
1

Event-Triggering in Distributed Networked Control
Systems
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Abstract—This paper examines event-triggered data trans-
mission in distributed networked control systems with packet
loss and transmission delays. We propose a distributed event-
triggering scheme, where a subsystem broadcasts its state infor-
mation to its neighbors only when the subsystem’s local state
error exceeds a specified threshold. In this scheme, a subsystem
is able to make broadcast decisions using its locally sampled
data. It can also locally predict the maximal allowable number of
successive data dropouts (MANSD) and the state-based deadlines
for transmission delays. Moreover, the designer’s selection of the
local event for a subsystem only requires information on that
individual subsystem. Our analysis applies to both linear and
nonlinear subsystems. Designing local events for a nonlinear
subsystem requires us to find a controller that ensures that
subsystem to be input-to-state stable. For linear subsystems, the
design problem becomes a linear matrix inequality feasibility
problem. With the assumption that the number of each subsys-
tem’s successive data dropouts is less than its MANSD, we show
that if the transmission delays are zero, the resulting system is
finite-gain Lp stable. If the delays are bounded by given deadlines,
the system is asymptotically stable. We also show that thosestate-
based deadlines for transmission delays are always greaterthan
a positive constant.

Index Terms—Event-Triggering; Networked Control Systems;
Distributed Systems

I. I NTRODUCTION

A distributed networked control system (NCS) consists of
numerous coupled subsystems (also called “agents”), which
are geographically distributed. In such a system, individual
subsystems exchange information over a communication net-
work. These networked systems are found throughout our
national infrastructure with specific examples being the elec-
trical power grid and transportation networks. Networkingnot
only refers to the communication infrastructure supporting
feedback control, but also refers to the fact that individual
subsystems are physically interconnected in a way that can
be modelled as a network. The networking of control effort
can be advantageous in terms of lower system costs due to
streamlined installation and maintenance costs.

The introduction of a communication network, however,
raises important issues regarding the impact that such com-
munication has on the control system’s performance. In prac-
tice, communication, especially wireless communication,takes
place over digital networks where the data is transmitted in
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discrete packets. These packets may be lost during commu-
nication. Moreover, the communication media is a resource
that is usually accessed in a mutually exclusive manner by
neighborhood agents. This means that the throughput capacity
of such networks is limited. So one important issue in the
implementation of such systems is to identify methods that
more effectively use the limited network bandwidth available
for transmitting state information.

For this reason, some researchers began investigating the
timing issue in NCS. In other words, how frequently should
subsystems communicate to ensure that the NCS has a de-
sired level of performance? In traditional approaches, one
first designs the controllers under the assumption of perfect
communication and then determines themaximum allowable
transfer interval (MATI) between two subsequent message
transmissions that ensure closed-loop stability under a network
protocol, such as Try-Once-Discard (TOD) or Round-Robin
(RR) protocol.

The computation of the MATI, however, is often done in a
highly centralized manner. This is impractical for large-scale
systems. Moreover, because the MATI is computed before
the system is deployed, it must ensure performance levels
over all possible system states. As a result, the MATI may
be conservative in the sense of being shorter than necessary
to assure a specified performance level. Consequently, the
bandwidth of the network has to be higher than necessary
to ensure the MATI is not violated.

This paper addresses the timing issue through the use
of a distributed event-triggered feedback scheme in NCS,
where packet loss and transmission delays are allowed. Event-
triggering has an agent broadcast its state information only
when “needed”. In this case, “needed” means that some mea-
sure of the agent’s state error is above a specified threshold.
Our scheme is decentralized in the sense that an agent is able
to make broadcast decisions using its locally sampled data.An
agent can also locally predict themaximal allowable number of
successive data dropouts(MANSD) as well as the state-based
bounds for transmission delays (also called “deadlines”).Such
information may be used to help schedule an agent’s access
to the communication network. Moreover, the selection of
the event-triggering threshold only requires local information
about that agent, so that the design is decentralized.

Our analysis applies to both linear and nonlinear subsys-
tems. Designing “local” events for a nonlinear subsystem
requires us to find a controller that ensures the subsystem
is input-to-state stable. By “local”, it means the event only
depends on that subsystem’s local state and error. For linear
subsystems, the design problem becomes a linear matrix
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inequality (LMI) feasibility problem. With the assumption
that the transmission delays are zero and the number of each
agent’s successive data dropouts is less than its MANSD, we
show that the resulting NCS is finite-gainLp stable. When
the transmission delays are not zero, we provide state-based
deadlines for those delays, which are always greater than a
positive constant. As long as the delay in each transmissionis
less than the associated deadline, we show that the resulting
NCS is asymptotically stable. Simulation results show that
the average broadcast period generated by our scheme scales
well with respect to the number of agents. In addition to this,
simulation results suggest that the computational time required
to select event thresholds also scales well with respect to
system size. These results can serve as the basis for the design
of firm real-time systems that guarantee system performance
at levels traditionally seen in hard real-time systems.

The paper is organized as follows. Prior work is discussed
in section II. Section III formulates the problem. Distributed
approaches to design the local triggering event are introduced
in section IV for both nonlinear and linear systems. Data
dropouts and transmission delays are considered in section
V. Simulation results are presented in section VI. Section VII
draws the conclusions.

II. PRIOR WORK

To the best of our knowledge, there is little prior work on the
distributed implementation of event-triggering in NCS. Prelim-
inary results [1], [2] proposed decentralized event-triggered
feedback schemes for linear and nonlinear systems, respec-
tively. This work studied the asymptotic stability of NCS with-
out considering packet loss and transmission delays. An event-
triggering scheme was introduced for sensor-actuator networks
[3] . This work, however, adopted acentralizedapproach to
event-design. Scheduling of event-triggered controllersover
networks was studied in [4], where different MAC protocols
were compared in simulations. A recent study [5] applied
distributed event-triggering in Network Utility Maximization
(NUM) problem. Other than these papers, we are aware of no
other work formally analyzing distributed implementations of
event-triggering in NCS. There is, however, a great deal of re-
lated work dealing with event-triggered feedback in embedded
control systems, sample period selection, and packet loss in
NCS. We will review these areas and discuss their relationship
to our distributed event-triggering scheme.

Early work [6], [7] analyzed the scheduling of real-time
network traffic. The impact of communication constraints
on system performance, however, was not addressed in this
work. It was noticed [8], [9] that communication delay had a
harmful effect on system stability. These papers considered
the one packet transmission problem, in which all of the
system outputs were packaged into a single packet. Agents
in the network, therefore, do not have to compete for channel
access. One packet transmission strategies, however, require
a supervisor who gathers the data from all subsystems into a
single packet. The cost and complexity of implementing such
centralized supervisors will not scale well with system size.
As a result, such schemes may be impractical for large-scale
systems with limited network bandwidth.

Asynchronous transmissions were considered in [10]. In
this work, several sensors and actuators attempt to access the
communication channel at the same time, but only one of them
actually gains access. Which agent gains access depends on the
media access control (MAC) protocol being used. Commonly
used MAC protocols include Try-Once-Discard (TOD) and
Round-Robin (RR) [10]. For these protocols, an upper bound
on the MATI was derived [10] that guarantees asymptotic
stability of the system. It led to scheduling methods [11] that
were able to assure the MATI was not violated. Further work
[12], [13] derived tighter bounds on the MATI. All of this prior
work confined its attention to control area network (CAN)
buses where centralized computers coordinate the information
flow across the network. The length of the MATI heavily relied
on the choice of network protocols.

The aforementioned work computed bounds on the MATI
in a centralized manner. This earlier work also assumed that
MAC protocols were also realized using a central supervisor.
A centralized approach in analysis and implementation is
impractical for large-scale systems. Moreover, because the
MATI is computed before the system is deployed, the selected
MATI must ensure performance levels over a wide range
of possible system states. As a result, the MATI may be
conservative in the sense of being shorter than necessary to
assure a specific performance level. Consequently, the network
bandwidth has to be higher than necessary to ensure the MATI
is not violated.

One approach for reducing the bandwidth requirements
within NCS is to reduce the frequency with which agents
communicate. Recent work considering event-triggered feed-
back sampled-data systems [14], [15] shows that the sampling
rates under event-triggering are well below those in periodic
task models. This is because the system can adaptively adjust
the rates in a manner that is sensitive to what is currently
happening within the system. It should therefore be possible
to reduce the transmission frequency in NCS using event-
triggering. Event-triggering [16] has appeared under a number
of names that include interrupt-based feedback [17], Lebesgue
sampling [18], state-triggered feedback [19], and self-triggered
feedback [20], [15], [21]. All of this prior work, however,
focused on using event-triggered feedback in single processor
real-time systems.

Another related research direction is to study packet loss in
NCS. In [22], a 2-state Markov model was used to describe
the packet loss. The system can either use past control inputs
or compute new control inputs based on an estimate of the
lost data. In [23], packet loss is modelled as an identically
independently distributed (i.i.d.) process in a single-input
single-output NCS. These results were extended in [24] by
modelling data dropouts as a Markov chain instead of an
i.i.d. process. Optimal dropout compensation for NCS was
presented in [25]. A packet-based multi-control strategy was
examined in [26] to improve the performance of NCS, where
packet loss is assumed to follow a stochastic 2-state Markov
model. All of this work focused on modelling data dropouts
as stochastic processes in a centralized manner. This paper, on
the other hand, presents a method by which agents can locally
estimate their MANSD. Again, this information may be used
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in scheduling agent access to the communication medium.
This paper considers a more general framework of asyn-

chronous information transmission in NCS using distributed
event-triggering. This work addresses the impact that both
data dropouts and transmission delays have on overall system
performance. To the best of our knowledge, this is the first
result examining the requirements for distributed implementa-
tion of NCS. It is also the first result on packet loss in event-
triggering. Another important contribution over prior work
[10], [12], [13] is that this paper derives state-based bounds
on stabilizing transmission delays. Furthermore, we show that
the existence of strictly positive bounds on stabilizing delays.
These bounds can be used to select realistic deadlines that
can be achieved by communication network middleware. Our
results can therefore serve as the basis for the design of firm
real-time systems that guarantee system performance at levels
traditionally seen in hard real-time systems.

III. PROBLEM FORMULATION

Consider a distributed NCS containingN agents. TheseN
agents are coupled together and each agent receives informa-
tion from neighboring agents. LetN = {1, 2, · · · , N}. The
coupling and information flow in the NCS can be described
by a coupling graph and a communication graph, which are
defined as follows.

Definition 3.1: A graphGcp = (N , Ecp) is called the cou-
pling graph of a NCS, where each nodei ∈ N represents an
agent in the NCS. The ordered pair (edge)(i, j) is in Ecp if
agentj is directly driven by agenti.

Definition 3.2: A graph Gcm = (N , Ecm) is called the
communication graph of a NCS, where each nodei ∈ N
represents an agent in the NCS. The ordered pair (edge)(i, j)
is in Ecm if agentj can receive broadcasts from agenti.

In this paper, the coupling and communication graphs need
not be the same. Both graphs are directed. This provides us
a general framework for the network topology. For notational
convenience, we let

• Zi , {j ∈ N | (j, i) ∈ Ecm} denote the set of agents that
agenti can get information from,

• Ui , {j ∈ N | (i, j) ∈ Ecm} denote the set of agents that
can receive agenti’s information,

• Di , {j ∈ N | (j, i) ∈ Ecp} denote the set of agents that
directly drive agenti, and

• Si , {j ∈ N | (i, j) ∈ Ecp} denote the set of agents who
are directly driven by agenti.

Notice thati 6∈ Zi ∪Di ∪ Ui ∪ Si. We let Σ̄i = Σi ∪ {i} for
any setΣi ∈ {Zi, Ui, Di, Si}. For any setΣ ⊆ N , |Σ| denotes
the number of the elements inΣ. ‖ · ‖2 denotes the Euclidean
2-norm of a vector,‖ · ‖ denotes the matrix norm induced by
the Euclidean vector norm, andλmin(A), λmax(A) denote the
minimal and maximal eigenvalues of matrixA, respectively.

The state equation of agenti is

ẋi(t) = fi
(

xD̄i
(t), ui(t), wi(t)

)

ui(t) = gi
(

xZ̄i
(t)
)

, xi(t0) = xi0

where xi : R → R
n is the state trajectory of agenti,

ui : R → R
m is a control input,wi : R → R

l is an

exogenous disturbance inLp space,gi : R
n|Z̄i| → R

m

is the feedback strategy of agenti satisfying gi(0) = 0,
fi : R

n|D̄i| × R
m × R

l → R
n is a locally Lipschitz

function satisfyingfi(0, 0, 0) = 0, and xD̄i
= {xj}j∈D̄i

,
xZ̄i

= {xj}j∈Z̄i
. For convenience, this paper assumes that

the states, inputs, and disturbances of agents have the same
dimension. The results in this paper can be easily extended
to cases where the dimensions of agents’ states, inputs, and
disturbances are different from each other.

This paper assumes agenti can only detect its own state,
xi, and receive the broadcast states of its neighbors inZi. If
a local “error” signal exceeds a given threshold, which can
be detected by hardware detectors, agenti will sample and
broadcast its state information to all agents in the setUi over
a real-time network. Meanwhile, agenti’s control,ui, at time
t is computed based on the latest states that were successfully
broadcast by those agents in̄Zi. These broadcast states are
denoted asx̂Z̄i

(t). The control signal used by agenti is
computed based on̂xZ̄i

(t). This means that the state equation
of agenti can be written as

ẋi(t) = fi
(

xD̄i
(t), ui(t), wi(t)

)

ui(t) = gi
(

x̂Z̄i
(t)
)

, xi(t0) = xi0, ∀t ≥ t0. (1)

One thing worth mentioning is that the control inputui(t)
depends on̂xi(t) instead ofxi(t). In fact, if agenti knows
its exact statexi(t), the control inputui(t) can be computed
based onxi(t) and x̂Zi

(t). The analysis in this paper is
still applicable. But in this case, agenti has to continuously
computeui. From the perspective of saving computational
resource, we relateui(t) to x̂i(t). ui is, therefore, constant
between two consecutive successful broadcasts by the agents
in Z̄i, becausex̂Z̄i

(t) remains the same during that time
period. Of course, agenti can also update its control input
between broadcasts, subject to its local computational resource
available. But this requires a more sophisticated strategyto
manage the computational resource that will be studied in the
future.

Agent i’s broadcast is characterized by three monotone
increasing sequences of time instants: the broadcast release
time, {rij}

∞
j=1, the successful broadcast release,{bik}

∞
k=1, and

the broadcast finishing time{f i
k}

∞
k=1. The timerik denotes the

time instant when thekth broadcast of agenti is released. The
data, however, may not be transmitted successfully. The time
bik denotes the time instant when theith agent “successfully”
broadcasts its state for thekth time. “Successfully” means
the data in this broadcast is received by ALL agents inUi

successfully. The sequence,{bik}
∞
k=1, is clearly a subsequence

of sequence{rij}
∞
j=1. The jth inter-release time of agenti is

defined asT i
j = rij+1−rij. It is also known as thejth broadcast

period of agenti. We usedik to denote the number of times
agenti broadcasts its state between time instantsbik andbik+1.
This is also equal to the number of data dropouts between
agenti andUi over the interval[bik, b

i
k+1]. We assume there is

no delay between sampling and broadcasting data. The delay
considered in this paper is the time between sampling and
”successful” receipt of the data. The timef i

k denotes the time
instant when all of agenti’s neighbors (agents inUi) receive
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thekth successfully broadcasted data from agenti. Notice that
x̂i(t) = xi(b

i
k) for all t ∈ [f i

k, f
i
k+1). In the following we let

ei : [t0,∞) → R
n be defined asei(t) , xi(t) − x̂i(t) for

∀t ≥ t0. This function therefore represents the error between
agent i’s current state and the state at its last successful
broadcast. We also define the functionεji : [t0,∞) → R

n

asεji (t) , xi(t)− xi(r
i
j). This signal therefore represents the

error between agenti’s current state and its state atrij , whether
or not the broadcast atrij was successful.

Definition 3.3: The system in equation (1) is said to be
finite-gainLp stable fromw to x with an induced gain less
thanγ if there exist non-negative constantsγ andξ such that
for ∀w ∈ Lp

(
∫ ∞

t0

‖x(t)‖p2dt

)
1

p

≤ γ

(
∫ ∞

t0

‖w(t)‖p2dt

)
1

p

+ ξ. (2)

The objective of this paper is to develop distributed event-
triggering schemes to identify{rij}

∞
j=1, {bik}

∞
k=1, and{f i

k}
∞
k=1

such that the NCS defined in equation (1) achieves a desired
level of performance with regard to the stability concepts
introduced above.

IV. D ISTRIBUTED BROADCAST-TRIGGERING EVENT

DESIGN

This section describes a distributed approach to the design
of “local” events for both nonlinear and linear subsystems.By
“local”, we mean that a subsystem’s event can be triggered
using information that is ”locally” available to the agent.This
information includes the agent’s local state as well as local
models of the agent’s dynamics.

A. Local Event Design in Nonlinear Systems

The following assumption will be used throughout this
paper.

Assumption 4.1:Consider subsystemi ∈ N in equation
(1), i.e.

ẋi(t) = fi
(

xD̄i
(t), ui(t), wi(t)

)

ui(t) = gi
(

x̂Z̄i
(t)
)

, xi(t0) = xi0, ∀t ≥ t0. (3)

Assume that for anyi ∈ N , there exist a continuously
differentiable, positive-definite functionVi : R

n → R, classK
functionsζi1, ζi2 : R → R, positive constantsαi, βi, δi, γi ∈ R,
and control lawgi : Rn|Z̄i| → R

mi satisfying

ζi1(‖xi‖2) ≤ Vi(xi) ≤ ζi2(‖xi‖2) (4)
∂Vi

∂xi

(xi)fi(xD̄i
, gi(xZ̄i

− eZ̄i
), wi) ≤ (5)

∑

j∈Di∪Zi

βj‖xj‖
p
2 + γ

p
i ‖wi‖

p
2 +

∑

j∈Z̄i

δj‖ej‖
p
2 − αi‖xi‖

p
2

αi − |Si ∪ Ui|βi > 0 (6)

with somep ≥ 1.
Remark 4.2:Equations (5) suggests that subsystemi is Lp

stable from{xj}j∈Di∪Zi
, {ej}j∈Zi

, andwi to xi. Equation
(6) requiresαi to be large. Taking this into equation (5), it
puts a requirement on theLp gain of this subsystem. This

assumption can be satisfied when the interconnections between
subsystems are weak. Here is a distributed way to design the
control strategygi such that Assumption 4.1 holds. We first
select{δi}Ni=1 and{βi}Ni=1 that are shared by all agents. Then
agenti only needs to findVi, αi, andgi to fulfill equations (4)
– (6). Notice that once agenti knows {δi}Ni=1 and {βi}

N
i=1,

equations (4) – (6) are only associated with agenti’s local
dynamics. It turns to be a local input-to-state stabilization
problem for agenti. Solving such a stabilization problem is
not easy in general. For linear systems, however, it can be
solved by solving an LMI. This will be further discussed in
Section IV-B.

Theorem 4.3:Consider the NCS defined in equation (1).
Suppose Assumption 4.1 holds. For alli ∈ N and anyρi ∈
(0, 1), let

σi =

(

|Ūi|δi
αi − |Si ∪ Ui|βi

)

1

p

. (7)

If

−ρi‖xi(t)‖2 + σi‖ei(t)‖2 ≤ 0 (8)

holds for all i ∈ N and all t ≥ t0, then the NCS isLp stable
from w to x.

Proof: Let V (x) =
∑

i∈N Vi(xi). It is easy to see that

V̇ =
∑

i∈N

∂Vi

∂xi

(xi)fi(xD̄i
, gi(xZ̄i

− eZ̄i
), wi)

≤
∑

i∈N



−αi‖xi‖
p
2 +

∑

j∈Di∪Zi

βj‖xj‖
p
2





+
∑

i∈N





∑

j∈Z̄i

δj‖ej‖
p
2 + γ

p
i ‖wi‖

p
2





=
∑

i∈N

[

− (αi − |Si ∪ Ui|βi) ‖xi‖
p
2 + δi|Ūi|‖ei‖

p
2

]

+
∑

i∈N
γ
p
i ‖wi‖

p
2

≤
∑

i∈N
[−(1− ρ

p
i ) (αi − |Si ∪ Ui|βi) ‖xi‖

p
2 + γ

p
i ‖wi‖

p
2] ,

where the second equality is obtained by resorting all of
the items according to indexi. Equation (6) and the above
inequality are sufficient to show the NCS isLp stable fromw

to x.
Remark 4.4:The inequality in (8) is the real-time constraint

to ensure the system stability. This constraint is only associated
with the agent’s local state,xi, and the local error,ei, between
the agent’s current state and its last successfully broadcast
state. Note that these signals are locally available to agent i.
If there are no packet loss and transmission delays, we can
directly use the violation of the inequality in (8) to trigger
agenti’s broadcasts. Even if transmission delays and packet
loss exist, as long as the the resulting measure error is bounded
by the given threshold, the system is stillLp stable. How to
quantify the allowable delays and packet loss will be discussed
in section V.
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Remark 4.5:The functionsαi‖xi‖
p
2, βj‖xj‖

p
2, andδj‖ej‖

p
2

may be replaced by more general classK functions that are
Lipschitz continuous.

We will find it convenient to use a slightly stronger sufficient
condition forLp stability. This condition is stated in the fol-
lowing corollary. The corollary recasts the real-time constraint
in equation (8) as a function of the local error,ei, and the
successfully broadcast local state,x̂i.

Corollary 4.6: Consider the NCS in (1). Suppose Assump-
tion 4.1 holds. For anyi ∈ N andρi ∈ (0, 1), let ci = 1+ σi

whereσi is given by equation 7. If

ci‖ei(t)‖2 ≤ ρi‖x̂i(t)‖2 (9)

holds for all i ∈ N and all t ≥ t0, then the NCS isLp stable
from w to x.

Proof: By the definition ofci, equation (9) is equivalent
to σi‖ei(t)‖2 + ‖ei(t)‖2 ≤ ρi‖x̂i(t)‖2 for all t ≥ t0. So we
have

σi‖ei(t)‖2 ≤ ρi‖x̂i(t)‖2 − ρi‖ei(t)‖2

≤ ρi‖x̂i(t) + ei(t)‖2 = ρi‖xi(t)‖2

for all t ≥ t0. Since the hypotheses of Theorem 4.3 are
satisfied, we can conclude that the NCS isLp stable from
w to x.

Remark 4.7:In the later discussion, we design event trigger
to ensure the inequality in (9). In equation (9), the threshold
on the local error is fixed between two successive transmis-
sions. Such a threshold makes it more convenient to predict
deadlines. These predictions are discussed in section V.

B. Linear Systems

This section shows how to implement the distributed scheme
proposed in section IV-A for linear systems. We confine
our attention toL2 stability. For linear systems, events are
designed by solving LMI feasibility problems. With the linear
structure, the state equation of agenti is

ẋi(t) = Aiixi(t) +Biui(t) +
∑

j∈Di

Aijxj(t) + Ciwi(t)

ui(t) = Kiix̂i(t) +
∑

j∈Zi

Kij x̂j(t) (10)

and the state equation of the overall NCS is

ẋ(t) = Ax(t) +Bu(t) + Cw(t)
u(t) = Kx̂(t),

(11)

where x = (xT
1 , · · · , x

T
N )T , u = (uT

1 , · · · , u
T
N )T , w =

(wT
1 , · · · , w

T
N )T , and x̂ = (x̂T

1 , · · · , x̂
T
N )T . We will use

equation (10) and (11) interchangeably to denote the dynamics
of the NCS.

We first introduce a lemma, in which LMIs are used to
identify the parameters in local events.

Lemma 4.8:Consider the NCS in equation (11). Givenγ ∈
R

+, assume that there exist positive-definite matricesP,Q ∈

R
nN×nN andWi,Mi ∈ R

n×n, i = 1, 2, · · · , N such that:
[

−P (A+BK)− (A+BK)TP −Q PC

CTP γ2IlN×lN

]

≥ 0, (12)
[

Q−W PBK

KTBTP M

]

≥ 0, (13)

P,Q,Mi,Wi > 0, (14)

whereM = diag{Mj}j∈N andW = diag{Wj}j∈N . For all

i ∈ N and anyρi ∈ (0, 1), let ai = 1+
√

λmax(Mi)
λmin(Wi)

If

ai‖ei(t)‖2 ≤ ρi‖x̂i(t)‖2 (15)

for all i ∈ N and all t ≥ t0, then the NCS isL2 stable from
w to x.

Remark 4.9:When equation (48) holds, there always exist
positive definite matricesWi,Mi satisfying (49). For some
ǫ ∈ (0, λmin(Q)), the matricesWi = ǫIn×n and Mi =
‖PBK‖2

λmin(Q)−ǫ
In×n, for example, clearly satisfy equations (48) and

(49).
Lemma 4.8 provides a way to design local events. Agent

i can use the violation of the inequality in (15) to trigger
its broadcasts. Directly solving the LMIs in equation (12) –
(14), however, may not be suitable for large-scale systems.We
now propose a way to solve this LMI feasibility problem in a
decentralized manner.

Let us look at agenti. Assume|Z̄i| = qi, |Z̄i ∪ D̄i| = si,

Z̄i = {i1, i2, · · · , iqi} ⊆ N , and

Z̄i ∪ D̄i = {i1, · · · , iqi , iqi+1, · · · , isi} ⊆ N .

Without loss of the generality, we assumei1 = i. We also
define four matricesAi ∈ R

n×nsi , Ki ∈ R
m×nsi , andK̃i ∈

R
m×nqi , Hi ∈ R

nsi×l by

Ai = (Ai,i1 , Ai,i2 , · · · , Ai,isi
),

Ki = (Ki,i1 ,Ki,i1 , · · · ,Ki,isi
),

K̃i = (Ki,i1 ,Ki,i1 , · · · ,Ki,iqi
),

Hi =

[

PiCi

0

]

,

whereKij = 0 if j ∈ Di\Zi, and two functionsFi : R
n×n →

R
nsi×nsi , Gi : R

n×n × R → R
nsi×nsi by

Fi(Pi) =

[

Pi(Ai +BiKi)
0

]

, Gi(Qi;β) =

[

Qi 0

0 −βI

]

.

With these matrices and functions, we define the local LMI
problem associated with agenti:

Problem 4.10 (Local LMI):Given constantsδ, β > 0, find
Pi, Qi,Wi ∈ R

n×n and γ̂i ∈ R such that
[

−Fi(Pi)− FT
i (Pi)−Gi(Qi;β) Hi

HT
i γ̂iIl×l

]

≥ 0 (16)
[

Qi − |Si ∪ Ui|βIn×n −Wi PiBiK̃i

K̃T
i B

T
i Pi δInqi×nqi

]

≥ 0 (17)

Pi,Wi > 0, γ̂i > 0. (18)

The following theorem shows that solving Problem 4.10
ensuresL2 stability of the resulting event-triggered NCS.

Theorem 4.11:Consider the NCS in equation (10). Given
δ, β ∈ R

+, assume that for anyi ∈ N , the local LMI in
Problem 4.10 is feasible andPi, Qi, Wi ∈ R

n×n, andγi ∈ R
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are the solutions. For alli ∈ N and anyρi ∈ (0, 1), let

bi = 1 +
√

δ|Ūi|
λmin(Wi)

. If

bi‖ei(t)‖2 ≤ ρi‖x̂i(t)‖2 (19)

holds for all t ∈ N and all t ≥ t0, then the NCS isL2 stable
from w to x.

Proof: Notice that the inequality still holds when we
expand the matrices in equation (16) intonN×nN dimension
by appropriately adding zero. Summing both sides of the
expanded matrix inequalities shows that equation (12) is
satisfied and therefore equation (48) with

P = diag{Pi}
N
i=1, γ = max

i
{
√

γ̂i},

Q = diag{Qi − |Si ∪ Ui|βIn×n}
N
i=1,

whereQi − |Si ∪ Ui|βIn×n > 0 holds by equation (17).
Similarly, we can show that equation (49) is satisfied with

W = diag{Wi}
N
i=1, M = diag{δ(|Ūi|)In×n}Ni=1.

Since the hypotheses in Theorem 4.8 are satisfied, we conclude
that the NCS isL2 stable with an induced gain less than

maxi{
√
γ̂i}

√

mini{(1−ρ2

i
)λmin(Wi)}

.

Remark 4.12:Since δ and β are pre-selected, the local
problem associated with agenti only requires the information
on agenti’s system dynamics. To design the local events,
agents do not have to know other agents’ system information
and, therefore, the design scheme is distributed.

Remark 4.13:The dimensions of the matrices on the left-
hand side of the LMIs in (16) and (17) are(nsi+ l)×(nsi+ l)
and (nqi + n) × (nqi + n), respectively. These dimensions
are much smaller than the dimensions of the matrices in the
equations (12) and (13).

In Problem 4.10, two parameters,δ andβ, are pre-selected
and all agents share the sameδ andβ. The following corol-
laries 4.14 and 4.15 discuss the selection of these parameters
so that the local LMIs are feasible. A more general setup is
to pre-select a group of parameters{δi}

N
i=1 and{βi}

N
i=1. The

preceding results can be easily modified to handle this more
general setup.

Corollary 4.14: Consider the NCS in equation (1). For any
i ∈ N , if there exists a positive-definite matrixPi ∈ R

n×n

such that

Fi(Pi) + FT
i (Pi) +Gi(|Si ∪ Ui|βIn×n;β) < 0, (20)

then there always exists a positive constantδ∗ ∈ R
+, such

that for anyδ ≥ δ∗, the LMI in Problem 4.10 is feasible.
Proof: Equation (20) implies there exists a positive defi-

nite matrixQi ∈ R
n×n such that

Fi(Pi) + FT
i (Pi) +Gi(Qi;β) < 0 (21)

Qi − |Si ∪ Ui|βIn×n > 0 (22)

Since (21) holds, we know that there always exists a positive
constantγ̂∗

i ∈ R
+ such that for allγ̂i ≥ γ̂∗

i , equation (16)
holds. Equation (22) implies that there exists a positive definite
matrix Wi ∈ R

n×n such thatQi − |Si ∪Ui|βIn×n −Wi > 0,
which suggests that there always exists a positive constant
δ∗ ∈ R

+ such that for allδ ≥ δ∗, equation (17) holds.

Corollary 4.14 suggests thatδ must be large enough to
guarantee the feasibility of the local LMI, provided equation
(20) holds. We still need to know how to selectβ. The
following corollary shows that the feasibility of equation(20)
is independent of the selection ofβ.

Corollary 4.15: If there exist a positive-definite matrixPi ∈
R

n×n and a positive constantβ ∈ R such that equation (20)
holds, then for anŷβ > 0, β̂

β
Pi and β̂ also satisfy equation

(20).
Proof: This can be easily proven by the definitions ofFi

andGi.

V. EVENT-TRIGGERING WITH DATA DROPOUTS AND

TRANSMISSION DELAYS

The previous section provides real-time constraints that
guaranteeLp stability. If there are no dropouts and delays
during data transmissions, agents can directly use the violation
of the inequality in (9) to trigger the broadcast. When dropouts
and delays are involved, agenti uses the violation of

‖xi(t)− xi(r
i
j)‖2 ≤

ρi

ci
‖xi(r

i
j)‖2 (23)

to trigger the j + 1st broadcast release, whererij denotes
the time instant when agenti samples and releases the
jth broadcast. Notice that the difference between equation
(23) and (9) is thatxi(r

i
j) in (23) might be lost during

the transmission; whilexi(b
i
k) in (9) is always successfully

transmitted. Under this triggering mechanism, we provide a
maximal allowable number of successive dropouts (MANSD)
and a bound on delays (also called “deadline”) for each agent
to ensure asymptotic stability of the overall system. These
parameters can be identified by agents using local information.
For notational convenience, letεji (t) = xi(t) − xi(r

i
j) and

diMANSD denote agenti’s MANSD.
To analyze data dropouts and transmission delays in net-

works, we first need to introduce the transmission procedure.
Let us take agenti as an example. Agenti uses the violation of
inequality in (23) to trigger the next broadcast. When the local
event occurs, agenti samples and then sends a DATA message
to neighboring agents inUi. The DATA packet contains a time
tag and the sampled statexi(r

i
j+1). At the same time, the

triggering event is updated to be the violation of

‖εj+1
i (t)‖2 ≤

ρi

ci
‖xi(r

i
j+1)‖2.

Those agents who receive the packet from agenti need to send
acknowledgement messages (ACK) back to agenti. Notice that
at this point, agents in̄Ui are not allowed to use this DATA
packet to update their control inputs.

If agenti receives confirmations fromALL of its neighbors
in Ui within τ ik seconds, i.e. during the interval[rij+1, r

i
j+1 +

τ ik), it sends out a permission message (PERM) to its neigh-
boring agents. The PERM message gives neighboring agents
permission to use the previously transmitted data. Otherwise,
if agent i does not receive confirmations fromALL of its
neighbors inUi within τ ik seconds, the DATA packet is treated
as a lost packet and discarded. Notice that sending PERM
indicates a successful broadcast.rij+1 is, therefore, the time
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instant of a successful broadcast. We use the symbolbik
to denote the release time of thekth successful broadcast
({bik}

∞
j=1 is a subsequence of{rij}

∞
j=1). Only after the agents

in Ūi receive the permission from agenti, they are allowed
to use this packet to update their control inputs. Notice that
the sizes of the ACK and PERM packets are very small.
Therefore, they will not take a lot communication resource.We
can assume that transmission of PERM packet is instantaneous
and will not be lost.

Following this transmission protocol, it is easy to see that
a packet sent by an agent is either lost or transmitted to all of
its neighbors. The broadcast statex̂i(t) of agenti, therefore
remains consistent across all of its neighbors. It is important
to have this consistency in the system. Otherwise, different
versions of measurement errors will be generated that are
difficult for agenti to track. For example, assume that agent
1 receives and uses the DATA package from agenti while
agent 2, another neighbor of agenti, does not receive that
packet. Agent 2 therefore still uses the previously received
state of agenti, say xi2. Then agent 2’s measurement error
in the state of agenti is xi(t) − xi2. This error, however,
is difficult for agenti to track because there is no way for
agenti to know exactly whatxi2 is. How to handle different
versions of measurement errors in distributed systems might
be an interesting topic in the future..

We currently know how to design local events. But to ensure
asymptotic stability of the system, we still need to determine
diMANSD and derive upper bounds onτ ik so thatci‖ei(t)‖2 ≤
ρ̄i‖x̂i(t)‖2 is always valid with somēρi ∈ (ρi, 1) for all t ≥
t0 and all i ∈ N . Notice that x̂i(t) = xi(b

i
k) for all t ∈

[f i
k, f

i
k+1) and thereforeei(t) = xi(t) − xi(b

i
k) for all t ∈

[f i
k, f

i
k+1). Recall thatf i

k is the time instant when thekth
successful broadcast is completed. This suggests that we only
need to ensureci‖xi(t) − xi(b

i
k)‖2 ≤ ρ̄i‖xi(b

i
k)‖2 over the

time interval[f i
k, f

i
k+1).

We may actually split[f i
k, f

i
k+1) into two subintervals:

[f i
k, b

i
k+1) and [bik+1, f

i
k+1). To determinediMANSD, we focus

on the time interval[f i
k, b

i
k+1) since data dropouts happen

during this time interval.diMANSD is selected in a way that
even if packets are lost, the real-time constraint,ci‖ei(t)‖2 ≤
ρ̄i‖x̂i(t)‖2, is still valid over that interval. To determine
bounds onτ ik, we focus on the interval[bik+1, f

i
k+1) because

τ ik is basically the delay in thekth transmission. We need to
find an upper bound onf i

k − bik, denoted asηik, that ensures
asymptotic stability.

Before we present the main results, we need two lemmas.
The first lemma (Lemma 5.1) describes the behavior ofei(t)
over[f i

k, b
i
k+1) when data dropouts happen. The second lemma

(Lemma 5.3) shows that if there is a bound on the delays and
the overall system dynamics is bounded, the resulting NCS is
uniformly ultimately bounded.

Lemma 5.1:Consider the NCS in equation (1). Suppose
that Assumption 4.1 holds. Given two collections of positive
constantsρi ∈ (0, 1) and̺i ∈ [ρi, 1) for i = 1, 2, · · · , N , if
for any i ∈ N , the inequality

ci‖ε
j
i (t)‖2 ≤ ρi‖xi(r

i
j)‖2, (24)

holds for allt ∈ [rij , r
i
j+1), whereci = 1+σi, andσi is defined

by equation (7), and the number of successive dropouts,dik ∈
Z, satisfies

dik ≤ diMANSD ,

⌊

log(
1+

ρi
ci

)

(

1 +
̺i

ci

)

− 1

⌋

, (25)

then the inequality

‖xi(t)− xi(b
i
k)‖2 ≤

ξi(d
i
k)

ci
‖xi(b

i
k)‖2 ≤

̺i

ci
‖xi(b

i
k)‖2 (26)

holds for all t ∈ [bik, b
i
k+1) and all k ∈ N, whereξi : Z →

(0, ̺i) is defined by

ξi(d
i
k) , ci

(

1 +
ρi

ci

)di
k+1

− ci ∈ (0, ̺i). (27)

Remark 5.2:If all the hypotheses in Lemma 5.1 hold and
bik = f i

k holds for all i ∈ N and allk ∈ N, then the NCS is
finite-gainLp stable fromw to x. This is because whenbik =
f i
k holds,x(bik) = x̂i(t) and‖ei(t)‖2 = ‖xi(t)−xi(b

i
k)‖2 for

t ∈ [f i
k, f

i
k+1). Equation (26), therefore, implies‖ei(t)‖2 ≤

̺i

ci
‖x̂i(t)‖2 for all t ≥ 0 with ̺i ∈ (0, 1). This is sufficient

to show that the NCS is finite-gainLp stable fromw to x

according to corollary 4.6.
Lemma 5.3:Consider the NCS in equation (1) withwi = 0

for all i ∈ N . Suppose that Assumption 4.1 holds andζi1, ζi2
in equation (4) satisfy

ζi1(‖xi‖2) ≥ Li‖xi‖
q
2 and ζi2(‖xi‖2) ≤ L̄i‖xi‖

q
2, (28)

respectively, with some positive constantsLi, L̄i > 0, q ≥ 1.
Also assume that there exist a collection of positive constants
θi ∈ R

+ for i = 1, 2, · · · , N such that

‖fi
(

xD̄i
(t), gi

(

x̂Z̄i
(t)
)

, 0
)

‖2 ≤ θi, (29)

holds for all t ≥ t0 and all i ∈ N . Given a constant
∆ ∈ R

+
0 and two collections of positive constantsρi ∈ (0, 1),

̺i ∈ [ρi, 1) for i = 1, 2, · · · , N , if for any i ∈ N , equation
(24) holds for all t ∈ [rij , r

i
j+1), the number of successive

dropouts,dik, satisfies equation (25), and the delay in thek+1st
successful transmission satisfies

f i
k+1 − bik+1 ≤ 1−ξi(d

i
k)

ciθi
max

{

‖xi(b
i
k)‖2

2 ,∆
}

(30)

where ξi is defined in equation (27), then for anȳπ ∈ R
+

such that̄π > π, there existsT ≥ t0 such that
∑

i∈N ‖xi(t)‖
q
2 ≤ maxi,j∈N

{

L̄i

Lj

}

µπ̄q∆q

holds for all t ≥ T , where

µ =

{

1 p ≤ q

N1− q
p p > q

(31)

π =

(
∑

i∈N (αi − |Si ∪ Ui|βi) (1− ρi)

mini∈N {(αi − |Si ∪ Ui|βi) (1− ς̄i)}

)

1

p

(32)

ς̄i = max

{(

1 + ̺i

2

)p

, ̺i

}

. (33)

Remark 5.4:If the delays are less than the first term (asso-
ciated with ‖xi(b

i
k)‖2) in the bound in equation (30), then

the real-time constraint in equation (9) can be guaranteed.
However, we cannot simply use1−ξi(d

i
k)

ciθi

‖xi(b
i
k)‖2

2 as the bound
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on delays because this bound may shrink to zero as the
state approaches zero, which is not practical. Alternatively,
we introduce1−ξi(d

i
k)

ciθi
∆, which can be viewed as the worst-

case bound. When∆ dominates themax operator, the real-
time constraint in equation (9) will be violated. This violation,
however, only happens when the state is close to zero.

Lemma 5.3 suggests that, with the assumption that the
system dynamics is bounded, the overall system is globally
uniformly ultimately bounded for any∆. It is, however, still
not clear how to select∆ so that this assumption of bounded
system dynamics holds. The following lemma solves this issue
and therefore helps us relax the assumption of equation (29)
in Lemma 5.3. It shows that if∆ is small enough, the system
dynamics will be in a pre-selected compact set. We now define
this compact set. Suppose Assumption 4.1 holds andfi, gi are
locally Lipschitz for alli ∈ N . Then we can define a compact
set,Λ ⊂ R

nN , as

Λ ,
{

x ∈ R
nN | V (x) ≤ V (x0)

}

(34)

and find positive constants,θi, Li, Li, L̄i ∈ R for i =
1, 2, · · · , N such that for∀x, x̂ ∈ Λ,

‖fi(xD̄i
, gi(x̂Z̄i

), 0)‖2 ≤ Li

∑

i∈N
(‖xi‖2 + ‖x̂i‖2), (35)

ζi1(‖xi‖2) ≥ Li‖xi‖
q
2, ζi2(‖xi‖2) ≤ L̄i‖xi‖

q
2, (36)

θi , (1 + |Z̄i|)LiN
q−1

q

(

V (x0)

mini∈N Li

)
1

q

(37)

with someq ≥ 1. For the notational convenience, we useV (t)
to denoteV (x(t)) for all t ≥ t0.

Lemma 5.5:Consider the NCS in equation (1) withwi = 0
for all i ∈ N . Suppose that Assumption 4.1 and equation
(35), (36) hold with someq ≥ 1. Given positive constants
ρi ∈ (0, 1), ̺i ∈ [ρi, 1) for all i ∈ N and π̄ ∈ (π,∞), where
π is defined in equation (32), if for anyi ∈ N , equation (24)
holds for all t ∈ [rij , r

i
j+1), the number of successive data

dropouts,dik ∈ Z, satisfies equation (25), and the delay in the
k + 1st successful transmission satisfies

f i
k+1 − bik+1 ≤ ηik ,

max

{

(1−ξi(d
i
k))‖xi(b

i
k)‖2

2ciθi
,

(1−ξi(d
i
k)) mini L

1
q
i

(1+|Z̄i|)ciLiπ̄N
1− 1

max{p,q} maxi L̄
1
q
i

}

(38)
whereLi, L̄i, Li, ξi are defined in equation (35), (36), (27),
respectively, thenx(t) ∈ Λ for all t ≥ t0, whereΛ is defined
in equation (34), .

With the upper bound on delays derived in Lemma 5.5,
we know that the system dynamics is bounded. Therefore, by
Lemma 5.3 the NCS is at least uniformly ultimately bounded.
The following theorem shows that with such an upper bound
on delays, the ultimate bound will gradually shrink to zero,
which implies asymptotic stability of the system.

Theorem 5.6:Consider the NCS in equation (1) withwi =
0 for all i ∈ N . Suppose that Assumption 4.1 and equation
(35), (36) hold with someq ≥ 1. Given positive constants
ν ∈ R

+, ρi ∈ (0, 1), ̺i ∈ [ρi, 1) for all i ∈ N andπ̄ ∈ (π,∞),
whereπ is defined in equation (32), if for anyi ∈ N , the

j + 1st broadcast is released by the violation of

E1 ∧E2, (39)

whereE1 is the inequality in (24) and

E2 : t ≤ rij + ν, (40)

the number of successive data dropouts,dik ∈ Z, satisfies equa-
tion (25), and the delay in thek+1st successful transmission
satisfies equation (38), then the NCS is asymptotically stable.

Remark 5.7:The introduction ofν in E2 can be viewed as
the security requirement of the system. It requires each agent
broadcasts at least everyν units of time.ν is arbitrarily chosen.
E2 ensures that agents still communicate even when they stay
in the ultimate set.

Remark 5.8:ηik in equation (38) serves as the deadline for
the kth successful broadcast of agenti. With the fact that
ξi(d

i
k) ≤ ̺i holds, we haveηik always greater than a positive

constant,τ iSPD. In other words,

ηik ≥ τ iSPD =
(1− ̺i)mini L

1

q

i

(1 + |Z̄i|)ciLiπ̄N
1− 1

max{p,q} maxi L̄
1

q

i

> 0 (41)

holds for all k ∈ N. τ iSPD is the smallest predicted deadline
(SPD) of agenti. To show the SPD is greater than zero is
important in establishing that our scheme does not require the
network to transmit data infinitely fast.

Remark 5.9:The number of successive dropouts,dik deter-
mines the deadlineηik. As dik increases, the value ofξi(dik)
increases. It, therefore, results in a short deadline according
to equation (38). There is a trade-off between the number of
successive dropouts and the deadline.

Remark 5.10:Two parametersρi, ̺i are used in the
scheme. The parameterρi determinesdiMANSD, τ iSPD, and
the transmission periods,T i

j . The largeρi is, the longerT i
j

is and the smallerdiMANSD is, according to equation (24)
and (25). Largeρi may also result in a smallπ according
to equation (32) and therefore leads to a largerτ iSPD. The
parameter̺ i determinesdiMANSD and τ iSPD. The large̺i is,
the largerdiMANSD is and the smallerτ iSPD is. As a “rule
of thumb”, a reasonable strategy is to chooseρi and ̺i so
that the periods and the SPDs are as large as possible; as this
makes the task easier to schedule under an earliest-deadline
first (EDF) scheduling discipline.

Remark 5.11:To design a system with special requirements
on diMANSD andτ iSPD, we solve equation (25) and (38) forρi
and ̺i. There is no constraint on the selection ofdiMANSD.
It can be arbitrarily large.τ iSPD, however, must be less than
some positive constant so that equation (25) and (38) have
solutions.

Remark 5.12:It is not necessary that the transmission pe-
riods reduce to zero as the state approaches to the origin.
The transmission period is determined by the growth rate of

the ratio ‖εj
i
(t)‖2

‖xi(rij)‖2

. For certain systems, when the threshold

(‖xi(r
i
j)‖2) goes to zero, the growth rate of the error is also

decreasing. As long as the growth rate of‖εj
i
(t)‖2

‖xi(rij)‖2

is bounded
from above, there must be a constant lower bound on periods.
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Such a time-space relation is further discussed in [21], where
a scaling law is provided.

Remark 5.13:When disturbances hit agenti, ‖εji (t)‖2

might grow faster and therefore the growth rate of‖εj
i
(t)‖2

‖xi(rij)‖2

will be large. As a result, to ensure inequality (24), the required
transmission frequency will be very high. This is especially
true when the state is close to the equilibrium. When the
required transmission frequency exceeds the frequency that
the network can provide, the inequality (24) will be violated.
It might result in the violation of the real-time constraints in
(9). In this case, the state will not converge to the equilibrium,
but stay in a neighborhood of the equilibrium. The size of
the neighborhood may be determined by the size of the
disturbances and the capacity of the communication network.
It is also possible that by successfully communicating enough
times among agents, equation (9) is still valid. This reflects
a tradeoff between the transmission periods and the number
of allowable dropouts. By reducing the number of dropouts,
the “allowable” transmission periods can be enlarged. By “al-
lowable”, it mean the transmission periods to ensure equation
(9). In summary, whether the real-time constraint in (9) will
be violated or not depends on the size of the disturbance, how
close the state is to the origin, and the number of dropouts
during that time interval.

We also provide a lower bound on the transmission periods
in the following corollary.

Corollary 5.14: If the hypotheses in Theorem 5.6 hold, then

T i
j = rij+1 − rij ≥ min

{

ν,
ρi

ciθi
‖xi(r

i
j)‖2

}

(42)

holds for allj ∈ N and all i ∈ N .
Proof: By Lemma 5.5, we have

‖fi
(

xD̄i
(t), gi

(

x̂Z̄i
(t)
)

, 0
)

‖2 ≤ θi

for all i ∈ N and all t ≥ t0. Consider the derivative of
∥

∥

∥
ε
j
i (t)
∥

∥

∥

2
over the time interval[rij , r

i
j+1).

d

dt

∥

∥

∥
ε
j
i (t)
∥

∥

∥

2
≤

∥

∥

∥
ε̇
j
i (t)
∥

∥

∥

2
= ‖ẋi(t)‖2

= ‖fi
(

xD̄i
, gi
(

x̂Z̄i

)

, 0
)

‖2 ≤ θi

holds for ∀t ∈ [rij , r
i
j+1). Solving this inequality with the

initial condition
∥

∥

∥
ε
j
i (r

i
j)
∥

∥

∥

2
= 0 implies

∥

∥

∥
ε
j
i (t)
∥

∥

∥

2
≤ θi(t− rij) (43)

holds for all t ∈ [rij , r
i
j+1). If the j + 1st broadcast is

triggered by the violation ofE1 in equation (24), then
∥

∥

∥
ε
j
i (r

i
j+1)

∥

∥

∥

2
= ρi

ci
‖xi(r

i
j)‖2 holds and therefore equation (43)

implies
∥

∥

∥
ε
j
i (r

i
j+1)

∥

∥

∥

2
= ρi

ci
‖xi(r

i
j)‖2 ≤ θi(r

i
j+1 − rij), which

meansrij+1−rij ≥
ρi

ciθi
‖xi(r

i
j)‖2. If the broadcast is triggered

by the violation ofE2 in equation (40), thenT i
j = ν holds.

Combining these two cases yields the satisfaction of equation
(42).

Remark 5.15:It is easy to see that in corollary 5.14, the
lower bound on the transmission period goes to zero as the
state goes to the equilibrium. It, however, does not mean the

actual periods go to zero. In fact, in the simulations in section
VI, the periods are always greater than a positive constant.It
suggests that the bound in corollary 5.14 may be conservative
for certain systems.

Remark 5.16:With the bound on periods given in corollary
5.14, the MANSD given in equation (25), and the deadline
given in equation (38), we can not only do hard real-time
scheduling of the transmission tasks, but also study firm real-
time scheduling schemes, in which the case that a task misses
its deadline is allowed.

VI. SIMULATIONS

This section presents simulation results demonstrating the
distributed event-triggering scheme. The system under study is
a collection of carts coupled by springs (Figure 1). Both soft
spring models (nonlinear) and normal spring models (linear)
are considered. The state of theith subsystem is the vector
xi =

[

yi ẏi
]T

where yi is the ith cart’s position. We
assume that at equilibrium, all springs are unstretched. We
also assume that carti can only receive the broadcast state
information from carti+ 1.

u1 u2
u3

Fig. 1. Three carts coupled by springs

This section consists of four subsections. Subsection VI-A
shows how to implement our scheme in nonlinear systems.
Subsection VI-B investigates the robustness of the event-
triggering scheme to transmission delays, data dropouts, and
exogenous disturbances. Subsection VI-C explores how the
parameters in the scheme affects transmission periods, the
MANSD, and the SPD. Finally, subsection VI-D examines
the communication cost and the complexity of our scheme
by comparing it against the approach in [12] that derives the
bound on the MATI. These simulations results show that our
scheme is robust to transmission delays, data dropouts, and
exogenous disturbances. The average broadcast period and the
time spent in event design in our scheme scales well with
respect to the number of agents.

A. Implementation in Nonlinear Systems

This subsection considers how to implement our scheme in
nonlinear systems. In this simulation, the carts are coupled
together by soften springs [27]. The state equation for theith
cart is

ẋi =

[

ẏi
ui + κ1

i tanh(yi+1 − yi) + κ2
i tanh(yi−1 − yi)

]

(44)

In the preceding equation,κ2
1 = κ1

N = 0. Otherwise,κ1
i =

κ2
i = 1.
The control input of subsystemi is

ui = Kix̂i − κ1
i tanh(ŷi+1 − ŷi),
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Fig. 2. State trajectory, broadcast periods, and predicteddeadlines in an
event-triggered NCS

whereKi =
[

−5 −5
]

for i = 1, · · · , N .
We setν = 100, δi = 10, βi = 1, ρi = 0.1, ̺i = 0.65, and

γi = 40 for all i ∈ N . The triggering events are

0.1‖x1(r
i
j)‖2 = 3.6847‖εj1(t)‖2

0.1‖xi(r
i
j)‖2 = 5.7202‖εji(t)‖2, for i = 2, · · · , N − 1

0.1‖xN(rNj )‖2 = 3.8700‖εjN(t)‖2

according to equation (24) and the MANSDs for agents are
all 5 according to equation (25).

We set N = 3 and ran the event-triggered NCS for 6
seconds. We assumed that for each agent, the number of
data dropouts between successive transmissions is equal to
its MANSD. We also assumed that transmission delays are
equal to the predicted deadlines defined in equation (38). The
initial statex0 was randomly generated satisfying‖x0‖∞ ≤ 1.
From the top plot of figure 2, we can see that the system
is asymptotically stable. The broadcast periods of agent1
(cross), agent2 (diamond), and agent3 (dot) are shown in the
middle plot of figure 2 that vary in a wide range before the
system approaches its equilibrium. It demonstrates the ability
of event-triggering in adjusting broadcast periods in response
to variations in the system’s states. Also notice that in the
simulation the periods are always greater than a positive con-
stant, even when the states are close to the equilibrium. This
is because asxi(t) approaches zero, although the threshold
(‖xi(r

i
j)‖2) goes to zero, the growth rate of the error is also

decreasing. For this specific system, the growth rate of the

ratio ( ‖εj
i
(t)‖2

‖xi(rij)‖2

) happens to be bounded from above, which

results in a constant lower bound on periods in this simulation.
On the other hand, it means the lower bound on periods
obtained in corollary 5.14 might be conservative. The bottom
plot in figure 2 shows the history of predicted deadlines,
which are reduced to fixed constants as the states approach
to the equilibrium . This is because as the states get small,
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agent 1
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agent 10

Fig. 3. Successful broadcast periods versus time in an event-triggered NCS
with disturbances in agent 1

(1−ξi(d
i
k))mini L

1
q
i

(1+|Z̄i|)ciLiπ̄N
1− 1

max{p,q} maxi L̄
1

q
i

dominates the deadlines. The

SPDs of agent 1, 2, 3 are 280µs, 140 µs, and 300µs,
respectively.

B. Robustness

Robustness of our scheme is studied with respect to delays,
dropouts, and exogenous disturbances in this subsection. We
first considered increasing the transmission delays in the
simulation. We kept all settings the same as the simulation
in subsection VI-A except that the transmission delays can
exceed the predicted deadlines. The system becomes unstable
when the delay in each transmission is larger than 0.002 s.
The time, 0.002 s, is, therefore, the maximal delay that the
system can actually tolerate. Notice that our predicted SPDs
(280µs, 140µs, and 300µs in agent 1,2,3, respectively) are
around 10% of the actual allowable delay.

The next simulation used the model in section VI-A except
that data dropouts are modeled as a stochastic way, instead
of setting it equal to the MANSD. The probability of a data
dropout is set to be a constantp ∈ [0, 1]. Simulation results
show that the system can be stable even whenp is as large as
0.9. The maximal number of successive dropouts that occurred
in the simulation is 41. These results show that the event-
triggered system is very robust to data dropouts.

We finally considered the effect of exogenous disturbances
on the event-triggered system. We assumed that there are
neither transmission delays nor data dropouts in the system.
We ran the system for 40 seconds withN = 10. ρi = ̺i = 0.9
for all i ∈ N . An external disturbance was added into agent
1, where|w1(t)| ≤ 5 for t ∈ [2, 10] andwi(t) = 0 otherwise.
The broadcast periods of agent 1, 7, 10 are plotted in Figure
3. We see from the figure that agent 1’s broadcast periods
became short when the disturbance came in duringt ∈ [2, 10].
It is because event-triggering can adjust the agent’s broadcast
periods in response to variations in the system’s external
inputs. Although no disturbance directly came into agent 7,10,
their periods were also shortened. Also notice that the decrease
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Fig. 4. The average period, the SPD, and the MANSD in agent 1 versus̺1

of agents’ periods happens over different time intervals. This
is because the effect of the disturbance in agent 1 was passed
to each agent, from 1 to 10. The spatial distance causes a time
delay in passing the effect of the disturbance. Another thing
worth mentioning is that, although the periods in agent 7 and
10 decrease for a while, the intensity of such decease is much
less than that in agent 1. This is because the effect of the
disturbance decreases when it is passed from agent 1 to other
agents.

C. Selection of Parameters

The simulations in this subsection examined the effect of
parametersρi and̺i on the broadcast periods, the MANSDs,
and the SPDs. In particular, we studied agent 1. We assume
that the delays in each agent are equal to its SPD and the
number of each agent’s successive dropouts is equal to its
MANSD. The parametersρ2 = ρ3 = 0.1 and̺2 = ̺3 = 0.9.

We first fixedρ1 = 0.1 and varied̺ 1 from 0.1 to 0.9. The
simulation results are shown in figure 4. The top plot in figure
4 is the average broadcast periods versus̺1. It shows that
the average period almost remains the same as̺1 changes.
It suggests that̺ i does not affect the broadcast periods. The
middle plot in figure 4 is the SPD versus̺1. We can see that
when ̺1 increases, the SPD decreases. Therefore, to have a
longer SPD, we need a small̺i. The bottom plot in figure
4 is the MANSD versus̺ 1. As ̺1 increases, the MANSD
increases, which means̺i has to be large to ensure large
MANSD.

We then fixed̺ 1 = 0.9 and variedρ1 from 0.1 to 0.9. The
simulation results are shown in figure 5. The top plot in figure
4 is the average broadcast periods versusρ1. As ρ1 increases,
the average period increases. It implies that to obtain long
periods,ρ1 needs to be large. The middle plot in figure 4 is
the SPD versusρ1. We can see that whenρ1 increases, the SPD
increases. The bottom plot in figure 4 is the MANSD versus
ρ1. As ̺1 increases, the MANSD decreases. These simulations
verify the comments in Remark 5.10. It suggests a tradeoff
between the broadcast periods, the MANSD, and the SPD.
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Fig. 5. The average period, the SPD, and the MANSD in agent 1 versusρ1

D. Scalability

This subsection studied the scalability of the distributed
event-triggered system. We compared the average broadcast
period and the design complexity of our scheme against the
approach in [12] that derives the bound on the MATI. The
simulations were done using normal spring models (linear).
The state equation of theith cart is

ẋi =

[

ẏi
ui + κ1

i (yi+1 − yi) + κ2
i (yi−1 − yi) + wi

]

ui = Kix̂i − κ1
i (ŷi+1 − ŷi), (45)

whereKi =
[

−5 −5
]

for i = 1, · · · , N andκ2
1 = κ1

N =
0, κ1

i = κ2
i = 1 otherwise.

We setδ = 10 andβ = 1 and solved local LMI problems
4.10 using MATLAB toolbox. Withρi = 0.9 for ∀i ∈ N , the
events are

0.9‖x1(r
i
j)‖2 = 2.5908‖εj1(t)‖2

0.9‖xi(r
i
j)‖2 = 4.1626‖εji(t)‖2, for i = 2, · · · , N − 1

0.9‖xN(rNj )‖2 = 3.7833‖εjN(t)‖2.

We first compared the average broadcast period generated
by our scheme with the MATI in [12]. Recall that for a
NCS containingN subsystems, the MATI in [12], denoted
asTN

MATI, is,

TN
MATI =

1

L
ln

L+ γ

ρL+ γ
, (46)

where, with TOD protocol, ρ =
√

N−1
N

, L =

max(0.5λmax(−BK −KTBT ), 0), γ is theL2 gain for the
system (̇x = (A + BK)x + BKe + Cw) from (e, w) to
−(A+BK)x, andA,B,C,K are in equation (11).

The average broadcast period generated by our scheme in
a NCS containingN agents, denoted as̄TN , is defined as

T̄N =
System Runtime

Total Number of Broadcasts
. (47)

The simulation was done under the assumption that there
are no data dropouts, transmission delays or disturbances
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in NCS. We variedN from 3 to 100. The system ran for
10 seconds. We compared̄TN and TN

MATI as N varied. In
the simulation, the MATI,TN

MATI, is almost 6 times smaller
than the average broadcast period generated by our scheme,
T̄N , for all N ∈ [3, 100]. This means our scheme uses
less communication resource, compared with the MATI. Also
notice that the average broadcast frequency,1

TN
, is almost

proportional to the number of agents increases. Moreover, the
increase of 1

TN
is much slower than that of 1

TN
MATI

as N

increases. This suggests that the average broadcast periodin
our scheme scales well with respect to the number of agents.

We also compared the time spent in event design in our
scheme with the time spent in computing the MATI in [12].
The simulation was run with 3.0GHZ P4 CPU. It took around
0.04 seconds in MATLAB to compute the parameter,ci, in
one local event. So the total time used to designN events is
0.04×N . The MATI was computed according to equation (46),
whereγ was obtained using MATLAB robust control toolbox.
It took 21 seconds to compute the MATI whenN = 150, 225
seconds whenN = 200, and 463 seconds whenN = 250.
By our scheme, it only took 6 seconds to design all events
whenN = 150, 8 seconds whenN = 200, 10 seconds when
N = 250. Our scheme took much less time in event design
than the computation of the MATI when the number of agents
is large. It is obvious that the time spent in event design in
our scheme scales well with respect to the number of agents.

VII. C ONCLUSIONS

This paper examines event-triggered broadcasting of state
information in distributed networked control systems with
data dropouts and transmission delay. We propose an event-
triggering scheme, where a subsystem broadcasts its state
information to its neighbors only when the subsystem’s local
state error exceeds a specified threshold. This scheme is
decentralized in a sense that a subsystem’s broadcast decisions
are made using its local sampled data; a subsystem is able
to locally predict its MANSD and deadlines for transmission
delay; and the designer’s selection of the local event for
a subsystem only requires information about that individual
agent.

Our analysis applies to both linear and nonlinear sub-
systems. For nonlinear subsystems, the local event design
is transformed into local ISS design problems; for linear
subsystems, the design is simplified to be local linear matrix
inequality (LMI) feasibility problems. With the assumption
that the transmission delay is zero and the number of each
agent’s successive data dropouts is less than its MANSD,
we show that the resulting NCS is finite-gainLp stable
using our distributed scheme. When the transmission delay
is not zero, we provide state-based deadlines that are always
greater than a positive constant. As long as the delay in each
transmission is less than the associated deadline, we show
that the resulting NCS is asymptotically stable, provided the
external disturbance vanishes. Simulation results show that
our scheme has a good scalability with respect to the system
maintenance and the average broadcast period.

These results are significant because they show how one
might stabilize distributed control systems over ad hoc net-

works without necessarily requiring a high degree of syn-
chronization within the communication network. They can
serve as the basis for the design of firm real-time systems
that guarantee network control system performance at levels
traditionally seen in hard real-time systems. How to use these
results to schedule the broadcasts over the network will be an
interesting research direction in the future.

APPENDIX

Proof of Lemma 4.8:Notice that equation (12) and (13)
are equivalent to

P (A+BK) + (A+BK)TP +
1

γ2
PCCTP ≤ −Q (48)

Q− PBKM−1KTBTP ≥ W, (49)

respectively. ConsideṙV with V (x) = xTPx at time t.

V̇ = xT (PA+ATP )x+ 2xTPBKx̂+ 2xTPCw

≤ −xTQx− 2xTPBKe+ γ2‖w‖22
≤ −xT (Q − PBKM−1KTBTP )x+ eTMe+ γ2‖w‖22
≤ −xTWx+ eTMe+ γ2‖w‖22

≤ −
∑

i∈N
(1− ρ2i )λmin(Wi)‖xi‖

2
2 + γ2‖w‖22

≤ −min
i∈N

{

(1− ρ2i )λmin(Wi)
}

‖x‖22 + γ2‖w‖22

for any t ≥ t0, which is sufficient to show that the NCS
in equation (1) isL2 stable with an induced gain less than

γ
√

mini∈N{(1−ρ2

i
)λmin(Wi)}

.

Proof of Lemma 5.1: Consider agenti over the time
interval [bik, b

i
k+1). For notational convenience, we assume

bik = ri0 < ri1 < · · · < ri
di
k

< ri
di
k
+1

= bik+1.

Consider‖xi(t)− xi(b
i
k)‖2 for any t ∈ [rij , r

i
j+1). We have

‖xi(t)− xi(b
i
k)‖2 = ‖xi(t)− x̂i(t)‖2 = ‖xi(t)− xi(r

i
0)‖2

≤

j−1
∑

l=0

‖xi(r
i
l+1)− xi(r

i
l)‖2 + ‖xi(t)− xi(r

i
j)‖2

for ∀t ∈ (rij , r
i
j+1). Applying equation (24) into the preceding

equation yields

‖xi(t)− xi(b
i
k)‖2 ≤

j
∑

l=0

ρi

ci
‖xi(r

i
j)‖2 (50)

for all t ∈ (rij , r
i
j+1). Therefore,

‖xi(t)− xi(b
i
k)‖2 ≤

di
k
∑

l=0

ρi

ci
‖xi(r

i
l )‖2 (51)

holds for all t ∈ [bik, b
i
k+1). Because‖εji (r

i
j+1)‖2 =

‖xi(r
i
j+1)− xi(r

i
j)‖2 ≤ ρi

ci
‖xi(r

i
j)‖2, we have

‖xi(r
i
j+1)‖2 ≤ (1 +

ρi

ci
)‖xi(r

i
j)‖2

and therefore

‖xi(r
i
j+1)‖2 ≤ (1 +

ρi

ci
)j+1‖xi(r

i
0)‖2

= (1 +
ρi

ci
)j+1‖xi(b

i
k)‖2 (52)
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for j = 0, 1, 2, · · · , dik. Applying equation (52) into (51) yields

‖xi(t)− xi(b
i
k)‖2 ≤

di
k
∑

l=0

ρi

ci
(1 +

ρi

ci
)l‖xi(b

i
k)‖2

=

(

(1 +
ρi

ci
)d

i
k+1 − 1

)

‖xi(b
i
k)‖2 =

ξik
ci
‖xi(b

i
k)‖2

for all t ∈ [bik, b
i
k+1). Also notice thatdik ≤ diMANSD holds

according to equation (25). It is easy to show thatξik = ci(1+
ρi

ci
)d

i
k+1 − ci ≤ ci(1 +

ρi

ci
)d

i
MANSD

+1 − ci ≤ ̺i.
Proof of Lemma 5.3:We first consider the behavior of

agenti after a successful transmission occurs, say thekth suc-
cessful transmission of agenti. For notational convenience, we
assumebik−1 = ri0 ≤ ri1 ≤ · · · ≤ ri

di
k

≤ ri
di
k
+1

= bik. Consider

the derivative of
∥

∥

∥
ε
di
k+1

i (t)
∥

∥

∥

2
,

∥

∥

∥
xi(t)− xi(r

i
di
k
+1

)
∥

∥

∥

2
over

the time interval[bik, f
i
k).

d

dt

∥

∥

∥
ε
di
k+1

i (t)
∥

∥

∥

2
≤
∥

∥

∥
ε̇
di
k+1

i (t)
∥

∥

∥

2
= ‖ẋi(t)‖2

= ‖fi
(

xD̄i
, gi
(

x̂Z̄i

)

, 0
)

‖2 ≤ θi

holds for all t ∈ [bik, f
i
k). Solving the preceding inequality

with the initial condition
∥

∥

∥
ε
di
k+1

i (bik)
∥

∥

∥

2
= 0 implies

∥

∥

∥
ε
di
k+1

i (t)
∥

∥

∥

2
= ‖xi(t)− xi(b

i
k)‖2 ≤ θi(t− bik)

≤
1− ξik
ci

max

{

‖xi(b
i
k−1)‖2

2
,∆

}

(53)

holds for all t ∈ [bik, f
i
k), where the inequality on the right

side is obtained by applying (30).
Since the hypotheses in Lemma 5.1 are satisfied, we know

‖xi(t)− xi(b
i
k−1)‖2 ≤

ξik
ci
‖xi(b

i
k−1)‖2

≤
̺i

ci
‖xi(b

i
k−1)‖2 (54)

holds for all t ∈ [bik−1, b
i
k) and therefore,

‖xi(b
i
k)− xi(b

i
k−1)‖2 ≤

ξik
ci
‖xi(b

i
k−1)‖2. (55)

Combining equation (53) and (55) implies that fort ∈
[bik, f

i
k),

‖xi(t)− xi(b
i
k−1)‖2 (56)

≤ ‖xi(t)− xi(b
i
k)‖2 + ‖xi(b

i
k)− xi(b

i
k−1)‖2

≤
1− ξik
ci

max

{

‖xi(b
i
k−1)‖2

2
,∆

}

+
ξik
ci
‖xi(b

i
k−1)‖2.

Let ςik =
1+ξik

2 . Therefore, equation (56), with equation (54),
implies

‖xi(t)− xi(b
i
k−1)‖2 (57)

≤ max

{

ςik
ci
‖xi(b

i
k−1)‖2,

∆(1− ξik)

ci
+

ξik
ci
‖xi(b

i
k−1)‖2

}

for all t ∈ [bik−1, f
i
k). Because0 < ρi ≤ ξik ≤ ̺i < 1, we

know

ρi ≤ ξik < ςik ≤
1 + ̺i

2
< 1. (58)

Equation (57) then suggests that

σi‖ei(t)‖2 = σi‖xi(t)− xi(b
i
k−1)‖2

= (ci − 1)‖xi(t)− xi(b
i
k−1)‖2

≤ max
{

ςik‖xi(b
i
k−1)‖2, (1− ξik)∆ + ξik‖xi(b

i
k−1)‖2

}

−‖xi(t)− xi(b
i
k−1)‖2

≤ max
{

ςik‖xi(t)‖2,

(1 − ξik)∆ + ξik‖xi(b
i
k−1)‖2 − ξik‖xi(t)− xi(b

i
k−1)‖2

}

≤ max
{

ςik‖xi(t)‖2, (1− ξik)∆ + ξik‖xi(t)‖2
}

holds for t ∈ [f i
k−1, f

i
k), whereσi is defined in equation (7)

andci = 1 + σi. Therefore,

σ
p
i ‖ei(t)‖

p
2 ≤ max{ςik

p
‖xi(t)‖

p
2,
(

(1− ξik)∆ + ξik‖xi(t)‖2
)p
}.

(59)

With the fact that
(

(1− ξik)∆ + ξik‖xi(t)‖2
)p

≤ (1 −
ξik)∆

p + ξik‖xi(t)‖
p
2 holds forp ≥ 1, equation (59) implies

σ
p
i ‖ei(t)‖

p
2 (60)

≤ max
{

ςik
p
‖xi(t)‖

p
2, (1− ξik)∆

p + ξik‖xi(t)‖
p
2

}

.

We now considerV̇ for any t ≥ 0. Equation (5) implies

V̇ ≤
∑

i∈N

[

− (αi − |Si ∪ Ui|βi) ‖xi(t)‖
p
2 + δi|Ūi|‖ei(t)‖

p
2

]

=
∑

i∈N
(αi − |Si ∪ Ui|βi) [−‖xi(t)‖

p
2 + σ

p
i ‖ei(t)‖

p
2] .

Becauseαi− |Si∪Ui|βi > 0 holds, applying equation (60)
into the preceding equation yields

V̇ ≤
∑

i∈N
(αi − |Si ∪ Ui|βi) [−‖xi(t)‖

p
2+

max
{

ςik
p
‖xi(t)‖

p
2, (1− ξik)∆

p + ξik‖xi(t)‖
p
2

}]

.

Let

Ωt =
{

i ∈ N | ςik
p
‖xi(t)‖

p
2 > (1− ξik)∆

p + ξik‖xi(t)‖
p
2

}

.

Therefore, the preceding equation is equivalent to

V̇ ≤
∑

i∈Ωt

(αi − |Si ∪ Ui|βi)
(

ςik
p
− 1
)

‖xi(t)‖
p
2

+
∑

i∈N\Ωt

(αi − |Si ∪ Ui|βi) (1− ξik)∆
p

+
∑

i∈N\Ωt

(αi − |Si ∪ Ui|βi) (ξ
i
k − 1)‖xi(t)‖

p
2.

Applying equation (58), (33), to the preceding equation
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implies

V̇ ≤
∑

i∈N\Ωt

(αi − |Si ∪ Ui|βi) (1− ρi)∆
p

+
∑

i∈N
(αi − |Si ∪ Ui|βi) (ς̄i − 1)‖xi(t)‖

p
2

≤
∑

i∈N
(αi − |Si ∪ Ui|βi) (1− ρi)∆

p

+
∑

i∈N
(αi − |Si ∪ Ui|βi) (ς̄i − 1)‖xi(t)‖

p
2

≤ ∆p
∑

i∈N
(αi − |Si ∪ Ui|βi) (1− ρi)

−min
i
{(αi − |Si ∪ Ui|βi) (1− ς̄i)}

∑

i∈N
‖xi(t)‖

p
2

=

(

∆pπp −
∑

i∈N
‖xi(t)‖

p
2

)

·

min
i∈N

{(αi − |Si ∪ Ui|βi) (1 − ς̄i)}, (61)

whereπ is defined in equation (32). This inequality means

V̇ ≤ min
i∈N

{(αi − |Si ∪ Ui|βi) (1−ς̄i)}∆
p(πp−π̄p) < 0, (62)

if
∑

i∈N ‖xi(t)‖
p
2 ≥ ∆pπ̄p.

We know if 1 ≤ p ≤ q < ∞, the inequality
(

N
∑

i=1

‖xi‖
q
2

)

1

q

≤

(

N
∑

i=1

‖xi‖
p
2

)

1

p

≤ N
1

p
− 1

q

(

N
∑

i=1

‖xi‖
q
2

)

1

q

(63)
holds. So equation (61) implies that ifp ≤ q, then equa-
tion (62) holds when

∑

i∈N ‖xi(t)‖
q
2 ≥ ∆qπ̄q. Similarly, if

p ≥ q, then we have equation (62) when
∑

i∈N ‖xi(t)‖
q
2 ≥

N1− q
p∆qπ̄q. Combining these two cases, equation (62) holds

when
∑

i∈N
‖xi(t)‖

q
2 ≥ µ∆qπ̄q, (64)

whereµ is defined in equation (31). By equation (28),

min
i∈N

Li

∑

i∈N
‖xi‖

q
2 ≤ V (x) =

∑

i∈N
Vi(xi) ≤ max

i∈N
L̄i

∑

i∈N
‖xi‖

q
2

holds, which, with equation (64), is sufficient to show
that there existsT ≥ t0, such that

∑

i∈N ‖xi(t)‖
q
2 ≤

maxi,j∈N
{

L̄i

Lj

}

µπ̄q∆q holds for anyt ≥ T , as shown in
[28].

Proof of Lemma 5.5:Consider the set

Γ =

{

x ∈ Λ |
∑

i∈N
‖xi‖

q
2 ≤

V (x0)

maxi∈N L̄i

}

. (65)

According to equation (36), we have

min
i∈N

Li

∑

i∈N
‖xi‖

q
2 ≤ V (x) =

∑

i∈N
Vi(xi) ≤ max

i∈N
L̄i

∑

i∈N
‖xi‖

q
2,

(66)
which impliesΓ ⊆ Λ andmaxi,j∈N

L̄i

Lj
≥ 1.

We now show thatV (t) ≤ V (t0) holds for all t > t0. We
prove it by contradiction. Suppose that there is time instant
t̂ > t0 such thatV (t̂) > V (t0).

Notice that before the first time the inequality in (24) is
violated, the inequality

V̇ ≤
∑

i∈N [−(1− ρ
p
i ) (αi − |Si ∪ Ui|βi) ‖xi‖

p
2]

holds. Therefore, there must exist time instantt̄ > t0 such that
V (t) < V (t0) for all t ∈ (t0, t̄]. SinceV (t) is continuous and
V (t̂) > V (t0), we know there must exist at least one time
interval (s− ǫ1, s+ ǫ1) ⊂ (t̄, t̂) such that

V (s) = V (t0) (67)

V̇ (t) ≥ 0, ∀t ∈ (s− ǫ, s). (68)

Assume thats is the first time in(t0, t̂) satisfying equation
(67), (68) with a parameterǫ1. Then we have

t0 < t̄ < s < t̂ (69)

V (t) ≤ V (t0), ∀t ∈ [t0, s). (70)

Equation (70) implies

x(t) ∈ Λ and
∑

i∈N
‖xi(t)‖

q
2 ≤

V (t0)

mini∈N Li

(71)

for all t ∈ [t0, s) according to equation (66). We know the
fact that
(
∑

i∈N ‖xi‖2
)q

N q−1
≤
∑

i∈N
‖xi‖

q
2, ∀q ≥ 1, ∀xi ∈ R

n. (72)

Equation (70), (71), (72), therefore, suggest that

1

N q−1

(

∑

i∈N
‖xi(t)‖2

)q

≤
V (t0)

mini∈N Li

holds for all t ∈ [t0, s) and anyq ≥ 1. Combining this
inequality with equation (35), we have

fi
(

xD̄i
(t), gi(xZ̄i

(t)), 0
)

≤ (1 + |Z̄i|)LiN
q−1

q

(

V (t0)

mini∈N Li

)
1

q

= θi

for all t ∈ [t0, s). Also equation (38) implies

f i
k − bik ≤ max

{

(1− ξik)

2ciθi
‖xi(b

i
k−1)‖2,

(1− ξik)

ciθi
∆

}

(73)

with

∆ =
θi

(1 + |Z̄i|)Liπ̄N
1− 1

max{p,q} maxi,j∈N

{

(

L̄i

Lj

)
1

q

} . (74)

Then, following the same reasoning in Lemma 5.3, we have

V̇ (t) ≤

[

∆pπp −
∑

i∈N
‖xi(t)‖

p
2

]

·

min
i∈N

{(αi − |Si ∪ Ui|βi) (1− ς̄i)} (75)

for all t ∈ [t0, s), whereς̄i is defined in equation (33). Since
V̇ (t) ≥ 0 for all t ∈ (s− ǫ1, s), from equation (75), we know

∆pπp ≥
∑

i∈N
‖xi(t)‖

p
2, ∀t ∈ (s− ǫ1, s), (76)
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which implies

µ∆qπq ≥
∑

i∈N
‖xi(t)‖

q
2, ∀t ∈ (s− ǫ1, s), (77)

whereµ is defined in equation (31).
Therefore, implementing equation (74) into the preceding

equation implies

µ∆qπq =
V (t0)π

q

π̄q maxi∈N L̄i

≥
∑

i∈N
‖xi(t)‖

q
2,

∀t ∈ (s− ǫ1, s). (78)

Sincex(t) is continuous, equation (78) implies

V (t0)π
q

π̄q maxi∈N {L̄i}
≥ lim

t→s

∑

i∈N
‖xi(t)‖

q
2 =

∑

i∈N
‖xi(s)‖

q
2.

Becausēπ > π,

V (t0)

maxi∈N {L̄i}
>

V (t0)π
q

π̄q maxi∈N {L̄i}
≥
∑

i∈N
‖xi(s)‖

q
2

holds, which implies that

V (t0) > max
i∈N

{L̄i}
∑

i∈N
‖xi(s)‖

q
2 ≥ V (s).

This makes a contradiction with equation (67). Therefore, we
conclude thatV (t) ≤ V (t0) holds for all t ≥ t0.

Proof of Theorem 5.6:By Lemma 5.5, we know the state
trajectoryx(t) ∈ Λ for all t ∈ t0. Therefore, by equation (36),

min
i∈N

Li

(
∑

i∈N ‖xi(t)‖2
)q

N q−1

≤ min
i∈N

Li

∑

i∈N
‖xi(t)‖

q
2 ≤ V (t) ≤ V (t0), ∀t ≥ t0

holds, where the inequality on the left most is obtained using
Holder’s inequality. Therefore,

∑

i∈N
‖xi(t)‖2 ≤ N

q−1

q

(

V (t0)

mini∈N Li

)
1

q

, ∀t ≥ t0. (79)

According to equation (35), we have

fi
(

xD̄i
(t), gi(x̂Z̄i

(t)), 0
)

≤ (1 + |Z̄i|)LiN
q−1

q

(

V (t0)

mini∈N Li

)
1

q

= θi (80)

for all t ≥ t0.
Let π̂ = π+π̄

2 . Since the hypotheses of Lemma 5.3 are
satisfied with

∆ := ∆1 =
θi

(1 + |Z̄i|)Liπ̄N
1− 1

max{p,q} maxi,j∈N

{

(

L̄i

Lj

)
1

q

} ,

we know that there exists a positive numbert1 > t0, such that
(
∑

i∈N ‖xi(t)‖2
)q

N q−1
≤
∑

i∈N
‖xi(t)‖

q
2 (81)

≤ max
i,j∈N

{

L̄i

Lj

}

µπ̂q∆q
1 =

(

π̂

π̄

)q
V (t0)

mini∈N Li

, ∀t ≥ t1,

whereµ is defined in equation (31).

By E2, we know each agent will broadcast aftert1. Let s1
be the time when each agent inN broadcasts successfully at
least once aftert1. Then we have
(
∑

i∈N ‖x̂i(t)‖2
)q

N q−1
≤

(

π̂

π̄

)q
V (t0)

mini∈N Li

, ∀t ≥ s1 > t1. (82)

Applying the preceding two equations into equation (35)
yields

fi
(

xD̄i
(t), gi(x̂Z̄i

(t)), 0
)

≤
π̂

π̄
θi, ∀t ≥ s1. (83)

We now set∆ := ∆2 = π̂
π̄
∆1 and use the preceding

equation to bound the behavior offi over [s1,∞). Then
Lemma 5.3 suggests that there existst2 ≥ s1 such that

(
∑

i∈N ‖xi(t)‖2
)q

N q−1
≤
∑

i∈N
‖xi(t)‖

q
2

≤ max
i,j∈N

{

L̄i

Lj

}

µπ̂q∆q
2 =

(

π̂

π̄

)2q
V (t0)

mini∈N Li

, ∀t ≥ t2.

Let s2 be the time when each agent inN broadcasts
successfully at least once aftert2. Then we have

1

N q−1

(

∑

i∈N
‖x̂i(t)‖2

)q

≤

(

π̂

π̄

)2q
V (t0)

mini∈N Li

, ∀t ≥ s2.

With the preceding two equations, we can re-compute the
bound onfi over [s2,∞) and re-apply Lemma 5.3 to get new
bounds on

∑

i∈N ‖xi(t)‖
q
2 and

∑

i∈N ‖x̂i(t)‖
q
2, so on and so

forth. Then there existssk > t0 such that

∑

i∈N
‖xi(t)‖

q
2 ≤

(

π̂

π̄

)kq
V (t0)

mini∈N {Li}
and

fi
(

xD̄i
(t), gi(x̂Z̄i

(t)), 0
)

≤

(

π̂

π̄

)k

θi

hold for all t ≥ sk. Since π̂
π̄

∈ (0, 1), as k → ∞, the
preceding equation impliesx(t) → 0, which means the NCS
is asymptotically stable.
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