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Abstract Nowadays, vehicles are being fitted with

systems that improve their maneuverability, stability,

and comfort in order to reduce the number of acci-

dents. Improving these aspects is of particular inter-

est thanks to the incorporation of autonomous vehicles

onto the roads. The knowledge of vehicle sideslip and

roll angles, which are among the main causes of road

accidents, is necessary for a proper design of a lateral

stability and roll-over controller system. The problem

is that these two variables cannot be measured directly

through sensors installed in current series production

vehicles due to their high costs. For this reason, their

estimation is fundamental. In addition, there is a time

delay in the relaying of information between the differ-

ent vehicle systems, such as, sensors, actuators and con-

trollers, among others. This paper presents the design

of an H∞-based observer that simultaneously estimates

both the sideslip angle and the roll angle of a vehicle

for a networked control system, with networked trans-

mission delay based on an event-triggered communi-
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cation scheme combined with neural networks (NN).

To deal with the vehicle nonlinearities, NN and linear-

parameter-varying techniques are considered alongside

uncertainties in parameters. Both simulation and exper-

imental results are carried out to prove the performance

of observer design.

Keywords Nonlinear vehicle dynamics · H∞

estimation · Event-triggered · Neural network · LPV ·
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1 Introduction

The high number of road accidents and deaths caused

mainly by human error is one of the most serious issues

facing many countries nowadays. Driver-assistance

technologies are being fitted in today’s vehicles to help

prevent accidents and to save lives. These technologies

are becoming especially relevant with the appearance

of autonomous vehicles [5,7,9].

The accurate knowledge of sideslip angle and roll

angle is key for a proper design of advanced driver-

assistance systems that improve the vehicle’s stabil-

ity and handling [6,8]. The problem is that these two

variables cannot be measured directly through sen-

sors installed in current series production vehicles due

to their high cost. Therefore, many investigations are

focused on the design of observers that allow their esti-

mation by merging the information from sensors that

are installed in the vehicles, and that are low-cost and
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easy to install. Signal filtering or state estimation is cur-

rently a fundamental research topic in the field of signal

processing and system control. The aim of the filtering

or estimation problem is to estimate the unknown states

of a system from the information provided by the sen-

sor signals. One of the most common methodologies

is the use of Kalman filter-based observers. However,

the Kalman filter is inapplicable when the character-

istics of the signal noise are unknown. In addition, it

is necessary to address the problem that vehicles have

a strongly nonlinear behavior with a large number of

uncertainties. In this case, the use of robust observers

based on H∞ or energy-to-peak is a good option.

Many of these observers are designed with the

knowledge that both vehicle longitudinal speed and

parameters, such as tire cornering stiffness, among oth-

ers, are constant and known. Nevertheless, this is not

true in vehicle system dynamics [19].

To deal with the first problem, i.e., variables that

can be known through measurements, the most suc-

cessful approaches used are based on polytopic linear-

parameter-varying (LPV) [1,32,36,38] and fuzzy

Takagi–Sugeno (T-S) representations [22,23,25,31].

In the polytopic LPV paradigm, the nonlinearity is

described as a parameterized linear system. A polytopic

LPV system is expressed by a polytopic model which

is obtained by a combination of multiple linear time-

invariant (LTI) models at the vertices of the operating

region. In the fuzzy T-S paradigm, the nonlinearity is

represented through fuzzy sets, fuzzy rules, and fuzzy

membership functions. The main disadvantage of fuzzy

T-S methodology is to correctly define the fuzzy sets,

fuzzy rules, and fuzzy membership functions to make

it work with a degree of accuracy.

To deal with the second problem, i.e., parameters

that are unknown but bounded, uncertainties in model

parameters are considered [35].

Some techniques previously used for the estima-

tion of vehicle sideslip angle and roll angle are based

on Kalman filters [11,13] and robust filters [33,35].

Other researchers attempt to overcome the nonlinear-

ity problems using artificial intelligence (AI) tech-

niques [2]. A drawback of only using AI techniques

is that the estimates are greatly affected by the sensor

noise. A combination of AI-based observers intended to

obtain pseudo-measures with Kalman filters or robust

observers has been proven to demonstrate good perfor-

mance [3,12]. One drawback of the previous studies is

that they do not simultaneously estimate both angles.

On the other hand, the advanced driver-assistance

systems require the installation of a large number of

devices in the vehicles, such as sensors, actuators, and

microprocessors, and a communication network that

allows signals to be sent from one device to another.

This implies the design of a very complex system with

a high processing capacity, low energy consumption,

and security in the transmission of information.

Moreover, there is a time delay in the sending

of information between the different systems. This

makes the design of networked control systems (NCS)

[10,16,27,30,42] of special interest in vehicles. Cur-

rently, these NCSs have great advantages such as

cost effectiveness, simple installation, high reliability,

reduced weight, and power consumption [24]. Some

research has taken place with the H∞-based observer

design for NCS with delay measurements and an event-

triggered mechanism [18,37,40,41].

However, the use of a communication network also

raises problems. The sampling of information with

a fixed period, which can result in the sending of

unnecessary information, can cause a saturation of

the network along with the finite property of net-

work bandwidth resulting in network-induced delays

[20]. To address this problem, a lot of research has

been focused on the design of event-triggered sys-

tems, in which the task is carried out if the event-

triggered condition is violated [14,17,29,39]. In [14,

39], event-triggered dynamic output-feedback con-

trollers for NCS are proposed. In [17], two design meth-

ods of dynamic output-feedback controller in event-

triggered mechanism case with data quantization were

studied. In [29], an event-triggered H∞ static output-

feedback controller for active suspension systems with

network-induced delays is implemented. Although var-

ious event-triggered H∞-based controllers have been

proposed in scientific literature, few studies have

been devoted to the design of event-triggered H∞-

based observers. In [37], a distributed H∞ filtering

for the active semi-vehicle suspension system with

delay distribution-dependent scheme, stochastic sen-

sor faults, and an event-triggering scheme is proposed.

In [34], the fault detection problem has been trans-

formed into an event-triggered H∞ filtering problem

with uncertain parameters.

The novelty of this paper is the design of a Luen-

berger observer to simultaneously estimate both the

vehicle sideslip and roll angles for a networked control

system with networked transmission delay, based on
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an event-triggered communication scheme combined

with neural networks (NN). The main advantages of

the proposed method are: (1) The observed signals are

obtained through sensors already installed in current

series production vehicles. These signals are the yaw

and roll rates obtained directly from an IMU sensor and

the sideslip and roll angles obtained indirectly by means

of an NN-based observer [21]. The latter are called

‘pseudo-measures’ and they are estimated from data

measured by a steering wheel sensor, a GPS and an IMU

sensor. (2) The proposed observer is able to address

the problem of a strongly nonlinear system, such as a

vehicle that typically exhibits uncertainties and time-

varying characteristics. Some vehicle’s parameters are

very sensitive to the change of road and drive condi-

tions, such as the vehicle speed and the tire corner-

ing stiffness. In addition, the method is extended to

deal with external disturbances. (3) Finally, the pro-

posed observer deals with the event-triggered NCSs,

with signal communication delays, to reduce the data

transmission. The observation data are used to design

the triggering criterion to avoid assuming that the full

state information is available.

The designed observer guarantees robust stability

under event-triggered scheme with an acceptable level

of performance.

This paper is organized as follows. Section 2 shows

the vehicle model used for observer design. Sec-

tion 3 describes the global architecture of the designed

observer given the formulation to obtain the observer

and weighting matrices that define the event-triggered

H∞-based observer. Section 4 shows both simulation

and experimental results to prove the effectiveness of

the designed observer with a discussion related to them.

Finally, conclusions are given in Sect. 5.

2 Vehicle model for observer design

The vehicle model considered in this research includes

both variables that are going to estimate [4]. The equa-

tions which define the LPV-based state-space vehicle

model are:

ẋ = A (μ) x + Bδ (μ) δ + Bu (μ) u + Bw (μ) w (1)

where x =
[

β r φ φ̇
]T

is the state vector given by the

sideslip angle, β, yaw rate, r , roll angle, φ, and roll

rate, φ̇; δ is the wheel steering angle; u =
[

�δ Mφ

]T

is the input vector; w =
[

φr ṗ f d
]T

is the disturbance

Table 1 Description of vehicle parameters

Parameter Units Description

a m Distance of the front axle from the

Center of Gravity (CoG)

b m Distance of the rear axle from the

CoG

br Mms/rad Roll damping coefficient

Cα f N/rad Cornering stiffness of the front tire

Cαr N/rad Cornering stiffness of the rear tire

g m/s2 Acceleration of gravity

h m Distance from roll center to CoG

Ix kgm2 Moment of inertia about the roll

axis

Iz kgm2 Moment of inertia about the yaw

axis

kr Mm/rad Roll stiffness

m kg Vehicle mass

vx m/s Longitudinal speed

vector given by the road bank angle φr , the x compo-

nent of the angular velocity vector of the vehicle frame

with respect to the inertial coordinates, ṗ f , and d is the

system noise; and

A(μ) =

⎡

⎢

⎢

⎢

⎢

⎣

−
Ieq(Cα f +Cαr )

Ix mvx
−

(

1+
Ieq(aCα f −bCαr )

Ix mv2
x

)

h(mgh−kr )
Ix vx

− hbr

Ix vx

−
(aCα f −bCαr )

Iz
−

(

a2Cα f +b2Cαr

)

Izvx
0 0

0 0 0 1

−
(Cα f +Cαr )h

Ix
−

(aCα f −bCαr )h

Ix vx

(mgh−kr )
Ix

− br

Ix

⎤

⎥

⎥

⎥

⎥

⎦

Bδ(μ) =

⎡

⎢

⎢

⎢

⎣

IeqCα f

Ix mvx
aCα f

Iz

0
Cα f h

Ix

⎤

⎥

⎥

⎥

⎦

Bu (μ) =

⎡

⎢

⎢

⎢

⎣

IeqCα f

Ix mvx
0

aCα f

Iz
0

0 0
Cα f h

Ix

1
Ix

⎤

⎥

⎥

⎥

⎦

Bw(μ) =

⎡

⎢

⎢

⎣

−
g
vx

0 1

0 0 1

0 0 1

0 −1 1

⎤

⎥

⎥

⎦

The description of parameters given in the previous

matrices is shown in Table 1, and

C0 = Cα f + Cαr

C1 = a · Cα f − b · Cαr

C2 = a · C2
α f + b · C2

αr

Ieq = Ix + m · h2
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The cornering stiffnesses of tires vary strongly over

time, but they cannot be measured online by sensors. To

take into account their uncertainties, the vehicle model,

given in Eq. (1), can be rewritten as:

ẋ = [A (μ) + �A (μ)] x + [Bδ (μ) + �Bδ (μ)] δ

+ [Bu (μ) + �Bu (μ)] u + Bw (μ) w (2)

where

�A(μ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
Ieq

(

�Cα f +�Cαr
)

Ix mvx
−

(

Ieq
(

a�Cα f −b�Cαr
)

Ix mv2
x

)

0 0

−

(

a�Cα f −b�Cαr
)

Iz
−

(

a2�Cα f +b2�Cαr

)

Izvx
0 0

0 0 0 0

−

(

�Cα f +�Cαr
)

h

Ix
−

(

a�Cα f −b�Cαr
)

h

Ix vx
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�Bδ(μ) =

⎡

⎢

⎢

⎢

⎢

⎣

Ieq�Cα f

Ix mvx
a�Cα f

Iz

0
�Cα f h

Ix

⎤

⎥

⎥

⎥

⎥

⎦

�Bu(μ) =

⎡

⎢

⎢

⎢

⎢

⎣

Ieq�Cα f

Ix mvx
0

a�Cα f

Iz
0

0 0
�Cα f h

Ix
0

⎤

⎥

⎥

⎥

⎥

⎦

where �Cα f and �Cαr represent the maximum uncer-

tainties of Cα f and Cαr , respectively. The uncertainties

matrices can be rewritten as �A(μ) = EA(μ)MAFA,

�Bδ(μ) = EBδ
(μ)MBδ

FBδ
and �Bu(μ) =

EBu (μ)MBu FBu , where

EA (μ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
Ieq

(

�Cα f +�Cαr

)

Ix mvx
−

Ieq

(

a�Cα f −b�Cαr

)

Ix mv2
x

0 0

−

(

a�Cα f −b�Cαr

)

Iz
−

(

a2�Cα f +b2�Cαr

)

Izvx
0 0

0 0 0 0

−

(

�Cα f +�Cαr

)

h

Ix
−

(

a�Cα f −b�Cαr

)

h

Ix vx
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

MA =

⎡

⎢

⎢

⎣

N (t) 0 0 0

0 N (t) 0 0

0 0 N (t) 0

0 0 0 N (t)

⎤

⎥

⎥

⎦

; FA = I

EBδ
(μ) =

⎡

⎢

⎢

⎢

⎢

⎣

Ieq�Cα f

Ix mvx
a�Cα f

Iz

0
�Cα f h

Ix

⎤

⎥

⎥

⎥

⎥

⎦

; MBδ
= N (t); FBδ

= I

EBu
(μ) =

⎡

⎢

⎢

⎢

⎢

⎣

Ieq�Cα f

Ix mvx
0

a�Cα f

Iz
0

0 0
�Cα f h

Ix
0

⎤

⎥

⎥

⎥

⎥

⎦

; MBu
=

[

N (t) 0

0 N (t)

]

;

FBu
= I

|N (t)| ≤ 1

As longitudinal speed can be measured by real-time
sensors and assuming that its varying range is [vx,max,
vx,min], the following scheduled time-varying param-

eters are chosen μ = [1/vx 1/v2
x ]. In this research,

the considered polytope is formed by two triangles,
μ1μ2μ3 and μ3μ4μ5, so that, [38]:

μ1 =

(

1

vx,max
,

1

v2
x,max

)

μ2 =

(

(

vx,max + 3vx,min

)

4vx,maxvx,min

,
1

2vx,maxvx,min

+
1

2v2
x,max

)

μ3 =

(

(

vx,max + vx,min

)

2vx,maxvx,min
,

(

vx,max + vx,min

)2

4v2
x,maxv

2
x,min

)

μ4 =

(

(

3vx,max + vx,min

)

4vx,maxvx,min
,

1

2vx,maxvx,min
+

1

2v2
x,min

)

μ5 =

(

1

vx,min
,

1

v2
x,min

)

Depending on the longitudinal speed value, the LPV-

based state-space vehicle model can be rewritten for

each triangle,

if vx <
2vx,maxvx,min

(vx,max+vx,min)
then

ẋ =

3
∑

i=1

αi

(

(Ai + �Ai ) x +
(

Bi,δ + �Bi,δ

)

δ

+
(

Bi,u + �Bi,u

)

u + Bi,ww
)

(3)

else

ẋ =

5
∑

i=3

ᾱi

(

(Ai + �Ai ) x +
(

Bi,δ + �Bi,δ

)

δ

+
(

Bi,u + �Bi,u

)

u + Bi,ww
)

(4)

end

where

α1 = 1−α2−α3

α2 =
μx

(

μ3y−μ1y

)

−μy (μ3x −μ1x ) −μ1x

(

μ3y−μ1y

)

+ μ1y (μ3x −μ1x )

(μ2x −μ1x )
(

μ3y−μ1y

)

−
(

μ2y−μ1y

)

(μ3x −μ1x )

α3 =
μx

(

μ2y−μ1y

)

−μ2 (μ2x −μ1x ) − μ1x

(

μ2y−μ1y

)

−μ1y (μ2x −μ1x )

(μ3x −μ1x )
(

μ2y−μ1y

)

−
(

μ3y−μ1y

)

(μ2x −μ1x )

ᾱ3 = 1−ᾱ4−ᾱ5

ᾱ4 =
μx

(

μ5y−μ3y

)

−μy (μ5x −μ3x ) −μ3x

(

μ5y − μ3y

)

−μ3y (μ5x −μ3x )

(μ4x −μ3x )
(

μ5y − μ3y

)

−
(

μ4y−μ3y

)

(μ5x −μ3x )

ᾱ5 =
μx

(

μ4y−μ3y

)

−μy (μ4x −μ3x ) −μ3x

(

μ4y−μ3y

)

+μ3y (μ4x −μ3x )

(μ5x −μ3x )
(

μ4y−μ3y

)

−
(

μ5y−μ3y

)

(μ4x −μ3x )

To generalize the problem, the developments will be

carried out for the μ1μ2μ3, that forms the polytope,

and this same procedure will be repeated for the other

triangle formed by the edges μ3μ4μ5.
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Fig. 1 Structure of the

event-triggered H∞

observer for an NCS

3 System description

Figure 1 shows the event-triggered H∞-based observer

scheme design. Through the vehicle-mounted sensors,

such as GPS, IMU system, and steering wheel sensor,

the signals of the longitudinal acceleration, ax , the lat-

eral acceleration, ay , the steering wheel angle, δ, the

longitudinal speed, vx , the yaw rate, r and the roll

rate, φ̇, are obtained. These signals are initially intro-

duced into an neural network (NN) block to estimate

the pseudo-values of the slip angle, βNN, and the roll

angle, φNN. A detailed description of the neural net-

work designed to obtain these pseudo-values is shown

in [21].

Considering the sampling time of the sensors installed

in the vehicle and the calculation time of the pseudo-

values (βNN and φNN), the data of the steering wheel

angle, δ, the longitudinal speed, vx , and the observa-

tion vector y = [βNN, r, φNN, φ̇]T, are sampled at

every time step, h, so that ih represents the sampled

instants, where i = 1, . . . , N . In order not to overload

the network, an event-triggered criterion is adopted to

determine whether this information is sent to the net-

work or not, where ikh denotes the triggered instants.

If the event-triggered condition is violated, the data

packet formed by [δik h , vx,ik h , yik h] is sent through

the network to the H∞-based observer by entering a

time delay, ηk , with ηm ≤ ηk ≤ ηM , where ηm is the

minimum network delay that avoids the Zeno behavior

effect and ηM is the maximum network delay. There-

fore, the data packet sent, [δ̄, v̄x , ȳ], suffers a delay η,

such that, ηm ≤ ηk ≤ η < h + ηk ≤ h + ηM .

3.1 Event-triggered scheme

To avoid network saturation, and considering that yt−η

is the observation vector with a delay η, the following

event-triggered criterion is adopted [15,29,32]:

eT
y �ey ≤ ε2ȳT�ȳ (5)

where ε > 0 is a threshold, � > 0 is the weighting

matrix, so that

� =

3
∑

i=1

αi�i

and ȳ = ey + yt−η.

The observation vector error function is defined as

ey = yikh − yikh+lh, where yikh is the last transmitted

packet and yikh+lh is the current transmitted packet.

Substituting these values into Eq. (5) results in,

ey
T�ey ≤ ε2

(

ey + yt−η

)T
�

(

ey + yt−η

)

(6)

eT
y �ey ≤ ε2

(

ey + Cxt−η

)T
�

(

ey + Cxt−η

)

+ (7)

Therefore, the data packet is transmitted if the con-

dition given in Eq. (6) is not met.

3.2 Event-triggered observer model

In this paper, we have designed an observer based on

event-triggered H∞ with the following structure:
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˙̃x =

3
∑

i=1

αi

[(

Ai x̃ + Bi,δδ + Bi,uu
)

+ Li (ȳ − ỹ)
]

(8a)

ỹ = Cx̃ (8b)

ȳ = ey + yt−η (8c)

where L i is the observation gain matrices. This observer

must be calculated for the 2 triangles that form the poly-

tope, μ1μ2μ3 and μ3μ4μ5, and whose edges have been

defined in Sect. 2.

The state error vector is defined as follows, ex =

x − x̃, such that

ėx = ẋ − ˙̃x

=

3
∑

i=1

ρi (Ai (x − x̃) − Li Cex + �Ai x

+�Bi,δδ + �Bi,uu

+Bi,ww − Li

[

ey + C
(

xt−dt − x
)])

(9)

Then, a new state vector is defined, ξ = [ex, x]T, in

this way:

ξ̇ =

3
∑

i=1

αi

[(

A0,i + �A0,i

)

ξ + A1,iξ t−η

+A2,i ey +
(

A3,i + �A3,i

)

q
]

(10)

where q = [δ, u, w]T and

A0,i =

[

(Ai − Li C) Li C

0 Ai

]

; A1,i =

[

0 Li C

0 0

]

A2,i =

[

−Li

0

]

; A2,i =

[

0 0 Bw,i

Bδ,i Bu,i Bw,i

]

�A0,i =

[

0 �Ai

0 �Ai

]

=

[

0 EA,i

0 EA,i

] [

MA 0

0 MA

] [

FA 0

0 FA

]

= ĒA,i M̄AF̄A

�A3,i =

[

�Bδ,i �Bu,i 0

�Bδ,i �Bu,i 0

]

=

[

�Bδ,i �Bu,i 0

�Bδ,i �Bu,i 0

]

⎡

⎣

MBδ
0 0

0 MBu 0

0 0 0

⎤

⎦

⎡

⎣

FBδ
0 0

0 FBu 0

0 0 0

⎤

⎦

= ĒBM̄B F̄B

3.3 H∞ condition

The closed-loop system defined by Eq. (8) has H∞

performance with index γ if the following inequality

is complied,
∥

∥

∥
zTz

∥

∥

∥

2
< γ

∥

∥

∥
qTq

∥

∥

∥

2
(11)

where z is the signal to be estimated and γ > 0 is the

performance index. z is chosen as:

z = C1ξ (12)

The performance of proposed observer is evaluated

by its estimation error, and then,

C1 =
[

C11 C12

]

=
[

I 0
]

(13)

3.4 Event-triggered H∞-based observer design

This section describes the event-triggered H∞-based

observer design. The problem of event-triggering H∞-

based observation with uncertain parameters is in find-

ing the observer gains Li such that the following two

conditions are satisfied:

– When q(t) = 0, the system (10) is asymptotically

stable.

– Under zero initial condition, the inequality given

by Eq. (11) holds for all nonzero q(t) ∈ L2[0,∞],

where γ is the H∞ performance index.

Theorem The event-triggered filter given by Eq. (8) is

asymptotically stable and the control output z complies

with a H∞ performance, if for given values of ηm > 0,

ηM > ηm , h > 0, ǫ > 0, γ > 0, ρ1 > 0 and ρ2 > 0,

there are parameters υ1 > 0 and υ2 > 0, defined pos-

itive symmetric matrices P1 = PT
1 > 0, P2 = PT

2 > 0,

T1,i = TT
1,i > 0, T2,i = TT

2,i > 0, S1 = ST
1 > 0,

S2 = ST
2 > 0, �i = �T

i > 0, and any matrices with

appropriate dimensions Mi, y R, such that

⎡

⎣

�̄11,i �̄12,i �̄13,i

⋆ �̄22,i �̄23,i

⋆ ⋆ �̄33,i

⎤

⎦ < 0; for i = 1, . . . , 3 (14)

[

S2 R

⋆ S2

]

> 0 (15)

where

P =

[

P1 0

0 P2

]
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�̄11,i =

⎡

⎢

⎢

⎢

⎣

�11,i,1,1 Ā1,i S1 0

⋆ �̄11,i,2,2 S2 + R S2 + RT

⋆ ⋆ T2,i − T1,i − S1 − S2 −RT

⋆ ⋆ ⋆ −T2,i − S2

⎤

⎥

⎥

⎥

⎦

�̄11,i,1,1 = ĀT
0,i + Ā0,i + T1,i − S1

�̄11,i,2,2 = −2S2 − RT − R + ε�T�i �

�̄12,i =

⎡

⎢

⎢

⎣

Ā2,i Ā3,i CT
1 ηmĀT

0,i (η̄ − ηm) ĀT
0,i

ε�T�i 0 0 ηmĀT
1,i (η̄ − ηm) ĀT

1,i

0 0 0 0 0

0 0 0 0 0

⎤

⎥

⎥

⎦

�̄13,i =

⎡

⎢

⎢

⎣

ÊA,i μ1F̄T
A ÊB,i 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎦

�̄22,i =

⎡

⎢

⎢

⎢

⎢

⎣

�i + ǫ�i 0 0 τmĀT
2,i (η̄ − τm)ĀT

2,i

⋆ −γ 2I 0 τmĀT
3,i (η̄ − τm)ĀT

3,i

⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ρ2
1 S1 − 2ρ1P 0

⋆ ⋆ ⋆ ⋆ ρ2
2 S2 − 2ρ2P

⎤

⎥

⎥

⎥

⎥

⎦

�̄23,i =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 μ2F̄T
B

0 0 0 0

ηm ÊA,i 0 ηm ÊB,i 0

(η̄ − ηm) ÊA,i 0 (η̄ − ηm) ÊB,i 0

⎤

⎥

⎥

⎥

⎥

⎦

�̄33,i =

⎡

⎢

⎢

⎣

−μ1I 0 0 0

⋆ −μ1I 0 0

⋆ ⋆ −μ2I 0

⋆ ⋆ ⋆ −μ2I

⎤

⎥

⎥

⎦

Ā0,i =

[

(P1Ai − Mi C) Mi C

0 P2Ai

]

; Ā1,i

=

[

0 −Mi C

0 0

]

Ā2,i =

[

−Mi

0

]

;

Ā3,i =

[

0 0 P1Bw,i

P2Bi,δ P2Bi,u P2Bi,w

]

ÊA,i =

[

0 P1EA,i

0 P2EA,i

]

; ÊB,i

=

[

P1EBδ,i
P1EBu,i

0

P2EBδ,i
P2EBu,i

0

]

The observation gain matrices can be calculated by

Li = P−1
1 Mi. The proposed method allows the inequal-

ities in Theorem to be converted to the form of linear

matrix inequalities, which can be solved by MATLAB

LMI Toolbox. LMIs that are attractive formulations

from the optimization point of view are a result of con-

vexity. Besides, the chosen Lyapunov–Krasovskii func-

tional provides a less conservative stability condition.

This method is able to handle polytopic time-varying

systems with the presence of norm-bounded terms.

Proof We selected the following Lyapunov–Krasovskii

functional as:

V(t) = V1 + V2 + V2 (16)

where

V1 = ξTPξ (17)

V2 =

3
∑

i=1

αi

⎡

⎢

⎣

t
∫

t−ηm

ξTT1,iξds +

t−ηm
∫

t−η̄

ξTT2,iξds

⎤

⎥

⎦
(18)

V3 = ηm

0
∫

−ηm

t
∫

t+θ

ξ̇
T

S1ξ̇dsdθ + (η̄ − ηm)

−ηm
∫

−η̄

t
∫

t+θ

ξ̇
T

S2ξ̇dsdθ (19)

with η̄ = h + ηM .

Taking the time derivative of V(t) yields,

V̇(t) = V̇1 + V̇2 + V̇3 (20)

where

V̇1 = ξ̇
T

Pξ + ξTPPξ

=

3
∑

i=1

αi

[

ξT
(

(

A0,i + �A0,i

)T
P

+P
(

A0,i + �A0,i

))

ξ

+ξTPA1,iξ t−η + ξTPA2,i e

+ξTP
(

A3,i + �A3,i

)

w +

+ξT
t−ηAT

1,i Pξ + eTAT
2,i Pξ

+wT
(

A3,i + �A3,i

)T
Pξ

]

(21)

V̇2 =

3
∑

i=1

αi

[

ξTT1,iξ + ξT
t−ηm

(

T2,i − T1,i

)

ξ t−ηm

−ξT
t−η̄T2,iξ t−η̄

]

(22)

V̇3 = η2
m ξ̇

T
S1ξ̇ + (η̄ − ηm)2 ξ̇

T
S2ξ̇

−ηm

t
∫

t−ηm

ξ̇
T

S1ξ̇ds

− (η̄ − ηm)

t−ηm
∫

t−η̄

ξ̇
T

S2ξ̇ds (23)

where P = PT > 0, T1,i = T1,i
T > 0, T2,i = T2,i

T >

0, S1 = S1
T > 0 and S2 = S2

T > 0.
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Applying Lemmas 1 and 2 from [14] to Eq. (23), we

obtain that

−ηm

t
∫

t−ηm

ξ̇
T

S1ξ̇ds

� −
(

ξ − ξ t−ηm

)T
S1

(

ξ − ξ t−ηm

)

(24)

− (η̄ − ηm)

t−ηm
∫

t−η̄

ξ̇
T

S2ξ̇ds

� −
(

ξ t−ηm
− ξ t−η

)T
S2

(

ξ t−ηm
− ξ t−η

)

−

−
(

ξ t−η − ξ t−η̄

)T
S2

(

ξ t−η − ξ t−η̄

)

+

+
(

ξ t−ηm
− ξ t−η

)T
RT

(

ξ t−η − ξ t−η̄

)

+

+
(

ξ t−η − ξ t−η̄

)T
R

(

ξ t−ηm
− ξ t−η

)

(25)

when
[

S2 RT

R S2

]

> 0 (26)

For the observer defined by Eq. (8), to be asymp-

totically stable with H∞ performance under the event-

triggering condition, it is to satisfy

V̇1 + V̇2 + V̇3 − eT�e

+ ε2
(

e + �ξ t−η

)T
�

(

e + �ξ t−η

)

+ ξT
t CT

1 C1ξt − γ 2qTq ≤ 0 (27)

where � =
[

0 C
]

.

Let ζ =
[

ξ ξ t−η ξ t−ηm
ξ t−η̄ e w

]T
, then Eq. (27)

is rewritten as,

�0 + �T
1 S1�1 + �T

2 S2�2 < 0 (28)

where

�0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�11 �12 S1 0 �15 �16 CT
1

⋆ �22 S2 + R S2 + RT �25 0 0

⋆ ⋆ �33 −RT 0 0 0

⋆ ⋆ ⋆ �44 0 0 0

⋆ ⋆ ⋆ ⋆ �55 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −γ 2I 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

�11 =

3
∑

i=1

αi

[

(

A0,i + �A0,i

)T
P

+P
(

A0,i + �A0,i

)

+ T1,i − S1

]

�12 =

3
∑

i=1

αi

[

PA1,i

]

; �15 =

3
∑

i=1

αi

[

PA2,i

]

�16 =

3
∑

i=1

αi

[

P
(

A3,i + �A3,i

)]

�22 =

3
∑

i=1

αi

[

−2S2 − RT − R + ε�T�i �
]

�25 =

3
∑

i=1

αi

[

ε�T�i

]

�33 =

3
∑

i=1

αi

[(

T2,i − T1,i

)

− S1 − S2

]

�44 =

3
∑

i=1

αi

[

−T2,i − S2

]

; �55 =

3
∑

i=1

αi [−�i + ε�i ]

�1 = ηm

[

3
∑

i=1

αi

(

A0,i + �A0,i

)

3
∑

i=1

αi A1,i 0 0
3
∑

i=1

αi A2,i

3
∑

i=1

αi

(

A3,i + �A3,i

)

]

�2 = (η̄ − ηm)

[

3
∑

i=1

αi

(

A0,i + �A0,i

)

3
∑

i=1

αi A1,i 0 0

3
∑

i=1

αi A2,i

3
∑

i=1

αi

(

A3,i + �A3,i

)

]

Considering the event-triggering condition (7), from

Eqs. (20)–(26), we obtain

V̇ + zTz − γ 2qTq

� ζT
(

ψ0 + ψT
1 S1ψ1 + ψT

2 S2ψ2

)

ζ (29)

Under zero initial condition, integrating the inequal-

ity in Eq. (29) from t = 0 to t = ∞ yields
∥

∥zTz
∥

∥

2
<

γ
∥

∥qTq
∥

∥

2
, which means that the event-triggering H∞-

based observer performance is guaranteed.

Similarly, if q(t)=0, we have V̇ � 0 which means

the system is asymptotically stable.

Applying the Schur complement to inequality (28),

we obtain
⎡

⎣

�0 �T
1 �T

2

⋆ −S−1
1 0

⋆ ⋆ −S−1
2

⎤

⎦ < 0 (30)

Equation (30) can be rewritten,

3
∑

i=1

⎡

⎣

�0,i �T
1,i �T

2,i

⋆ −S−1
1 0

⋆ ⋆ −S−1
2

⎤

⎦ < 0 (31)

The above inequality is obeyed, if the following con-

dition is met for each of the terms,

⎡

⎣

�0,i �T
1,i �T

2,i

⋆ −S−1
1 0

⋆ ⋆ −S−1
2

⎤

⎦ < 0; for i = 1, . . . , 3 (32)
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Pre- and post-multiplying Eq. (32) by diag {I, P, P}

and noting that [14,39]

− PS−1P � ρ2S − 2ρP (33)

Eq. (32) can be rewritten as,
⎡

⎣

�0,i �T
1,i P �T

2,i P

⋆ ρ2
1 S1 − 2ρ1P 0

⋆ ⋆ ρ2
2 S2 − 2ρ2P

⎤

⎦ < 0 (34)

The above LMI contains terms that are a function of

the variable |N (t)| ≤ 1. To eliminate such a variable,

we use Lemma 1 from [35] such that the LMI given by

(34) is transformed to,
⎡

⎣

�11,i �12,i �13,i

⋆ �22,i �23,i

⋆ ⋆ �33,i

⎤

⎦ < 0 (35)

where

�11,i =

⎡

⎢

⎢

⎣

�11,i,1,1 PA1,i S1 0

⋆ �11,i,2,2 S2 + R S2 + RT

⋆ ⋆ T2,i − T1,i − S1 − S2 −RT

⋆ ⋆ ⋆ −T2,i − S2

⎤

⎥

⎥

⎦

�11,i,1,1 = AT
0,i P + PA0,i + T1,i − S1; �11,i,2,2 = −2S2 − RT − R + ε�T�i�

�12,i =

⎡

⎢

⎢

⎣

PA2,i PA3,i CT
1 ηmAT

0,i P (η̄ − ηm) AT
0,i P

ε�T�i 0 0 ηmAT
1,i P (η̄ − ηm) AT

1,i P

0 0 0 0 0

0 0 0 0 0

⎤

⎥

⎥

⎦

�13,i =

⎡

⎢

⎢

⎣

PĒA,i μ1F̄T
A PĒB,i 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥

⎥

⎦

�22,i =

⎡

⎢

⎢

⎢

⎢

⎣

−�i + ε�i 0 0 ηmAT
2,i P (η̄ − ηm) AT

2,i P

⋆ −γ 2I 0 ηmAT
3,i P (η̄ − ηm) AT

3,i P

⋆ ⋆ −I 0 0

⋆ ⋆ ⋆ ρ2
1 S1 − 2ρ1P 0

⋆ ⋆ ⋆ ⋆ ρ2
2 S2 − 2ρ2P

⎤

⎥

⎥

⎥

⎥

⎦

�23,i =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0

0 0 0 μ2F̄T
B

0 0 0 0

ηmPĒA,i 0 ηmPĒB,i 0

(η̄ − ηm) PĒA,i 0 (η̄ − ηm) PĒB,i 0

⎤

⎥

⎥

⎥

⎥

⎦

�33,i =

⎡

⎢

⎢

⎣

−μ1I 0 0 0

⋆ −μ1I 0 0

⋆ ⋆ −μ2I 0

⋆ ⋆ ⋆ −μ2I

⎤

⎥

⎥

⎦

By assuming that the positive-definite matrix P has

the following structure,

P =

[

P1 0

0 P2

]

and Mi = P1Li , inequality given by Eq. (14) is

obtained.

Therefore, the proof is completed. ⊓⊔

3.5 Disk region definition

To enable the observer given by Eq. (8) to have an

adequate transient response, its eigenvalues must be

restricted to a disk (r, c) with radius r and center located

at (−c, 0). This condition is complied, if the following

LMI is defined, such that
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Table 2 Values of vehicle parameters

Parameter Value Units

a 1.51 m

b 2.04 m

br 54447.87 Mms/rad

Cα f 121205 N/rad

Cαr 324885.28 N/rad

g 9.81 m/s2

h 0.35 m

Ix 1493.62 kg m2

Iz 2550.1 kg m2

kr 1184160.47 Mm/rad

m 2150 kg

[

−r · P1

(

P1A0i + �A0,i − Mi C
)

+ c · P1

⋆ −r · P1

]

< 0; for i = 1, . . . , 3 (36)

Applying Lemma 1 from [35] to eliminate the uncer-

tainty term �A0,i , the above LMI is transformed to

⎡

⎢

⎢

⎣

−r · P1 (P1A0i − Mi C) + c · P1 P1ĒA,i 0

⋆ −r · P1 0 μ3F̄T
A

⋆ ⋆ −μ3I 0

⋆ ⋆ ⋆ −μ3I

⎤

⎥

⎥

⎦

< 0; for i = 1, . . . , 3 (37)

4 Results and discussion

To test the effectiveness of the designed observer, both

simulations were carried out using the vehicle dynam-

ics software TruckSim® and experimental results with

a real instrumented van.

In this research work, the longitudinal speed, vx ,

has been limited to the following interval [2, 20] m/s.

The parameter values of the vehicle model used for the

observer design given by Eq. (8) are shown in Table 2.

Considering the most restrictive triangle formed by

vertices, μ1μ2μ3, and letting ηm = 5 ms and disk

region (80,80), the minimum H∞ performance index,

γ 2, for different event-triggering conditions, ǫ2, max-

imum networks delay, ηM , and sampling period, h, is

depicted in Table 3. It can be seen that the γ 2 increases

with the increase of h, ηM and ǫ2.

To prove the effectiveness of the proposed method-

ology, the following 4 cases have been considered for

values of h = 15 ms, ηm = 5 ms and ηM = 20 ms:

– Case 1 Estimation of the sideslip angle, βNN, and

the roll angle, φNN, using only the neural network

described in [21].

– Case 2 Estimation of the sideslip angle, β2, and

the roll angle, φ2, using the event-triggered H∞-

based observer defined in Eq. (8) and using the

yaw rate, r , and the roll rate, φ̇ as observed mea-

sures. These measurements are obtained directly

from the vehicle-mounted IMU sensor; therefore,

C11 =
[

0 1 0 1
]

and C =

[

0 1 0 0

0 0 0 1

]

. The

observer gain and the event-triggered weighting

matrices obtained for each of the polytope trian-

gles are:

– Triangle with edges μ1μ2μ3: For values of

γ 2 = 100, ρ1 = 0.5, ρ2 = 0.5, ε2 = 0.001,

and disk region (90, 90),

�1 =

[

77.482 63.359

⋆ 271.421

]

;

�2 =

[

920.184 377.618

⋆ 1765.332

]

�3 =

[

55.652 15.013

⋆ 69.346

]

;

L1 =

⎡

⎢

⎢

⎣

−0.341 −1.118

37.163 58.431

−1.780 −3.026

41.529 110.421

⎤

⎥

⎥

⎦

L2 =

⎡

⎢

⎢

⎣

−0.568 1.149

26.454 16.086

−1.288 −3.560

37.732 136.969

⎤

⎥

⎥

⎦

L3 =

⎡

⎢

⎢

⎣

9.271 1.265

−58.967 8.755

−0.884 −3.208

43.829 124.929

⎤

⎥

⎥

⎦

– Triangle with edges μ3μ4μ5: For values of

γ 2 = 15, ρ1 = 0.5, ρ2 = 0.5, ε2 = 0.001,

and disk region (100, 100),

�3 =

[

351.803 −18.680

⋆ 1317.342

]

�4 =

[

1160.396 39.419

⋆ 1348.761

]
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Table 3 Minimum H∞

performance index, γ 2, for

different values of h, ηm and

ǫ2

γ 2 ǫ2

h ηM 0.001 0.01 0.1

5 20 278.5 340.9 1099.0

25 316.6 391.2 1352.4

30 365.5 456.9 1724.2

40 518.5 669.2 3304.2

50 838.9 1141.1 9938.3

10 20 316.6 391.2 1352.4

25 365.5 456.9 1724.2

30 430.1 545.2 2306.6

40 645.5 852.7 5250.4

50 1158.8 1654.4 26484.8

15 20 365.5 456.9 1724.2

25 430.1 545.2 2306.6

30 519.5 669.2 3304.2

40 838.9 1144.1 9938.3

50 1752.3 2687.9 202487.8

�5 =

[

286.583 229.939

⋆ 1263.867

]

L3 =

⎡

⎢

⎢

⎣

11.662 2.163

−92.398 −5.219

−0.237 −0.227

29.987 18.873

⎤

⎥

⎥

⎦

L4 =

⎡

⎢

⎢

⎣

24.414 −6.739

−131.423 30.797

−0.259 −0.239

35.714 11.228

⎤

⎥

⎥

⎦

L5 =

⎡

⎢

⎢

⎣

52.925 −18.791

−190.056 67.819

−0.239 −0.210

49.742 2.983

⎤

⎥

⎥

⎦

– Case 3 Estimation of the sideslip angle, β3, and

the roll angle, φ3, using the H∞-based observer

without event-triggered condition defined in Eq. (8)

and using the pseudo-slip angle, βNN, the yaw rate,

r , the pseudo-roll angle, φNN, and the roll rate, φ̇

as observed measures. The pseudo-measures of the

sideslip and roll angles are obtained from the NN

module. Therefore, C = I4×4. The observer gain

matrices obtained for each of the polytope triangles

are:

– Triangle with edges μ1μ2μ3: For values of

γ 2 = 500, ρ1 = 1, ρ2 = 1, ε2 = 0.001, and

disk region (130, 130),

L1 =

⎡

⎢

⎢

⎣

6.942 −2.070 −101.059 −2.848

−21.988 12.220 170.350 −8.097

0.856 −0.045 15.310 −0.290

−16.719 1.9125 −279.608 29.315

⎤

⎥

⎥

⎦

L2 =

⎡

⎢

⎢

⎣

13.810 −2.823 −106.258 −5.938

11.675 14.733 287.131 11.968

0.445 −0.083 22.960 −0.301

−52.523 4.208 −265.192 35.582

⎤

⎥

⎥

⎦

L3 =

⎡

⎢

⎢

⎣

−9.702 6.153 −83.234 −3.399

97.550 −50.134 170.927 −1.877

0.757 −0.112 18.373 −0.465

−54.177 18.259 −301.154 37.549

⎤

⎥

⎥

⎦

– Triangle with edges μ3μ4μ5: For values of

γ 2 = 40, ρ1 = 1, ρ2 = 1, ε2 = 0.001, and
disk region (90, 90),

L3 =

⎡

⎢

⎢

⎣

−9.892 7.203 −26.068 0.924

93.252 −63.417 13.860 −1.127

0.026 −0.143 6.345 −0.138

−27.567 18.892 −167.154 12.008

⎤

⎥

⎥

⎦

L4 =

⎡

⎢

⎢

⎣

−22.205 17.260 −43.679 −1.506

132.495 −94.691 18.669 6.500

0.077 −0.153 6.170 −0.121

−38.306 25.907 −166.523 11.890

⎤

⎥

⎥

⎦
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L5 =

⎡

⎢

⎢

⎣

−50.206 37.669 −56.772 −5.501

187.612 −141.285 24.634 17.446

0.066 −0.164 6.087 −0.117

−52.919 37.192 −165.487 9.449

⎤

⎥

⎥

⎦

– Case 4 (proposed methodology) Estimation of the

sideslip angle, β4, and the roll angle, φ4, using

the event-triggered H∞-based observer defined in

Eq. (8) and using the pseudo-slip angle, βNN, the

yaw rate, r , the pseudo-roll angle, φNN, and the

roll rate, φ̇ as measures observed. The pseudo-

measurements of the sideslip and roll angles are

obtained from the NN module. Therefore, C =

I4×4. The observer gain and the event-triggered

weighting matrices obtained for each of the poly-

tope triangles are:

– Triangle with edges μ1μ2μ3: For values of

γ 2 = 365.5, ρ1 = 0.1, ρ2 = 1, ε2 = 0.001,
and disk region (80, 80),

�1 =

⎡

⎢

⎢

⎣

479.217 −55.234 −4583.541 −137.372

⋆ 22.882268 103.501 34.602

⋆ ⋆ 103708.221 2343.151

⋆ ⋆ ⋆ 215.447

⎤

⎥

⎥

⎦

�2 =

⎡

⎢

⎢

⎣

4593.791 −230.577 −19077.116 −734.016

⋆ 322.356 2029.718 206.904

⋆ ⋆ 641226.804 13608.116

⋆ ⋆ ⋆ 875.631

⎤

⎥

⎥

⎦

�3 =

⎡

⎢

⎢

⎣

1012.524 54.266 4331.939 −183.459

⋆ 61.775 828.010 92.238

⋆ ⋆ 41619.384 1239.625

⋆ ⋆ ⋆ 420.275

⎤

⎥

⎥

⎦

L1 =

⎡

⎢

⎢

⎣

17.501 −5.136 −88.192 −6.402

−45.027 18.839 −258.892 −11.374

2.013 −0.687 21.595 −1.283

−54.108 24.657 −243.702 67.466

⎤

⎥

⎥

⎦

L2 =

⎡

⎢

⎢

⎣

16.312 −3.271 −119.808 −9.498

31.235 −2.036 −352.613 5.800

−0.723 −0.309 56.101 −0.527

−54.974 16.390 −363.613 62.324

⎤

⎥

⎥

⎦

L3 =

⎡

⎢

⎢

⎣

−16.505 7.723 −50.425 −4.330

138.352 −56.374 −57.251 −6.259

1.533 −0.350 28.568 −1.506

−58.980 23.643 −592.710 55.960

⎤

⎥

⎥

⎦

– Triangle with edges μ3μ4μ5: For values of

γ 2 = 40, ρ1 = 0.1, ρ2 = 1, ε2 = 0.001, and
disk region (80, 80),

�3 =

⎡

⎢

⎢

⎣

852.055 −165.944 −106.670 167.924

⋆ 140.484200 −89.814 −60.100

⋆ ⋆ 34071.175 538.080

⋆ ⋆ ⋆ 814.393

⎤

⎥

⎥

⎦

�4 =

⎡

⎢

⎢

⎣

1490.043 −21.843 −110.914 −190.907

⋆ 494.610 60.076 88.615

⋆ ⋆ 33479.493 448.285

⋆ ⋆ ⋆ 889.740

⎤

⎥

⎥

⎦

�5 =

⎡

⎢

⎢

⎣

829.123 171.058 −62.722 −60.858

⋆ 252.527 29.126 172.370

⋆ ⋆ 33629.670 456.683

⋆ ⋆ ⋆ 684.182

⎤

⎥

⎥

⎦

L3 =

⎡

⎢

⎢

⎣

−12.943 9.373 −14.584 2.686

121.895 −83.666 −176.212 −20.020

0.127 −0.159 7.827 0.055

−41.173 27.596 49.260 12.920

⎤

⎥

⎥

⎦

L4 =

⎡

⎢

⎢

⎣

−25.264 20.931 −90.592 −2.097

159.016 −120.273 139.739 3.781

0.054 −0.129 8.425 0.099

−50.131 33.535 −5.792 9.430

⎤

⎥

⎥

⎦

L5 =

⎡

⎢

⎢

⎣

−57.100 45.763 −54.923 −0.612

205.405 −170.225 107.593 17.436

0.080 −0.138 8.280 0.075

−60.578 43.656 13.870 8.922

⎤

⎥

⎥

⎦

The results obtained are shown below.

4.1 Simulation results

The simulation results were carried out using the

TruckSim® software with a van model experimentally

validated from a real Mercedes Sprinter van that is suit-

ably instrumented. Vargas-Melendez et al. [28] present

a description of how the process validating the simu-

lation model was carried out. A sine sweep maneuver

at 40 km/h was simulated with a steering wheel angle

profile during 100 s as shown in Fig. 2. To simulate the

real behavior of the sensors, white Gaussian noise is

added to the observed signals, the longitudinal speed,

vx , the steering wheel angle, δ, the longitudinal accel-

eration, ax , the lateral acceleration, ay , the yaw rate,

r , and the roll rate, φ̇, with zero mean and variances

of 0.01 km/h, 0.01◦, 0.01 g’s, 0.01 g’s, 0.01◦/s, and

0.01◦/s, respectively.

In Figs. 3 and 4, the values obtained for each of

the cases described above are shown together with

the data obtained from the TruckSim® vehicle model

(Ground Truth). To quantify the results, the values

of the maximum absolute error, the root-mean-square

error (RMSE), and the normalized root-mean-square

deviation (NRMSD) of each of the case studies are

shown in Table 4. From the maximum errors obtained,

it can be seen that the estimator based only on NN is

strongly affected by the noise in the signals obtained

from the sensors. As for the event-triggered H∞-based

observer that uses only the yaw rate, r , and the roll rate,

φ̇, (Case 2), it is noted that the errors of the estimated

values of both sideslip angle, β, and roll angle, φ, are
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Fig. 2 Steering wheel

angle for the sine sweep

maneuver at 40 km/h
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Fig. 3 Simulation results:

sideslip angle for the sine

sweep maneuver at 40 km/h
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β

higher than those obtained in Case 4, with the excep-

tion of the maximum absolute error. This improvement

is mainly observed in the estimation of the roll angle,

φ, because its value is obtained from the integration of

the roll rate, φ̇, which causes an accumulation of the

error.

Figure 5 plots only the release instants for the cases

with an event-triggered condition, Case 2 and Case 4.

For Case 2, in which the observed measures are the yaw

rate, r , and the roll rate, φ̇, only 51% of the sampling

signals will be sent to the event-triggered H∞-based

observer. For Case 4, in which the observed signals are

the pseudo-sideslip angle, βNN, yaw rate, r , pseudo-

roll angle, φNN, and the roll rate, φ̇, the percentage of

the sampling signals which will be sent to the event-

triggered H∞-based observer is increased until 86%.

Table 5 shows the maximum absolute error and

RMSE for other severe maneuvers, such a double lane

change (DLC) at 70 km/h and J-Turn with a wheel

steering angle of 60◦ at 60 km/h. As can be seen, in

comparison with the previous sine swipe maneuver,

similar results were obtained. Additionally, a reduc-

tion of the information, equaling 43.7% and 95% for

a DLC maneuver and a J-turn, respectively, sent to the

network was obtained for the Case 4. For Case 2, this

reduction is 17.2% and 94.7%, respectively.

By designing an event-triggered H∞-based observer,

we achieve a reduction in the sending of signals through

the network. By comparing the observers defined in
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Fig. 4 Simulation results:

roll angle for the sine sweep

maneuver at 40 km/h
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Table 4 Simulation results for a sine sweep maneuver at 40 km/h: errors

Sideslip angle Roll angle

Max. error (◦) RMSE (◦) NRMSD (%) Max. error (◦) RMSE (◦) NRMSD (%)

Case 1 2.32 0.05 1.56 0.75 0.08 2.24

Case 2 0.43 0.18 5.70 0.62 0.34 9.46

Case 3 0.56 0.15 4.73 0.22 0.036 1.01

Case 4 1.09 0.10 3.20 0.31 0.041 1.14

Fig. 5 Simulation results:

release instants
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Fig. 6 Experimental

results: Mercedes Sprinter

Fig. 7 Experimental

results: wheel steering angle

for the real maneuver
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Fig. 8 Experimental

results: longitudinal speed

for the real maneuver
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Table 5 Simulation results for a DLC maneuver at 70 km/h and a J-turn maneuver at 60 km/h: errors

DLC at 70 km/h J-Turn at 60 km/h

Sideslip angle Roll angle Sideslip angle Roll angle

Max. error (◦) RMSE (◦) Max. error (◦) RMSE (◦) Max. error (◦) RMSE (◦) Max. error (◦) RMSE (◦)

Case 1 0.255 0.0051 0.062 0.0095 0.255 0.006 0.071 0.01

Case 2 0.160 0.0634 0.223 0.095 0.185 0.098 0.061 0.05

Case 3 0.144 0.0583 0.008 0.003 0.793 0.073 0.017 0.002

Case 4 0.134 0.0574 0.009 0.004 0.0186 0.096 0.018 0.007

Table 6 Experimental results: errors

Sideslip angle Roll angle

Max. error (◦) RMSE (◦) NRMSD (%) Max. error (◦) RMSE (◦) NRMSD (%)

Case 1 6.36 1.41 10.39 3.48 1.16 21.2

Case 2 3.52 0.87 6.42 5.24 1.74 31.65

Case 3 3.91 0.92 6.75 3.32 1.17 21.38

Case 4 4.00 1.03 7.57 3.32 1.18 21.48

Fig. 9 Experimental

results: sideslip angle for

the real maneuver
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REAL CASE 1 CASE 2 CASE 3 CASE 4

β

Case 3 and Case 4, i.e., without and with an event-

triggered condition, respectively, we can see that very

similar errors are obtained. Therefore, it can be stated

that, to reduce the traffic in the network, it is advan-

tageous to use an event-triggered condition in the

observer’s design.

4.2 Experimental results

The event-triggered H∞-based observer has also been

validated by experimental results. An instrumented

Mercedes Sprinter van (Fig. 6) was used with a steer-

ing wheel sensor from Kistler that provides the wheel
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Fig. 10 Experimental

results: roll angle for the

real maneuver
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steering angle signal, δ, an IMU sensor from Racelogic

located at the van’s center of gravity, which provides

the signals of the longitudinal acceleration, ax , the lat-

eral acceleration, ay , the yaw rate, r , and the roll rate,

φ̇, and a dual GPS antenna from Racelogic. The dual

GPS antenna was placed transversely to the vehicle’s

direction of travel to provide the values of the sideslip

angle, β, and roll angle, φ, which are taken as ground

truth to test the effectiveness of the observer design.

The GPS antennas also provide the signal of the longi-

tudinal speed, vx . The maneuver carried out is shown

in Fig. 7, and it consists of a combination of a straight

line maneuver, J-turn maneuvers, and slalom maneu-

vers with a longitudinal speed profile as shown in Fig. 8.

Figures 9 and 10 show the estimated sideslip angle,

β, and the estimated roll angle, φ, respectively, for

each of the cases defined previously and their real val-

ues (ground truth). As in the simulation results, the

experimental results have been quantified through the

maximum absolute error (Max. error), the root-mean-

square error (RMSE), and the normalized root-mean-

square deviation (NRMSD). Their values are shown

in Table 6. In general terms, it can be seen, as in the

simulation results, that using a H∞-based observer in

combination with the NN reduces the errors obtained

(Case 3 and Case 4), especially the maximum absolute

error, compared with the case using only the NN-based

estimator (Case 1). In addition, it is noted that if only

the yaw rate, r , and the roll rate, φ̇, are considered as

observable signals (Case 2), the errors obtained in the

estimation of the roll angle, φ, are larger for the rea-

son previously indicated in Sect. 4.1. Therefore, it is

advantageous to use of the pseudo-values to reduce the

errors in the estimation process. In addition, we have

compared the cases without any event-triggered con-

dition (Case 3) and with an event-triggered condition

(Case 4), and it is observed that the errors obtained are

very similar in both cases.

In relation to the event-triggered condition, Fig. 11

shows the release time for Case 2 and Case 4. In both

cases, a reduction of approximately 54% of the infor-

mation sent to the network has been achieved. These

results show the advantage of designing an observer

with an event-triggered condition.

5 Conclusion

In this paper, an event-triggered H∞-based observer

was designed to simultaneously estimate the values of

the sideslip angle, β, and roll angle, φNN, which uses

the pseudo-measurements of the sideslip angle, βNN,

and the roll angle, φ, obtained previously from an NN-

based observer as observed signals. Additionally, the
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Fig. 11 Experimental

results: release instants
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designed observer takes into account the time needed

for the signal to be sent through the network to the

designed observer.

The results obtained indicate that an observer can be

designed to simultaneously estimate both the sideslip

angle, β, and the roll angle, φ, from values provided by

sensors already installed on current series production

vehicles, and therefore without increasing their cost.

Finally, it can be concluded that obtaining pseudo-

measurements and their subsequent filtering mainly in

these variables, which are obtained by integration, as

is the case of the roll angle, φ, allows a reduction of

the error in its estimation. Finally, the incorporation of

an event-triggered condition in the observer’s design

manages to reduce the amount of information sent to the

network and, therefore, a reduction of its saturation. In

the results presented, a reduction of between 14% and

95% has been achieved, depending on the maneuver.

Based on the presented results, other event-triggered

mechanisms will be studied such as integral-based

event-triggered conditions in order to further reduce the

use of the communication network [25,26]. Besides,

it will be worth designing the observer taking into

account sensor failures.
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