; r+1) andv(ζ, b−1; r+1). The initial conditions for
this recursion are given in equations (7) and (8). Equation (7)
specifies the value function when at time stepr ∈ [B,B +
1, . . . ,M ] there are no transmissions remaining (b = 0).
These initial conditions are computed as the total MSEE
assuming no further measurement updates. Equation (8)
specifies the value function when there areb ∈ [1, 2, . . . , B]
transmissions remaining between time stepM+1−b andM .
This initial condition equals the MSEE assuming an update
at each remaining time step. We may picture the recursion
as shown in figure 2. This picture plots the indices(b, r) and
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Fig. 2. Order of calculating value function with M=4, B=3

identifies the initial conditions and the order of computation.
The filled-in circles are the indices for value functions in
equations (7) and (8). The arrows show the computational
dependencies in the recursion.

Some properties of the value function and optimal trigger-
ing sets are stated in the following corollaries. The proofs
for these corollaries are omitted due to space limitations.

Corollary 4.2: With b and r fixed, the value function
v(ζ, b; r) is symmetric about the origin and nondecreasing
with respect to‖ζ‖2 in the same direction, i.e.

v(ζ, b; r) = v(−ζ, b; r);

v(α1d, b; r) ≥ v(α2d, b; r), ∀α1 ≥ α2 ≥ 0, d ∈ R
n.

Corollary 4.3: Given any directiond ∈ R
n, the optimal

triggering setSb∗
r lying in this direction is in the form of

[−θbr(d), θ
b
r(d)].

With corollary 4.3, the triggering event becomes|e−r | >
θbr. For the scalar case one may search for the optimal
thresholdθbr, instead of finding the optimal setSb∗

r . A similar
strategy can be used in the vector case, where we search for
the threshold along some ray extending away from the origin.

V. COMPUTATION OF EVENT-TRIGGERS

This section discusses the complexity of computing the
value function and event-triggers. Direct computation of
the value function scales in an exponential manner with
state-dimension. This fact has made it difficult to extend
earlier results in [1], [2] beyond scalar systems. This section
introduces a computationally tractable method that bounds
the value function with a family of quadratic approximations.
This allows us to determine event-triggers for vector linear
systems. This result is demonstrated through a simulation.

Theorem 4.1 computes the value functionv(ζ, b; r) as the
minimum of two functionsvt(ζ, b; r) and vnt(ζ, b; r). The
event-triggering threshold,θbr, occurs at those points where
vt(ζ, b; r) = vnt(ζ, b; r). Moreover, corollaries 4.2 and 4.3
imply that we can search for the thresholdθbr along rays
extending out from the origin. The number of rays, however,
that would need to be considered is an exponential function
of the process’ state space dimension. As a result, it has
proven impractical to compute these optimal thresholds for
state dimensions any larger thann = 2.

As suggested in [13], this problem may be circumvented
by using quadratic functions to approximate the value func-
tion. The following theorem bounds the value function
v(ζ, b; r) from above with a family of quadratic forms,
{

ζTΛb
r,jζ + cbr,j

}M+1−b−r

j=1
whereΛb

r,j is a symmetric posi-

tive definite matrix andcbr,j is a constant that are computed
recursively over the indicesr and b. The proof for this
theorem is in the appendix.

Theorem 5.1:The value function (5) is bounded above by

v̄(ζ, b; r) = min{v̄nt(ζ, b, r), v̄t(ζ, b, r)},
where

v̄nt(ζ, b, r) = min
j=1,··· ,ℓb

r

{ζTΛb
r,jζ + cbr,j}, if b 6= 0(10)

v̄t(ζ, b, r) = ρbr. (11)

Λb
r,j,c

b
r,j andρbr are computed recursively as

Λb
r,j =

{

ATΛb
r+1,jA+ I, j < M + 1− b− r;

I, j = M + 1− b− r,

cbr,j =

{

σb
r+1,j + tr(P r), j < M + 1− b− r;

ρbr+1 + tr(P r), j = M + 1− b− r,

ρbr =

{

tr(P r) + σb−1
r+1,1, if b = 1;

tr(P r) + min{σb−1
r+1,1, · · · , σb−1

r+1,ℓb
r

, ρb−1
r+1}, else.

whereσb
r+1,j = tr(ΣrL

T
r+1Λ

b
r+1,jLr+1) + cbr+1,j and ℓbr =

M + 1 − b − r. The initial conditions forv̄nt and v̄t are
described by equations (7) and (8) respectively. The sub-
optimal triggering sets are

Sb+
r = {ζ : v̄nt(ζ, b, r) ≤ v̄t(ζ, b, r)}

with S0+
r = R

n for all r = B, · · · ,M andSb+
M+1−b = ∅ for

all b = 1, · · · , B.
The sub-optimal triggering set is the union of the el-

lipsoidal sets
{

ζ ∈ R
n : ζTΛb

r,jζ + cbr,j ≤ ρbr
}

for j =
1, 2, . . . ,M + 1 − b − r. Given r and b, this set may be
computed using theM + 1 − b − r quadratic forms in
vnt(ζ, b; r). Computing the value function only requires the
evaluation of a quadratic form on the order ofn3 multiplies.
The complexity, therefore associated with evaluating the
boundsv(ζ, b; r) is on the order of(M +1−B)(M−B)n3,
which is cubic in the state space dimension.

We now consider a comparsion between the thresholds,
θrb , computed using the value functionv(ζ, b; r) and the
bound v(ζ, b; r). For n = 2, it is possible to compute

v(ζ, b; r) and its associated thresholds. letA =

[

0 −1

1
√
2

]

and C =
[

1 1
]

. The mean and variance of initial
condition are[1, 0]T and I (identity matrix), respectively.
The variance ofw and v are [1 2; 2 5] and 1, respectively.
The terminal step is chosen to beM = 4 with only one
allowed transmission,B = 1. The value functions and their
bounds are computed using theorems 4.1 and 5.1. The results
from these computations are shown in figure 3.

The left side of this figure shows cross-sectional plots of
the value functions and their upper bounds. The red and
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Fig. 3. Top plots show value functions, upper bounds, optimal, and sub-
optimal triggering sets. Bottom plots shows experimental results

white lines in the cross-section represent the value function
and its upper bound, respectively. One can see that the
differences between these two lines are small, especially
at the points wherevnt and vt are equal. These points are
important, because they form the edge of the optimal trig-
gering set. The right side shows the optimal and sub-optimal
triggering sets. We can see that the union of the ellipses,
which is the sub-optimal triggering set, over-approximates
the optimal triggering set very closely.

Let’s now vary the number of allowed transmissions,B,
between1 to 4 and calculate the optimal and sub-optimal
triggering sets. These sets were used in a simulation of the
system whose results are shown at the bottom of figure 3.
This figure plots the MSEE as a function ofB where event-
triggering was done using the optimal or sub-optimal thresh-
olds. The figure shows that the suboptimal event-triggers
perform are only slightly worse than the optimal event-
triggering thresholds. Simulations were also run for periodic
transmssions with comparable periods. These results show
that the sub-optimal and optimal event-triggers have smaller
MSEE than comparable periodic transmission schemes. Fi-
nally, we determine the actual MSEE that should have been
achieved and this value matches what was achieved using
the optimal event-triggers.

VI. SUMMARY

This paper discussed the design of optimal event-triggers
for distributed multi-dimensional state estimation problems
with finite terminal time and a fixed number of transmissions.
This paper extends the results in [2] to vector linear systems
with nonzero mean initial conditions and measurement noise.
The paper provides a computationally tractable approach
for determining the event-triggering thresholds, therebysug-
gesting that these event-triggering approach can be used on
multi-dimensional linear systems, not just the scalar systems
that have been usually studied in the past.

VII. A PPENDIX

Proof of Theorem 4.1: The value function may be written
as

v(ζ, b; r) = min
Sb
r

E

(

M
∑

k=r

‖êk‖22 | I−r = (ζ, b)

)

= min
Sb
r

g(ζ, b, Sb
r)

whereg(ζ, b, Sb
r) = min

Sb
r
−Sb

r

E
(

∑M
k=r ‖êk‖22|I−r = (ζ, b)

)

.

We calculateg(ζ, b, Sb
r) for the two cases:ζ ∈ Sb

r and
ζ /∈ Sb

r . Here, the first case is explained explicitly. Because
the second case can be derived similarly, we only give the
final result.

If ζ ∈ Sb
r ,

g(ζ, b, Sb
r)

= min
Sb
r
(r+1),··· ,Sb

r
(M)

E

(

M
∑

k=r

‖êk‖22|e−r = ζ ∈ Sb
r , pr = b)

)

.



Because the conditione−r = ζ ∈ Sb
r , pr = b ⇔ er =

ζ, pr+1 = b ande−r = ζ, pr = b,

g(ζ, b, Sb
r) = min

Sb
r
−Sb

r

E

(

M
∑

k=r

‖êk‖22|Ir = I−r = (ζ, b)

)

= min
Sb
r
−Sb

r

E

(

M
∑

k=r

‖êk‖22|Ir = (ζ, b)

)

.

Since pr+1 = b which meansb transmissions remaining
at stepr + 1, only Sb

r+1 can influence the value of the
expectation.

g(ζ, b, Sb
r)

= min
Sb

r+1

E

(

M
∑

k=r

‖êk‖22|Ir = (ζ, b)

)

= tr(P r) + ‖ζ‖22 + min
Sb

r+1

E

(

M
∑

k=r+1

‖êk‖22|Ir = (ζ, b)

)

= tr(P r) + ‖ζ‖22 + min
Sb

r+1

E

(

E

(

M
∑

k=r+1

‖êk‖22|I−r+1 =

(e−r+1, b), Ir = (ζ, b)
)

|Ir = (ζ, b)
)

= tr(P r) + ‖ζ‖22 + E

(

min
Sb

r+1

E

(

M
∑

k=r+1

‖êk‖22|I−r+1 =

(e−r+1, b)
)

|Ir = (ζ, b)
)

= tr(P r) + ‖ζ‖22 + E
(

v(e−r+1, b; r + 1)|Ir = (ζ, b)
)

= vnt(ζ, b, r).

The fourth equality holds because the information set se-
quence{I−k , Ik}Mk=0 is Markov ande−r+1 is independent with
Sb
r+1.
If ζ /∈ Sb

r , we can show thatg(ζ, b, Sb
r) = tr(P r) +

E
(

v(e−r+1, b− 1; r + 1)|Ir = (0, b− 1)
)

= vt(b, r)
With the value function in both cases, we conclude that

g(ζ, b, Sb
r) = vnt1ζ∈Sb

r
+ vt(b, r)1ζ /∈Sb

r
, and the value func-

tion v(ζ, b; r) = min{vnt(ζ, b, r), vt(b, r)} with Sb∗
r = {ζ :

vnt(ζ, b, r) ≤ vt(b, r)}.
There are two initial conditions for the recursive equation.

One is the case when there is no remaining transmissions,
v(ζ, 0; r). The other is the case when the number of remain-
ing transmissions is the same as the remaining steps,v(ζ, b; r)
for b ∈ [1, B] and r = M + 1 − b. Both of them can be
calculated directly.�
Proof of Theorem 5.1: The initial conditions forv̄t = vt
andvnt = vnt satisfy equations (11) and (10), respectively,
whereΛ0

r,j = 0, c0r,j = ∞ andρ0r = ∞ for j = 2, · · · , ℓ0r.
Now assume that

v̄nt(ζ, k, r + 1) = min
j=1,··· ,M−k−r

(ζTΛk
r+1,jζ + ckr+1,j)

v̄t(ζ, k, r + 1) = ρkr+1

are upper bounds forvnt(ζ, k, r+1) andvt(ζ, k, r+1) when
k = b and b − 1. Let Ω0 = {1, 2, . . . ,M − b − r} and let
Ω1 = {1, 2, . . . ,M+1−b−r}. The cost of not transmitting,

vnt(·), can be bounded as

vnt(ζ, b, r)

≤ tr(P r) + ζT ζ + E(v̄(ζ, b; r + 1)|Ir = (ζ, b))

≤ tr(P r) + ζT ζ +min{
min
j∈Ω0

E(e−T
r+1Λ

b
r+1,je

−
r+1 + cbr+1,j |er = ζ), ρbr+1}

= min{min
j∈Ω0

(ζT (ATΛb
r+1,jA+ I)ζ + σb

r+1 + tr(P r))

, ζT ζ + ρbr+1 + tr(P r)}
= v̄nt(ζ, b, r).

In a similar way we can show thatvt(·) is bounded as

vt(ζ, b, r)

≤ tr(P r) + E(v̄(ζ, b− 1; r + 1)|Ir = (0, b− 1))

≤ tr(P r) + min{
min
j∈Ω1

E(e−T
r+1Λ

b−1
r+1,je

−
r+1 + cb−1

r+1,j|er = 0), ρb−1
r+1}

= tr(P r) + min{σb−1
r+1,1, · · · , σb−1

r+1,M+1−b−r, ρ
b−1
r+1}

=

{

tr(P r) + σb−1
r+1,1, if b = 1;

tr(P r) + min{σb−1
r+1,1, · · · , σb−1

r+1,ℓb
r

, ρb−1
r+1}, else.

= v̄(ζ, b, r)

The fourth equality holds becausec0r,j = ρ0r = ∞.�
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