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Abstract—This paper examines event-triggered data trans-
mission in distributed networked control systems with paclet
loss and transmission delays. We propose a distributed even
triggering scheme, where a subsystem broadcasts its statefor-
mation to its neighbors only when the subsystem’s local stat
error exceeds a specified threshold. In this scheme, a subsys
is able to make broadcast decisions using its locally sammle
data. It can also locally predict the maximal allowable numter of
successive data dropouts (MANSD) and the state-based deamtls
for transmission delays. Moreover, the designer’s selecn of the
local event for a subsystem only requires information on tha
individual subsystem. Our analysis applies to both linear ad
nonlinear subsystems. Designing local events for a nonline
subsystem requires us to find a controller that ensures that
subsystem to be input-to-state stable. For linear subsystes, the
design problem becomes a linear matrix inequality feasibity
problem. With the assumption that the number of each subsys-
tem’s successive data dropouts is less than its MANSD, we sho
that if the transmission delays are zero, the resulting sysim is
finite-gain £,, stable. If the delays are bounded by given deadlines,
the system is asymptotically stable. We also show that thostate-
based deadlines for transmission delays are always greaténan
a positive constant.

Index Terms—Event-Triggering; Networked Control Systems;
Distributed Systems

I. INTRODUCTION

discrete packets. These packets may be lost during commu-
nication. Moreover, the communication media is a resource
that is usually accessed in a mutually exclusive manner by
neighborhood agents. This means that the throughput dgpaci
of such networks is limited. So one important issue in the
implementation of such systems is to identify methods that
more effectively use the limited network bandwidth avdiab
for transmitting state information.

For this reason, some researchers began investigating the
timing issue in NCS. In other words, how frequently should
subsystems communicate to ensure that the NCS has a de-
sired level of performance? In traditional approaches, one
first designs the controllers under the assumption of perfec
communication and then determines theximum allowable
transfer interval (MATI) between two subsequent message
transmissions that ensure closed-loop stability undetaork
protocol, such as Try-Once-Discard (TOD) or Round-Robin
(RR) protocol.

The computation of the MATI, however, is often done in a
highly centralized manner. This is impractical for largale
systems. Moreover, because the MATI is computed before
the system is deployed, it must ensure performance levels
over all possible system states. As a result, the MATI may
be conservative in the sense of being shorter than necessary

A distributed networked control system (NCS) consists ad assure a specified performance level. Consequently, the
numerous coupled subsystems (also called “agents”), whisandwidth of the network has to be higher than necessary
are geographically distributed. In such a system, indi@iduto ensure the MATI is not violated.
subsystems exchange information over a communication netThis paper addresses the timing issue through the use
work. These networked systems are found throughout ocofr a distributed event-triggered feedback scheme in NCS,

national infrastructure with specific examples being thecel
trical power grid and transportation networks. Networkimaj

where packet loss and transmission delays are allowedtEven
triggering has an agent broadcast its state informatiog onl

only refers to the communication infrastructure suppgrtinvhen “needed”. In this case, “needed” means that some mea-
feedback control, but also refers to the fact that individugure of the agent’s state error is above a specified threshold
subsystems are physically interconnected in a way that c@ar scheme is decentralized in the sense that an agent is able
be modelled as a network. The networking of control effotb make broadcast decisions using its locally sampled data.
can be advantageous in terms of lower system costs dueat@nt can also locally predict theaximal allowable number of

streamlined installation and maintenance costs.

successive data dropoufBIANSD) as well as the state-based

The introduction of a communication network, howevebounds for transmission delays (also called “deadlineizh
raises important issues regarding the impact that such comformation may be used to help schedule an agent's access
munication has on the control system’s performance. In-prac the communication network. Moreover, the selection of

tice, communication, especially wireless communicatiakes
place over digital networks where the data is transmitted
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the event-triggering threshold only requires local infation
#bout that agent, so that the design is decentralized.

Our analysis applies to both linear and nonlinear subsys-
tems. Designing “local” events for a nonlinear subsystem
requires us to find a controller that ensures the subsystem
is input-to-state stable. By “local”, it means the eventyonl
depends on that subsystem'’s local state and error. Forrlinea
subsystems, the design problem becomes a linear matrix



inequality (LMI) feasibility problem. With the assumption Asynchronous transmissions were considered in [10]. In
that the transmission delays are zero and the number of e#lils work, several sensors and actuators attempt to adoess t
agent's successive data dropouts is less than its MANSD, w@mmunication channel at the same time, but only one of them
show that the resulting NCS is finite-gaify, stable. When actually gains access. Which agent gains access depeniuis on t
the transmission delays are not zero, we provide statedbaseedia access control (MAC) protocol being used. Commonly
deadlines for those delays, which are always greater thamsed MAC protocols include Try-Once-Discard (TOD) and
positive constant. As long as the delay in each transmissiorRound-Robin (RR) [10]. For these protocols, an upper bound
less than the associated deadline, we show that the resultom the MATI was derived [10] that guarantees asymptotic
NCS is asymptotically stable. Simulation results show thatability of the system. It led to scheduling methods [1Htth
the average broadcast period generated by our scheme scaky® able to assure the MATI was not violated. Further work
well with respect to the number of agents. In addition to,thi§l2], [13] derived tighter bounds on the MATI. All of this oni
simulation results suggest that the computational timeired work confined its attention to control area network (CAN)
to select event thresholds also scales well with respect boses where centralized computers coordinate the infasmat
system size. These results can serve as the basis for thysn dedow across the network. The length of the MATI heavily relied
of firm real-time systems that guarantee system performarmethe choice of network protocols.
at levels traditionally seen in hard real-time systems. The aforementioned work computed bounds on the MATI
The paper is organized as follows. Prior work is discusséd a centralized manner. This earlier work also assumed that
in section Il. Section Il formulates the problem. Distribd MAC protocols were also realized using a central supervisor
approaches to design the local triggering event are inttedlu A centralized approach in analysis and implementation is
in section IV for both nonlinear and linear systems. Datpractical for large-scale systems. Moreover, because th
dropouts and transmission delays are considered in sectdATI is computed before the system is deployed, the selected
V. Simulation results are presented in section VI. Sectitih VMATI must ensure performance levels over a wide range
draws the conclusions. of possible system states. As a result, the MATI may be
conservative in the sense of being shorter than necessary to
Il. PRIOR WORK assure a specific performance level. Consequently, theonletw
To the best of our knowledge, there is little prior work on thbandwidth has to be higher than necessary to ensure the MATI
distributed implementation of event-triggering in NCSelim-  is not violated.
inary results [1], [2] proposed decentralized event-teiggl One approach for reducing the bandwidth requirements
feedback schemes for linear and nonlinear systems, respwithin NCS is to reduce the frequency with which agents
tively. This work studied the asymptotic stability of NCSthvi communicate. Recent work considering event-triggered-fee
out considering packet loss and transmission delays. Anteveback sampled-data systems [14], [15] shows that the sagplin
triggering scheme was introduced for sensor-actuatorar&sv rates under event-triggering are well below those in périod
[3] . This work, however, adopted eentralizedapproach to task models. This is because the system can adaptivelytadjus
event-design. Scheduling of event-triggered control@rer the rates in a manner that is sensitive to what is currently
networks was studied in [4], where different MAC protocolfiappening within the system. It should therefore be possibl
were compared in simulations. A recent study [5] applied reduce the transmission frequency in NCS using event-
distributed event-triggering in Network Utility Maximigian triggering. Event-triggering [16] has appeared under almem
(NUM) problem. Other than these papers, we are aware of abnames that include interrupt-based feedback [17], Lgbes
other work formally analyzing distributed implementasoof sampling [18], state-triggered feedback [19], and sédigeered
event-triggering in NCS. There is, however, a great deakef rfeedback [20], [15], [21]. All of this prior work, however,
lated work dealing with event-triggered feedback in emlgeddfocused on using event-triggered feedback in single pemses
control systems, sample period selection, and packet fossréal-time systems.
NCS. We will review these areas and discuss their relatipnsh Another related research direction is to study packet loss i
to our distributed event-triggering scheme. NCS. In [22], a 2-state Markov model was used to describe
Early work [6], [7] analyzed the scheduling of real-timahe packet loss. The system can either use past controlsinput
network traffic. The impact of communication constraintsr compute new control inputs based on an estimate of the
on system performance, however, was not addressed in floist data. In [23], packet loss is modelled as an identically
work. It was noticed [8], [9] that communication delay had andependently distributed (i.i.d.) process in a singlpdn
harmful effect on system stability. These papers consitlergingle-output NCS. These results were extended in [24] by
the one packet transmission problem, in which all of theodelling data dropouts as a Markov chain instead of an
system outputs were packaged into a single packet. Agenisl. process. Optimal dropout compensation for NCS was
in the network, therefore, do not have to compete for chanm@ksented in [25]. A packet-based multi-control strate@sw
access. One packet transmission strategies, howeveirgegexamined in [26] to improve the performance of NCS, where
a supervisor who gathers the data from all subsystems int@acket loss is assumed to follow a stochastic 2-state Markov
single packet. The cost and complexity of implementing suchodel. All of this work focused on modelling data dropouts
centralized supervisors will not scale well with systemesizas stochastic processes in a centralized manner. This, paper
As a result, such schemes may be impractical for large-sc#tie other hand, presents a method by which agents can locally
systems with limited network bandwidth. estimate their MANSD. Again, this information may be used



in scheduling agent access to the communication medium.exogenous disturbance if, space,g; : R™Zil & R™

This paper considers a more general framework of asyis-the feedback strategy of agentsatisfying ¢;(0) = 0,
chronous information transmission in NCS using distridutef; : R"™P:l x R™ x Rt — R" is a locally Lipschitz
event-triggering. This work addresses the impact that bdiimction satisfying f;(0,0,0) = 0, and zp, = {z;},cp,
data dropouts and transmission delays have on overallsyste;, = {z;},cz . For convenience, this paper assumes that
performance. To the best of our knowledge, this is the firdte states, inputs, and disturbances of agents have the same
result examining the requirements for distributed implatae dimension. The results in this paper can be easily extended
tion of NCS. It is also the first result on packet loss in evente cases where the dimensions of agents’ states, inputs, and
triggering. Another important contribution over prior wor disturbances are different from each other.
[10], [12], [13] is that this paper derives state-based lisun This paper assumes agentan only detect its own state,
on stabilizing transmission delays. Furthermore, we sh@t t z;, and receive the broadcast states of its neighbots; inf
the existence of strictly positive bounds on stabilizindpgie. a local “error” signal exceeds a given threshold, which can
These bounds can be used to select realistic deadlines thatdetected by hardware detectors, agewtill sample and
can be achieved by communication network middleware. Obroadcast its state information to all agents in thelgeover
results can therefore serve as the basis for the design of farmeal-time network. Meanwhile, ageis control, ;, at time
real-time systems that guarantee system performanceeis lev is computed based on the latest states that were succegssfull

traditionally seen in hard real-time systems. broadcast by those agents ). These broadcast states are
denoted asiz (). The control signal used by agentis
I1l. PROBLEM FORMULATION computed based any (¢). This means that the state equation

Consider a distributed NCS containifg agents. Thesé/  Of agenti can be written as
agents are coupled together and each agent receives informa . _ B
tion from neighboring agents. Le¥ = {1,2,---,N}. The () = fi(op, (6) ui(t) wi(?)
coupling and information flow in the NCS can be described ui(t) = gi (CEZ (t)) » zi(to) = mio, VE=>1t0. (1)
by a coupling graph and a communication graph, which are
defined as follows.

Definition 3.1: A graphGep = (N, &) is called the cou-
pling graph of a NCS, where each node N represents an
agent in the NCS. The ordered pair (eddg)j) is in & if
agent;j is directly driven by agent.

Definition 3.2: A graph Gem = (W, &m) is called the
communication graph of a NCS, where each nede N
represents an agent in the NCS. The ordered pair (gdgg)

One thing worth mentioning is that the control inpy{(?)
depends oni;(¢) instead ofz;(t). In fact, if agenti knows
its exact stater;(t), the control input,;(t) can be computed
based onz;(t) and Zz, (t). The analysis in this paper is
still applicable. But in this case, agehhas to continuously
computew;. From the perspective of saving computational
resource, we relate;(t) to Z;(t). u; is, therefore, constant
between two consecutive successful broadcasts by thesagent
is in & if agentj can receive broadcasts from agent n Zl becauseiy, (t) remains the same (_Jlurlng that_ time
Ej&érlod. Of course, agentcan also update its control input

In this paper, the coupling and communication graphs ne ) : :
not be the same. Both graphs are directed. This provides S}ween broadcasts, subject to its local computationalires
vailable. But this requires a more sophisticated strategy

a general framework for the network topology. For notationd th tational that will be studiedan th
convenience, we let manage the computational resource that will be studieden

Zi2 {j € N'| (i) € Ean} denote the set of agents that" o e
* o {.j < |(j.’l) < C’T‘} enote the set of agents tha Agent i's broadcast is characterized by three monotone
agent:i can get information from,

e U; 2 {jeN|(i,j) € Em} denote the set of agents tha
can receive agents information,

increasing sequences of time instants: the broadcastseslea
time, {ri}32,, the successful broadcast releagg,}>>,, and
: o he broadcast finishing timgf; }2° ;. The timeri denotes the
A kSk=1 k

* g;e_ctl{j deri\j/\é Ll(jérlw)i Eaicg} denote the set of agents tha{ime instant when théth broadcast of agertis released. The

g 2 {y. EN| (9 ) e €.} denote the set of agents Whodata, however, may not be transmitted successfully. The tim
¢ Vi=u b J N 9 b: denotes the time instant when titb agent “successfully”

are directly driven by agent . : u N

_ ) _ _ broadcasts its state for thigh time. “Successfully” means
Notice thati ¢ Z; U D; UU; U S;. We letX; = %; U{i} for  he gata in this broadcast is received by ALL agentsin
any set; € {Z;, Ui, D;, 5;}. For any set C V, [X] denotes g ccessfully. The sequendg; }° |, is clearly a subsequence
the number of the elements 1. || - ||2 denptes the_Euclldean of sequence(ri}2 . The jth inter-release time of agentis
2-norm Qf a vector|| - || denotes the matrix norm induced byyeafined ag” — rt, —ri. Itis also known as thgth broadcast
the Euclidean vector norm, angyi,(A), Amax(4) denote the J J

= ’ h 2 ; period of agent. We used§C to denote the number of times
minimal and maximal eigenvalues of matik respectively.  agent; broadcasts its state between time instaftandbi,, .
The state equation of agenis

This is also equal to the number of data dropouts between

Fi(t) = fi(vp, (1), uilt), wi(t)) agent; andU; over the int_erva[b};, bi. ). We assume there is

w(t) = g (xf (t)) zilto) = 70 no delay between sampling and broadcasting data. The delay
! SNTZAM ! considered in this paper is the time between sampling and

where z; : R — R" is the state trajectory of agent “successful” receipt of the data. The tinfé denotes the time

u; : R — R™ is a control input,w; : R — R! is an instant when all of agents neighbors (agents ifV;) receive



the kth successfully broadcasted data from agehlotice that assumption can be satisfied when the interconnections batwe
&5(t) = x4(b},) for all t € [f], fi, ). In the following we let subsystems are weak. Here is a distributed way to design the
e; : [to,00) — R™ be defined ag;(t) = x;(t) — 2;(t) for control strategyg; such that Assumption 4.1 holds. We first
Vt > to. This function therefore represents the error betweselect{s;} , and{3;}}¥, that are shared by all agents. Then
agenti's current state and the state at its last successhgenti only needs to find/;, «;, andg; to fulfill equations (4)
broadcast. We also define the functieh : [tg,00) — R™ — (6). Notice that once ageritknows {6;}N, and {8},
asel(t) = z;(t) — z;(r}). This signal therefore represents th@quations (4) — (6) are only associated with agestiocal
error between agen current state and its statergt whether dynamics. It turns to be a local input-to-state stabilzati
or not the broadcast ag’. was successful. problem for agent. Solving such a stabilization problem is
Definition 3.3: The system in equation (1) is said to béot easy in general. For linear systems, however, it can be
finite-gain £, stable fromw to = with an induced gain less solved by solving an LMI. This will be further discussed in
than~ if there exist non-negative constantsand¢ such that Section IV-B.
for Vw € L, Theorem 4.3:Consider the NCS defined in equation (1).

Suppose Assumption 4.1 holds. For akk A and anyp; €

(/t:OH:E(tNth)%S 7( /t:o|w(t)||’2’dt)%+§_ o O

The objective of this paper is to develop distributed event- o = (&) ’ . @)
triggering schemes to identifyr 122, {b}.}72,, and{f{}32, o —|5; U Uil Bi

such that the NCS defined in equation (1) achieves a desited

level of performance with regard to the stability concepts

introduced above. —pillzi@®)ll2 + oillei(t)]2 < 0 (8)

holds for alli € N and allt > t,, then the NCS i, stable
from w to .
Proof: Let V(z) = >, Vi(z;). It is easy to see that

IV. DISTRIBUTED BROADCASTTRIGGERING EVENT
DESIGN

This section describes a distributed approach to the design
of “local” events for both nonlinear and linear subsysteB)s. V= Z %(fcz‘)fi(fci;,,gi(:vz — ez ), w;)
“local’, we mean that a subsystem’s event can be triggered by ) ' ' ’
using information that is "locally” available to the agefthis
information includes the agent's local state as well aslloca

< —|lx; p+ N 12
models of the agent’s dynamics. - %\:, I:llz jE;_UZﬂJ” ill
A. Local Event Design in Nonlinear Systems + Z Z Sjllesls 4 AP w5
The following assumption will be used throughout this ieN | jeZ;
paper. = — (o — [S; U Ui|Ba) ||lzallh + 05| Us |l esll
Assumption 4.1Consider subsystem € A in equation ZGZN[ ( | 18 lllz Ol Hz]
(1), i.e.
+ > AP |lwily
#i(t) = fi(zp,(t),uilt), wi(t)) ieN
ui(t) = gi(2z,)), wi(to) =z, Vt>1to. (3) < > [ = o) (e — [Si WU B) Nl + A2 llws13]
1EN

Assume that for anyi € N, there exist a continuously o ) )
differentiable, positive-definite functior : R* — R, classk. Where the second equality is obtained by resorting all of
functions¢?, ¢4 : R — R, positive constants;, 3;, 8;,7; € R, the items according to indek Equation (6) and the above

and control lawg; : R"Zi| — R™: satisfying inequality are sufficient to show the NCSAs stable fromw
_ _ to z. |
Gllzill2) < Vilzi) < Gllzill2) (4)  Remark 4.4:The inequality in (8) is the real-time constraint
oV, to ensure the system stability. This constraint is only eissed
— (=) fi(zp,,g9i(xz, — ez ),w;) < 5 : j
ox; (@) fi(zp,, i@z, — ez,),wi) < ®) with the agent’s local state;;, and the local errog;, between
ST Billa s+ A wls + 37 8lles s — ]|y the agent's current state and its last successfully braadca
jeDuZ; ez, Isfta;]e. Note that theie silgnals ::ljre Iocally a_vallzblle to tagen
@ —|S; UUi|B; > 0 6) ‘there are no packet loss and transmission delays, we can
directly use the violation of the inequality in (8) to trigge
with somep > 1. agent:'s broadcasts. Even if transmission delays and packet

Remark 4.2:Equations (5) suggests that subsysteii £, loss exist, as long as the the resulting measure error isdsslin
stable from{z;};ep,uz:, {€;};cz,, andw; to z;. Equation by the given threshold, the system is sfil, stable. How to
(6) requiresa; to be large. Taking this into equation (5), itquantify the allowable delays and packet loss will be diseds
puts a requirement on thé, gain of this subsystem. Thisin section V.



Remark 4.5:The functionsw; ||z; |5, B;llz; |5, andd;|le;||5  R™¥*"N andW;, M; € R"*", i =1,2,---, N such that:
may b_e repla<_:ed by more general cldSdunctions that are _P(A+ BK)— (A+BEK)"P—Q PC
Lipschitz continuous. cTp

&/
We will find it convenient to use a slightly stronger suffidien VNN

condition for £,, stability. This condition is stated in the fol- w PBK 1 0. (12)
lowing corollary. The corollary recasts the real-time doaisit { I?TIBTP M ] >0, (13)
in equation (8) as a function of the local erref, and the

successfully broadcast local state, P,.Q,M;,W; >0, (14)
Corollary 4.6: Consider the NCS in (1). Suppose Assumpyhere M = diag{ M, }cnr and W = diag{W,};cr-. For all

tion 4.1 holds. For any € A" andp; € (0,1), letc; =1+o0; . ‘ o \/m
whereo; is given by equation 7. If i€ N and anyp; € (0,1), leta; =1+ Amin (W) I

aillei(t)[lz < pillZi(2)||2 (15)

for all : € N and allt > ty, then the NCS i, stable from
holds for alli € N and allt > t,, then the NCS i, stable w to z.
from w to z. Remark 4.9:When equation (48) holds, there always exist
Proof: By the definition ofc;, equation (9) is equivalent positive definite matrice$V;, M; satisfying (49). For some
to UzHSZ(t)HQ + HGZ(t)HQ < pZHJA?l(t)”Q forall t > t;. Sowe € € (O,Amin(Q)), the matricesW,; = el,x, and M; =

cillei(®)]l2 < pill2(t)|l2 9)

h | PBK|? . .
ave anm, for example, clearly satisfy equations (48) and
R (49).
aillesllz < pill2i()ll2 — pilles(t)ll2 Lemma 4.8 provides a way to design local events. Agent
< pilli(t) + ei®)]l2 = pillzi(E)|l2 i can use the violation of the inequality in (15) to trigger

its broadcasts. Directly solving the LMIs in equation (12) —
for all ¢ > to. Since the hypotheses of Theorem 4.3 ar@4), however, may not be suitable for large-scale syst&ves.
satisfied, we can conclude that the NCS/s stable from now propose a way to solve this LMI feasibility problem in a
w 10 x. B decentralized manner.

Remark 4.7:In the later discussion, we design event trigger Let us look at agent. Assume|Z;| = q;, | Z; U D;| = s;,

to ensure the inequality in (9). In equation (9), the thrédho _ o )
on the local error is fixed between two successive transmis- %Z - {“’12’ g} SN, and
sions. Such a threshold makes it more convenient to predict ZiUD; = {i1, g, ig+1, »is, ) SN

deadlines. These predictions are discussed in section V. Without loss of the generality, we assume = i. We also

define four matricesd; € R*"*"s%i K, € R™*"% andK; €

mxng; . ns; X1
B. Linear Systems R  Hi e R by

This section shows how to implement the distributed scheme Ai=(Aii, Aigy, - Ai,, ), P,C;
- : : ) Ki= (Kii, Kii, K, ), H;, =
proposed in section IV-A for linear systems. We confine . ’ ' e 0 ’
Ki= (Kii, Kiiyyo Kig, ),

our attention toLs stability. For linear systems, events are
designed by solving LMI feasibility problems. With the la¥e \heref;; = 0 if j € D;\Z;, and two functiongF; : R"*" —

structure, the state equation of agens RrsiXnsi G, RnXn x R — RsiXnsi py
jeD, 0 ’ ’ 0 -—-pI
ui(t) = Kudi(t)+ Z Kija(t) (10) With these matrices and functions, we define the local LMI
€7, problem associated with agent
) ) Problem 4.10 (Local LMI):Given constants, 5 > 0, find
and the state equation of the overall NCS is P,,Q;,W; € R"*™ and#, € R such that
i(t) = Ax(t) + Bu(t) + Cw(t) —F(P) - FI'(P) - Gi(Qu: ) Hi ]
. 0 16
u(t) = Kz(), (1) Hr Yilixi | ~ (16)
i — S UUilBlLnxn —W;  PiBiK,
where z = (xf, ,x%)T, u = (uf, ,u%)T, w = @il =T |§ * >0 (17)
T TN\T - T ~T\T - K; B P; 010 q; xng;
(wi, - ,wy)', and & = (&1, --,&y)" . We will use P 0.4 > 0 18
equation (10) and (11) interchangeably to denote the dyteami i Wi>0,9 >0 (18)
of the NCS. The following theorem shows that solving Problem 4.10
We first introduce a lemma, in which LMIs are used tensuresC, stability of the resulting event-triggered NCS.
identify the parameters in local events. Theorem 4.11:.Consider the NCS in equation (10). Given

Lemma 4.8:Consider the NCS in equation (11). Givere 4§, 8 € R*, assume that for any € A/, the local LMI in
R, assume that there exist positive-definite matriee® € Problem 4.10 is feasible and, Q;, W; € R"*", and~; € R



are the solutions. For al € A and anyp; € (0,1), let Corollary 4.14 suggests that must be large enough to

bi =1+ IL T guarantee the feasibility of the local LMI, provided equoati
Amin(Ws) (20) holds. We still need to know how to selegt The
billes(t)ll2 < pill#i(t)]]2 (19) following corollary shows that the feasibility of equati¢20)

holds for allt € N and allt > ty, then the NCS i, stable is independent of the selection of

from Corollary 4.15: If there exist a positive-definite matrik, €
wio R"*" and it tart € R such that equation (20
Proof: Notice that the inequality still holds when we and a positive constarit € R such that equation (20)

expand the matrices in equation (16) int& x nN dimension holds, then for anys > 0, %Pi and 3 also satisfy equation
by appropriately adding zero. Summing both sides of tH&0)- ) _ o
expanded matrix inequalities shows that equation (12) is Proof: This can be easily proven by the definitionsof

satisfied and therefore equation (48) with andG;. ]
— i AN _ =
P=dagPi}iy, 7= m?x{ﬁ}’ V. EVENT-TRIGGERING WITHDATA DROPOUTS AND
Q = diag{Q; — |S; UU;|BLxn } Y1, TRANSMISSIONDELAYS

The previous section provides real-time constraints that
rguaranteeﬁp stability. If there are no dropouts and delays
during data transmissions, agents can directly use thaticol
W =diag{W;}Y.,, M =diag{6(|U;|)Lnxn};. of the inequality in (9) to trigger the broadcast. When dnatgo

Since the hypotheses in Theorem 4.8 are satisfied, we ccmcl&&d delays are involved, agentses the violation of

that thrfax[\l{(\:/%}ISEQ stable with an induced gain less than 225 () — i () |2 < g—:||$i(7°§)|\2 (23)
\/mini{(l—p?)knnn(Wi)} .

Remark 4.12:Since § and g are pre-selected, the loca
problem associated with agenbnly requires the information
on agenti’s system dynamics. To design the local event

agents do not have to know other agents’ system informati > Lalty) W i
and, therefore, the design scheme is distributed. the transmission; whiler;(b},) in (9) is always successfully

Remark 4.13:The dimensions of the matrices on the lefifansmitted. Under this triggering mechanism, we provide a
hand side of the LMIs in (16) and (17) afes; +1) x (ns; +1) maximal allowable number of successive c_iropouts (MANSD)
and (ng; + n) x (ng: + n), respectively. These dimensionnd a bound on dela_lys (als_q called “deadline”) for each agent
are much smaller than the dimensions of the matrices in tife €nsure asymptotic stability of the overall system. These
equations (12) and (13). parameters can be |dept|f|ed by agents using local infoomati

In Problem 4.10, two parametessand 3, are pre-selected FO notational convenience, lef (t) = z;(t) — zi(rj) and
and all agents share the sam@nd 3. The following corol- ansp denote ageni's MANSD. o _
laries 4.14 and 4.15 discuss the selection of these paresnete TO analyze data dropouts and transmission delays in net-
so that the local LMIs are feasible. A more general setup Y0rks, we first need to introduce the transmission procedure
to pre-select a group of parametdrs} Y, and{3;}¥,. The Let us take agentas an example. Agentuses the violation of

preceding results can be easily modified to handle this mdpgauality in (23) to trigger the next broadcast. When thealo
general setup. event occurs, agentsamples and then sends a DATA message

Corollary 4.14: Consider the NCS in equation (1). For any© neighboring agents ifr;. The DATA packet contains a time

i € N, if there exists a positive-definite matrig € R»<» tag and the sampled staig(rj,,). At the same time, the
such that triggering event is updated to be the violation of

where@; — |S; UU;|BI.x» > 0 holds by equation (17).
Similarly, we can show that equation (49) is satisfied witl

fto trigger thej + 1st broadcast release, wher? denotes
the time instant when agent samples and releases the
dth broadcast. Notice that the difference between equation
E,?n?) and (9) is thatr;(r}) in (23) might be lost during

j Pi i
Fi(P) + FF(P) + Gi(|Si UU;| BLuxn; B) < 0, (20) el )] < ;Hxi(rﬁl)”?

then there always exists a positive constante R, such Those agents who receive the packet from ageeed to send
that for anyé > 6*, the LMI in Problem 4.10 is feasible.  acknowledgement messages (ACK) back to ageobtice that
Proof: Equation (20) implies there exists a positive defix; ipis point, agents it/; are not allowed to use this DATA

nite matrix@; € R™*" such that packet to update their control inputs.
Fy(P)+ FT(P) + Gi(Qi;8) <0 (1 M age_r;]t_z' relpeives c(;)nfi_rngiorjs fr?]ml__L of its nei%hbors
Qi — 1S5 UUi|Blen > 0 (22) in U; within 7 seconds, i.e. during the intervat ,, 7}, +

1), it sends out a permission message (PERM) to its neigh-

Since (21) holds, we know that there always exists a positibering agents. The PERM message gives neighboring agents
constanty} € RT such that for ally; > 47, equation (16) permission to use the previously transmitted data. Otreerwi
holds. Equation (22) implies that there exists a positiiinde if agent: does not receive confirmations fromLL of its
matrix W; € R™*" such thatQ; — |S; UU;|8L,x» — W; > 0, neighbors inU; within 7-,3' seconds, the DATA packet is treated
which suggests that there always exists a positive constasta lost packet and discarded. Notice that sending PERM
§* € R™ such that for alld > §*, equation (17) holds. m indicates a successful broadcaz%'t+1 is, therefore, the time



instant of a successful broadcast. We use the synbhol by equation (7), and the number of successive dropadits;,
to denote the release time of thgh successful broadcastZ, satisfies
({b;.}52, is a subsequence @i }22,). Only after the agents . } 0;
in U; receive the permission from ageitthey are allowed dj, < digansp = {bg(l“i) (1 + C—Z) - 1J : (25)
to use this packet to update their control inputs. Notice tha !
the sizes of the ACK and PERM packets are very smathen the inequality
Therefore, they will not take a lot communication resoukte. _ &(di)
can assume that transmission of PERM packet is instantaneoth®i (t) — i (bj,) |2 <
and will not be lost. o
Following this transmission protocol, it is easy to see th&plds for allt € [bj,b; ) and allk € N, where¢; : Z —
a packet sent by an agent is either lost or transmitted tofall @, ¢:) is defined by
its neighbors. The broadcast statgt) of agenti, therefore di+1
remains consistent across all of its neighbors. It is ingourt &(dL) 2 ¢ (1 + ﬁ) —¢; € (0, 0;). (27)
to have this consistency in the system. Otherwise, differen Ci
versions of measurement errors will be generated that ardRemark 5.2:If all the hypotheses in Lemma 5.1 hold and
difficult for agent: to track. For example, assume that agenf, = f; holds for alli € A" and allk € N, then the NCS is
1 receives and uses the DATA package from agemthile finite-gain £, stable fromw to z. This is because whelj, =
agent 2, another neighbor of agehtdoes not receive that f; holds,z(b%) = #;(t) and||e;(¢)||2 = ||@i(t) — x;(bL)||2 for
packet. Agent 2 therefore still uses the previously reckive < [f;, f/, ). Equation (26), therefore, impligige;(t)[|2 <
state of agent, sayz;2. Then agent 2's measurement erro€: || z;(¢)||, for all t > 0 with o; € (0,1). This is sufficient
in the state of agent is z;(t) — z,. This error, however, to show that the NCS is finite-gaid, stable fromw to z
is difficult for agent: to track because there is no way fomaccording to corollary 4.6.
agent; to know exactly whate;» is. How to handle different Lemma 5.3:Consider the NCS in equation (1) with; = 0
versions of measurement errors in distributed systems tmidor all i € A/. Suppose that Assumption 4.1 holds afjd ¢}
be an interesting topic in the future.. in equation (4) satisfy
We currently know how to design local events. But to ensure ’ -
asymptotic stability of the system, we still need to deteeni  ¢1(llzill2) = Lil|=:)13 and G([lzill2) < Lillzifl3,  (28)

dyyaxsp and derive upper bounds aty so thates|le;(t)[2 < respectively, with some positive constadts L; > 0, ¢ > 1.

pilli(t)|2 is always valid with some; € (p;, 1) for all t > Also assume that there exist a collection of positive catsta

to and alli € N. Notice thatz;(t) = x;(bj) for all t € ¢, ¢ R+ fori=1,2,---, N such that

[fi, fi1) and thereforee;(t) = a;(t) — a;(b},) for all t € R

[fi, fi1). Recall thatf{ is the time instant when théth 1£: (25, (8), 9i (22,(£)) , 0) [|2 < 6, (29)

successful broadcast is completed. This suggests that lye qihgs for all + > to and alli € N. Given a constant

need to ensure;|;(t) — x;(bj)|[2 < pilli(b})l]2 over the A ¢ r+ and two collections of positive constantse (0, 1),

time interval[fy, fiy ). C o _ 0; € [pi,1) fori=1,2,--- N, if for any i € N/, equation
i\Nei may act?ally ispllt[fkafk+l) Into itWO subintervals: (24) holds for allt e [ri,7i.,), the number of successive

[f4 bhyr) @A[bL 4y, fro ). TO determinely s, We focus  gron0utsgi | satisfies equation (25), and the delay in kel st

on the time interval[f;,b; ) since data dropouts happery.cessful transmission satisfies

during this time intervald;; ,ngp IS Selected in a way that

even if packets are lost, the real-time constraifite; (¢)||2 < fi1 = bi < 1_579(’1’“) max {M7 A} (30)
pillZ:(t)]|2, is still valid over that interval. To determine ) _ i i - N
bounds onr!, we focus on the intervabi ., fi,,) because Where&; is defined in equation (27), then for any € R
74 is basically the delay in théth transmission. We need toSuch thatr > 7, there existsl" > o such that
find an upper bound orfi;, — b, denoted ag;;, that ensures S ien I (®)]4 < max; jen {f—} URIAT
asymptotic stability. =

Before we present the main results, we need two lemmaslds for allt > T, where

i Qi i
= [|zi(0k)ll2 < — lla(bi)ll2 - (26)

2 2

The first lemma (Lemma 5.1) describes the behavioe; 0f) 1 p<gq

over|[f;, b;.,,) when data dropouts happen. The second lemma uw= { N2 _ (31)

(Lemma 5.3) shows that if there is a bound on the delays and voP=a )

the overall system dynamics is bounded, the resulting NCS is o Dien (@i = [SiUUB) (L= pi) \7 39

uniformly ultimately bounded. B <minie/\/{(0¢i —[SiuUiBi) (1 - <i)}> (52
Lemma 5.1:Consider the NCS in equation (1). Suppose 1+ 0, \”

that Assumption 4.1 holds. Given two collections of positiv G = max {< 1) , 1} . (33)

constantsp; € (0,1) andg; € [p;,1) fori =1,2,--- | N, if

for anyi € N, the inequality Remark 5.4:If f[he delays are less than the first term (asso-

j ; ciated with ||z;(b%)||2) in the bound in equation (30), then
ciller®llz < pilles(ri)llz, (24)  the real-ime constraint in equation (9) can be guaranteed.

holds for allt € [r%, 7%, ), wherec; = 1+0y, ando; is defined However, we cannot simply uée‘%% as the bound



on delays because this bound may shrink to zero as the 1st broadcast is released by the violation of
state approaches zero, which is not practical. Alternigtive

we introduce%A, which can be viewed as the worst-

Ey N Es, (39)
case bound. V\/Cﬁeém dominates thenax operator, the real- \where F; is the inequality in (24) and
time constraint in equation (9) will be violated. This vitim, ‘
however, only happens when the state is close to zero. Ey:t <rj+uv, (40)
Lemma 5.3 suggests that, with the assumption that tﬂ1e
system dynamics is bounded, the overall system is globa ge
uniformly ultimately bounded for any. It is, however, still u n i : ) .
not clear how to selech so that this assumption of boundec?at'sfles equation (38), then the NCS is asymptoticallylstab

system dynamics holds. The following lemma solves thisa'ssuBRemark 5.7:The introduction of in £ can be viewed as

and therefore helps us relax the assumption of equation (% Z security requirement of the system. It requires eachtage
in Lemma 5.3. It shows that ifs is small enough, the system roadcasts at least everynits of time.v is arbitrarily chosen.

dynamics will be in a pre-selected compact set. We now defiﬁé ensures that agents still communicate even when they stay
this compact set. Suppose Assumption 4.1 holdsfang are in the ultimate set.
locally Lipschitz for alli € . Then we can define a compact

number of successive data dropod}s¢ Z, satisfies equa-
(25), and the delay in the+ 1st successful transmission

Remark 5.8:n% in equation (38) serves as the deadline for

set A c R™N  as the kth successful broadcast of agentWith the fact that
’ ' §i(dy,) < o; holds, we havey; always greater than a positive
A2 {z eR™ | V(z) < V(zo)} (34) constantripp,. In other words,
_ 1
and find positive constant®;,L;,L;,L; € R for i = i (1 — g;)min; L/
1,2,---, N such that forvz, & € A, M = TSPD = — >0 (41)

(1 + |Zi|)CiLiﬁNl_m max; L}

K2

| fi@p, 932, 0)ll> < L 3 (lilla + 12:]12), 35)  holds for allk € N. mipp is the smallest predicted deadline
_ eN _ (SPD) of agenti. To show the SPD is greater than zero is
Gllzill2) = Lyllill3,  Gallwill2) < Lillll3, (36)  important in establishing that our scheme does not reghire t
V(o) ‘ network to transmit data infinitely fast.
) (37) Remark 5.9:The number of successive dropout§, deter-
mines the deadling;. As di increases, the value &f(d:)
with someq > 1. For the notational convenience, we Us¢) increases. It, therefore, results in a short deadline daogr
to denotel/(x(t)) for all ¢ > ¢,. to equation (38). There is a trade-off between the number of
Lemma 5.5:Consider the NCS in equation (1) with, = 0  successive dropouts and the deadline.
for all i € N. Suppose that Assumption 4.1 and equation Remark 5.10:Two parametersp;, o; are used in the
(35), (36) hold with some; > 1. Given positive constants scheme. The parameter determinesdi;,xsp, Tepp, and
pi € (0,1), 0; € [p;, 1) for all i € N and 7 € (m,00), where the transmission periodd;’. The largep; is, the longerT”
7 is defined in equation (32), if for anye N, equation (24) is and the smallewi,nsp IS, according to equation (24)
holds for allt € [r},7%,,), the number of successive dataand (25). Largep; may also result in a smalt according
dropoutsd;, € Z, satisfies equation (25), and the delay in th equation (32) and therefore leads to a larggs,. The

Hié 1 Zl LiN% —_—
R

k + 1st successful transmission satisfies parameterp; determinesiy; ,nsp and 7épp,. The largeg; is,
’ b < i the largerdy;,ngp IS and the smallerd,, is. As a “rule
Ferr = Ui <7 = N of thumb”, a reasonable strategy is to chogseand p; so
max ¢ Q=€) (b)) 12 (1—£i(d})) min, L] that the periods and the SPDs are as large as possible; as this

1

’ (1+\z”)qLﬁN“m max; LI makes the task easier to schedule under an earliest-deadlin
B (38) first (EDF) scheduling discipline.

whereL;, L;, L;, & are defined in equation (35), (36), (27), Remark 5.11:To design a system with special requirements
respectively, them(t) € A for all t > to, whereA is defined on d}; ,nsp @and7ipp, We solve equation (25) and (38) for

in equation (34), . and g;. There is no constraint on the selection dif s xsp-

With the upper bound on delays derived in Lemma 5.%, can be arbitrarily largeri,, however, must be less than
we know that the system dynamics is bounded. Therefore, $yme positive constant so that equation (25) and (38) have
Lemma 5.3 the NCS is at least uniformly ultimately boundedolutions.

The following theorem shows that with such an upper boundRemark 5.12:It is not necessary that the transmission pe-
on delays, the ultimate bound will gradually shrink to zerajods reduce to zero as the state approaches to the origin.
which implies asymptotic stability of the system. The transmission period is determined by the growth rate of

Theorem 5.6:Consider the NCS in equation (1) with = the ratio 1=2®2  For certain systems, when the threshold

: ; ; i (r)ll2
0 forall i € V. S_uppose that Assu_mptlon 41 and equatloa‘xi(ri_)”ﬂ goes to zero, the growth rate of the error is also
(35), (36) hold with some; > 1. Given positive constants 7 Dl
veRT, pi€(0,1), 0 € [ps, 1) foralli € N and7 € (, 0), decreasing. As long as the growth ratellﬁifw)“z2 is bounded

where 7 is defined in equation (32), if for any € N, the from above, there must be a constant lower bound on periods.

20791




Such a time-space relation is further discussed in [21],revheactual periods go to zero. In fact, in the simulations inisect
a scaling law is provided. _ VI, the periods are always greater than a positive constant.
Remark 5.13:When disturbances hit agent |[[¢/(¢)]2 suggests that the bound in corollary 5.14 may be conseevativ

might grow faster and therefore the growth rate §i(2l2  for certain systems.

2 (r)ll2 AN . . .
will be large. As a result, to ensure inequality (24), theuiegg Remark 5.16:With the bound on periods given in corollary

transmission frequency will be very high. This is espeyiall5_‘14’ the MANSD given in equation (25), and the deadline

true when the state is close to the equilibrium. When gfven in equation (38), we can not only do hard real-time

required transmission frequency exceeds the frequendy tﬁghedulfi]ngd c;f the t[]ansmisg,ion;gs;]ksr,] but aIsohstudy firkrh rea
the network can provide, the inequality (24) will be vioite M€ scheduling schemes, In which the case that a task misses

It might result in the violation of the real-time constrairin 'S deadline is allowed.
(9). In this case, the state will not converge to the equitlior,
but stay in a neighborhood of the equilibrium. The size of VI. SIMULATIONS

the neighborhood may be determined by the size of theThis section presents simulation results demonstratieg th
disturbances and the capacity of the communication netwogfstributed event-triggering scheme. The system undelysitu
Itis also possible that by successfully communicating @iou collection of carts coupled by springs (Figure 1). Botft sof
times among agents, equation (9) is still valid. This reflecnring models (nonlinear) and normal spring models (lipear
a tradeoff between the transmission periods and the numbgg considered. The state of thih subsystem is the vector
of allowable dropouts. By reducing the number of dropoutg, _ [ vi s }T where y; is the ith cart's position. We

“ ” H H H 13 ?
the allc?’vv_able transmission periods can be enlarged. By “855me ‘that at equilibrium, all springs are unstretched. We
lowable”, it mean the transmission periods to ensure eqnatiyiso assume that caitcan only receive the broadcast state
(9). In summary, whether the real-time constraint in (9 Wikntormation from carti +1.

be violated or not depends on the size of the disturbance, how

close the state is to the origin, and the number of dropouts 1 Uy u3
— —>

during that time interval. W J\M

We also provide a lower bound on the transmission periods

in the following corollary. ) O//>>/ /O O/

Corollary 5.14: If the hypotheses in Theorem 5.6 hold, then

T; =754 —7; > min {V, ?;Zﬂxl(rg)ﬂg

Fig. 1. Three carts coupled by springs
bo@

This section consists of four subsections. Subsection VI-A
shows how to implement our scheme in nonlinear systems.
Subsection VI-B investigates the robustness of the event-

I fi (xp,(t), i (22,(t) ,0) |2 < 6 triggering scheme to transmission delays, data dropouot$, a
) o exogenous disturbances. Subsection VI-C explores how the
for all i € A and allz > to. Consider the derivative of harameters in the scheme affects transmission periods, the

holds for allj € N and alli € V.
Proof: By Lemma 5.5, we have

Hfz(t)HQ over the time intervalrj, 7). MANSD, and the SPD. Finally, subsection VI-D examines
d _ the communication cost and the complexity of our scheme
@ ’ e (t)H < ’ &l (t)H = ||&: (0|, by comparing it against the approach in [12] that derives the
dt 2 2 bound on the MATI. These simulations results show that our
= i (&p,,9: (22,)0) |2 < 6 scheme is robust to transmission delays, data dropouts, and

holds for V¢ € [r,7%,,)
inmalcondmOn‘ggag)‘ — 0 implies
2

hplds f(()jr g" the [Tﬂ'l’ TJ.'H)' B‘Eth_e ]+ 1S_t broggcas;] 'S" This subsection considers how to implement our scheme in
t’rlg?gre) y tp»e violation of; in equation (24), then nonlinear systems. In this simulation, the carts are caliple
&5 T;-_H = £

, = o a;(r})|2 holds and therefore equation (43)ggether by soften springs [27]. The state equation forithe
implies [|</(rt,.)[| = 2 [lzi(ri)la < Bi(riy, — rf), which cartis
meansj; —rj > Lp-||zi(r})]|2. If the broadcast is triggered i=| Y ) ) (44)
by the violation of 5, in equation (40), thel’! = v holds. i + ki tanh(yip1 — i) + k5 tanh(yi 1 — ;)
(leozr;blmng these two cases yields the satisfaction of eq;matlm the preceding equation? = x), = 0. Otherwise, !
: 2=1.

Remark 5.15:1t is easy to see that in corollary 5.14, the 1The control input of subsysternis
lower bound on the transmission period goes to zero as the
state goes to the equilibrium. It, however, does not mean the w; = K3 — n} tanh(g;11 — 9i),

. Solving this inequality with the €xogenous disturbances. The average broadcast perioti@nd t
time spent in event design in our scheme scales well with
respect to the number of agents.

)|, <ot =) (43)
2 A. Implementation in Nonlinear Systems
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0 : : : : : ‘ : Fig. 3. Successful broadcast periods versus time in an-¢iggered NCS
0 1 2 8 4 5 6 7 8 with disturbances in agent 1
Time
Fig. 2. State trajectory, broadcast periods, and predideatlines in an (1—¢;(di)) min; L2

i — dominates the deadlines. The
(1+|Zi‘)CiLi7?N17maer’qj max; Eiq
SPDs of agent 1, 2, 3 are 28@s, 140 us, and 300yus,

respectively.

event-triggered NCS

whereK; = | =5 —5 ] fori=1,--- N.
We setv = 100, §; = 10, 8; = 1, p; = 0.1, p; = 0.65, and
~: = 40 for all ¢ € . The triggering events are B. Robustness
i j Robustness of our scheme is studied with respect to delays
0.1 |2 = 3.6847]|] (¢ ) o . ’
||I1(Tj)||2 Hi.l( )l . dropouts, and exogenous disturbances in this subsectien. W
0.1|2i(r)||l2 = 5.7202[|e7 (t)[|2, fori=2,--- N =1  first considered increasing the transmission delays in the
0.1||gz:1\,(r§\’)||2 = 3-8700H5§v(t)||2 simulation. We kept all settings the same as the simulation
) ] in subsection VI-A except that the transmission delays can
according to equation (24) and the MANSDs for agents &g eeq the predicted deadlines. The system becomes nstabl
all 5 according to equation (25). , when the delay in each transmission is larger than 0.002 s.
We setN = 3 and ran the event-triggered NCS for 6ry,q time, 0.002 s, is, therefore, the maximal delay that the
seconds. We assumed that for.each age_nt,.the ,numbersy?gtem can actually tolerate. Notice that our predicted SPD
data dropouts between successive transmissions is equa{ztéb us, 140s, and 30Qus in agent 1,2,3, respectively) are
its MANSD. We also assumed that transmission delays alg nd 10% of the actual allowable d(,elr;\yi
equal to the predicted deadlines defined in equation (38). Th 1o neyt simulation used the model in section VI-A except
initial statex, was randomly generated satisfyifigollc < 1. that data dropouts are modeled as a stochastic way, instead
From the tqp plot of figure 2, we can see _that the systegp setting it equal to the MANSD. The probability of a data
is asymptoucally_ stable. The broadcast periods Of_age”tdropout is set to be a constapte [0, 1]. Simulation results
(cross), agent (diamond), and agerit (dot) are shown in the gp,q\; that the system can be stable even whimnas large as
middle plot of figure 2 that vary in a wide range before thg g The maximal number of successive dropouts that oaturre
system approaches its equilibrium. It demonstrates thyabij, the simulation is 41. These results show that the event-
of eve_nt—_trlgg(.arlng in adjusting broadcast penqu in cese triggered system is very robust to data dropouts.
tq varla}tlons In th.e system's states. Also notice th"’}t_ in the g finally considered the effect of exogenous disturbances
simulation the periods are always greater than a _p_os_ltme Bn the event-triggered system. We assumed that there are
stant, even when the states are close to the equilibriuns TRbiiher ransmission delays nor data dropouts in the system
is begause as;(t) approaches zero, although the threshol\g(/e ran the system for 40 seconds with= 10. p; = 0; = 0.9
([lzi(r5)]2) goes to zero, the growth rate of the error is alsgy. 4y ; < A/, An external disturbance was added into agent
decreasing. For this specific system, the growth rate of ﬂl‘?where|w1 ()] < 5 for t € [2,10] andw;(t) = 0 otherwise.

J

ratio (Hlfj(i;))“fz) happens to be bounded from above, whicithe broadcast periods of agent 1, 7, 10 are plotted in Figure
results in a constant lower bound on periods in this simohati 3. We see from the figure that agent 1's broadcast periods
On the other hand, it means the lower bound on periolscame short when the disturbance came in duriagz, 10].
obtained in corollary 5.14 might be conservative. The buttolt is because event-triggering can adjust the agent’s loastd
plot in figure 2 shows the history of predicted deadlineperiods in response to variations in the system’s external
which are reduced to fixed constants as the states approimgiuts. Although no disturbance directly came into ageni0y,

to the equilibrium . This is because as the states get smdtleir periods were also shortened. Also notice that theedeser
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Fig. 4. The average period, the SPD, and the MANSD in agentduse;  Fig. 5. The average period, the SPD, and the MANSD in agenrsuse;

of agents’ periods happens over different time intervalis T D. Scalability

is because the effect of the disturbance in agent 1 was passefhis subsection studied the scalability of the distributed
to each agent, from 1 to 10. The spatial distance causes a tig@nt-triggered system. We compared the average broadcast
delay in passing the effect of the disturbance. Anothergthitheriod and the design complexity of our scheme against the
worth mentioning is that, although the periods in agent 7 aggproach in [12] that derives the bound on the MATI. The

10 decrease for a while, the intensity of such decease is Mughulations were done using normal spring models (linear).
less than that in agent 1. This is because the effect of thge state equation of thith cart is

disturbance decreases when it is passed from agent 1 to other

agents. i o= Ui
wi + ki (Yig1 — vi) + 62 (Yio1 — Yi) +w;
wp = K& — &} (§is1 — i), (45)

C. Selection of Parameters
_ _ o _ _ whereK; =[ -5 —5 |fori=1,--- ,N andx} = s} =
The simulations in this subsection examined the effect gf k! = k2 = 1 otherwise.

parameterg; ando; on the broadcast periods, the MANSDS, '\\e sets = 10 and 8 = 1 and solved local LMI problems

and the SPDs. In particular, we studied agent 1. We assupg using MATLAB toolbox. Withp; = 0.9 for Vi € A, the
that the delays in each agent are equal to its SPD and fheinis are

number of each agent's successive dropouts is equal to its ‘ _
MANSD. The parameterg, = ps = 0.1 and g, = o3 = 0.9. 0.9[lz1(r})[l2 = 2.5908||&1 (1) |2

We first fixedp; = 0.1 and variedp; from 0.1 to 0.9. The 0_9||xi(7~31)||2 = 4-1626H5'Z(t)||2a fori=2,--- ,N—1
simulation results are shown in figure 4. The top plot in figure N ;
4 is the average broadcast periods versuslt shows that 09|z (ri")ll2 = 3.7833 (e (£)ll2-
the average period almost remains the same,ashanges.  We first compared the average broadcast period generated
It suggests thap; does not affect the broadcast periods. They our scheme with the MATI in [12]. Recall that for a
middle plot in figure 4 is the SPD versys. We can see that NCS containingN subsystems, the MATI in [12], denoted
when g, increases, the SPD decreases. Therefore, to havasay,, is,

longer SPD, we need a small. The bottom plot in figure 1. L+~
4 is the MANSD versus;. As p; increases, the MANSD T s = fln T , (46)
increases, which meang has to be large to ensure large pL 7
MANSD. where, with TOD protocol, p = /&=, L =

We then fixedp; = 0.9 and variedp; from 0.1 to 0.9. The max(0.5Amax(—BK — KTBT),0), ~ is the £s gain for the

S|mulat|0n results are shown m_ﬂgure 5. The top_plot in f'gurgystem ¢ = (A + BK)z + BKe + Cuw) from (e, w) to
4 is the average broadcast periods versusAs p; increases, _(A+ BK)z, andA, B,C, K are in equation (11)
the average period increases. It implies that to obtain Iong.l.he averag;e broa’dcés{ period generated by our scheme in

periods,p; needs to be large. The middle plot in figure 4 i o _ .
the SPD versug;. We can see that when increases, the SPD%1 NCS containingV' agents, denoted &y, is defined as

increases. The bottom plot in figure 4 is the MANSD versus [y — System Runtime _ 47)

p1. As o1 increases, the MANSD decreases. These simulations Total Number of Broadcasts

verify the comments in Remark 5.10. It suggests a tradeoffThe simulation was done under the assumption that there
between the broadcast periods, the MANSD, and the SPDare no data dropouts, transmission delays or disturbances
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in NCS. We variedN from 3 to 100. The system ran forworks without necessarily requiring a high degree of syn-
10 seconds. We comparelly and 7{Y,r; as NV varied. In chronization within the communication network. They can
the simulation, the MATI.T{Y 1, is almost 6 times smaller serve as the basis for the design of firm real-time systems
than the average broadcast period generated by our schetingt guarantee network control system performance atdevel
Tx, for all N € [3,100]. This means our scheme usesraditionally seen in hard real-time systems. How to ussehe
less communication resource, compared with the MATI. Als@sults to schedule the broadcasts over the network willnbe a
notice that the average broadcast frequerﬁrf" is almost interesting research direction in the future.
proportional to the number of agents increases. Moreoker, t
increase ofﬁ is much slower than that ofx— as N APPENDIX
increases. This suggests that the average broadcast period  Proof of Lemma 4.8:Notice that equation (12) and (13)
our scheme scales well with respect to the number of agerdge equivalent to
We also compared the time spent in event design in our 1
scheme with the time spent in computing the MATI in [12]. P(A+ BK)+ (A+ BK)"P+ —PCC"P < —Q (48)
The simulation was run with 3.0GHZ P4 CPU. It took around 7_1 —_—
0.04 seconds in MATLAB to compute the parametgr, in Q-PBEM™K'B'P2W, (49)
one local event. So the total time used to desigrevents is respectively. Conside¥ with V(z) = 27 Pz at timet.
0.04x N. The MATI was computed according to equation (46), . T T T ) T
where~ was obtained using MATLAB robust control toolbox. V=12 (PA+ A" P)z+ 20" PBKE + 22" PCw
It took 21 seconds to compute the MATI whéh= 150, 225 —2"Qz — 22" PBKe + 7*||wlf3
seconds wherV = 200, and 463 seconds wheN = 250. _xT(Q — pBKM—lKTBTp)x +eTMe +72||w|\§
By our scheme, it only took 6 seconds to design all events —aTWa + T Me + +2|w|2
when N = 150, 8 seconds wheV = 200, 10 seconds when ) 5 o o
N = 250. Our scheme took much less time in event design - Z(l = 07 ) Amin(Wi)|zill2 + 77wl
than the computation of the MATI when the number of agents ieN
. . . . . . . . 2 ) : 2 2 2
is large. It is obvious that the time spent in event design in < —min {1 = p)Amin (W) } 1215 4+ [|w][3
our scheme scales well with respect to the number of age%sr. any t > fo, which is sufficient to show that the NCS
VIl. CONCLUSIONS in equation (1) isC, stable with an induced gain less than
at [ |

(VAN VAN VAN VAN

IN

This paper examines event-triggered broadcasting of St%i“iw{(l—p?)kmin(wi)}'
information in distributed networked control systems with  Proof of Lemma 5.1: Consider agent over the time
data dropouts and transmission delay. We propose an evémterval [b?wbiﬂ)- For notational convenience, we assume
triggering scheme, where a subsystem broadcasts its stgte- rf <r} <..- <7, < TtiiiJrl =bi..
information to its neighbors only when the subsystem'slloca consider|a; (t) — Ii(lf};)llz for anyt € [ri,r%, ). We have
state error exceeds a specified threshold. This scheme is ) ,
decentralized in a sense that a subsystem’s broadcasiotecis||zi(t) — i (bp,)[|2 = [|zi(t) — 2:()[]2 = [|2:(t) — zi(r5) |2
are made using its local sampled data; a subsystem is able g1 ‘ ‘ ‘
to locally predict its MANSD and deadlines for transmission < Z @i (rig1) — @i(r)ll2 + lzi(t) — zi(r}) ]2
delay; and the designer’'s selection of the local event for =0
a subsystem only requires information about that indiMidugor v¢ ¢ (r;i,r§+1). Applying equation (24) into the preceding

agent. equation yields

Our analysis applies to both linear and nonlinear sub- p
systems. For nonlinear subsystems, the local event design 2 (8) — 2 (b < Pig (i 50
is transformed into local ISS design problems; for linear l:(t) (B2 —; ciH irj)ll2 (50)

subsystems, the design is simplified to be local linear matri ;
inequality (LMI) feasibility problems. With the assumptio oF @l Z € ()
that the transmission delay is zero and the number of each di
agent's successive data dropouts is less than its MANSD, [l () — 2:(bL)]]2 < Z &H%(Tf)ﬂz (51)
we show that the resulting NCS is finite-gaif, stable =g Ci
using our distributed scheme. When the transmission delayId ¢ I i I
is not zero, we provide state-based deadlines that are alwd s or a ti € [b'ZZ bk+1)zf Because ||e; (rj1)[l2 =
greater than a positive constant. As long as the delay in eachi("j+1) =~ 2i(15)l2 < & l|zi(rj)]|2, we have
transmission is less than the associated deadline, we show i )ls < (1 + &)||ar-(ri-)||
that the resulting NCS is asymptotically stable, providee t AR /TR
external disturbance vanishes._Siquation results shat thnd therefore
our scheme has a good scalability with respect to the system _ Di s _

i i (75 1+ =) | ()
maintenance and the average broadcast period. lzi(ri)llz < ( o iTo)ll2

. g (3

These results are significant because they show how one Piji1 i

might stabilize distributed control systems over ad hoc net (1+ ;) [ (52)

2

,7%41). Therefore,

2
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forj =0,1,2,---,di. Applying equation (52) into (51) yields Equation (57) then suggests that

i
() — i (B)ll2 < %(1 + %)lﬂﬂ(bi)Hz ailles(t)|l2 = oillzi(t) — i(bj_y) |2
=0 ™ ' . = (ci = Dlz(t) — 2 (b—1)ll2
= ((1 + %)d}?“ - 1) [|2:(b%) |2 = i—’fllwi(bi)l\z < max {f ||l (b—1)ll2, (1 = E)A + &l (bh—1) |2}
' ' —l|zi(t) = zi(bj_1)ll2

forall ¢ e [bk,bk+1_). Also notice thatdj, < dy;znsp holds max { | (¢)||2,

according to equation (25). It is easy to show tfjat= c;(1 + ; p ; ; ;

LY g, < (14 Eybaaneotl — g < g, - (1= €A+ &hei(B_1) 2 — Ehllw() — iby)12}
Proof of Lemma 5.3:We first consider the behavior of < max {cj|z;(t)]|2, (1 — E)A + & llzi(t)]2}

agent; after a successful transmission occurs, saykthesuc-

cessful transmission of agentFor notational convenience, we j j i ; ; i

eeUmeb - o o < i <g i <pi b Consider holds fort € [f;_,, fi), whereo; is defined in equation (7)

k=1 =To ST = ST S Tgi 40 = Ok and¢; = 1 + o,. Therefore,

the derivative of tef’“fl(t)Hz 2 llai(t) — ”“(’”3;;“)“2 over . . . ,
the time intervallb,, f}). oflles(®)f < max{c;” [lz: ()15, (1 — &)A + & llzi(t)ll2) "}
, , 59)
d || di+1 Jdi+1 . . . (
=[5 w|, < e o), = el With the fact that (1 — £)A + &f|mi(1)2)" < (1 —
= |fi (@5, 9: (82,),0) |12 < 0; &L)AP + & |2 (¢)||5 holds forp > 1, equation (59) implies
holds for allt € [bi, fi). Solving the preceding inequality
Vi i 2 o (60

with the initial condition||%*" (bi)

= 0 implies | | |
’.2 | < max {2, (1~ AP + ghla (9]}
l|2i(t) — :(by)[|2 < 0:(t — b},)

1— ) i bi
£ max{ () 2
C; 2

di+1
)|

We now considei” for anyt > 0. Equation (5) implies

,A} (53)

IN

holds for allt € [bi, fi), where the inequality on the rightV’ Z [ (s = [8; W) [l (D)5 + 8il Uil llea (£)15]
side is obtained by applying (30). ieN
Since the hypotheses in Lemma 5.1 are satisfied, we know = (a; —[Si UUi|B:) [ [lzi(8) 15 + 0¥ [les(t)]13] -
) ieEN
; €k 1 (1 )
[@:(t) — @i(b_1 )2 < f||$z‘( k—1)ll2

0 i
< ;Hfﬂi( k—1)ll2 (54)

2

holds for allt € [b}_,,b%) and therefore,

Becausey; — |S; UU;|8; > 0 holds, applying equation (60)
into the preceding equation yields

_ _ ¢ _ vV < Z (a; = S; U Ui|B) =z () 15+
i (bk) = 2i(bh—1)ll2 < >z (b—1)l2- (55) e . .
T 7 itpa 1_1Ap+zitp_
Combining equation (53) and (55) implies that fore s {ck ez, (1= &) Sellzi( )HQH
bi, 7 ,
i 1) ; Let
1z (t) = 2i(bk—1)ll2 | ‘ (56)
< lloeld) =l + laabi) = 2abi-a)lo Q= {i € N [ ()5 > (1= DA + €]
1— @ €Ty bii 4 .
< =2 maX{” (Z”'Q,A}ﬁ—’wxi( i)l
Ci Ci Therefore, the preceding equation is equivalent to
Lets} = 14“257? . Therefore, equation (56), with equation (54), _
implies Vo< Y (=[S uUiB) (Czip - 1) [EAG 5
. 1€
lzi(t) = i)l (57) ) .
i i i i — 1S; UU; B (1 — &)AP
<m0 o 2 S ) ", e
> i i\9k—1)112y G ¢ i\Uk—1/112 1EN\Q
1S UUB) (61 — ()P
for all t € [bi_,,fi). Becaused < p; < & < o; < 1, we * 'e/\/Z\sz (s = 1S: U TiIB:) (& = Dl

know

A s
pi <& < < gi

<L (58) Applying equation (58), (33), to the preceding equation



implies
vV < Z (ci =[S U U;|Bi) (1 — pi) AP
1EN\Q
+> (i = [SiUUIIB) (& = Vlza(0)]5
i€EN
< Z (a; — [S; UU;|Bi) (1 — pi) AP
1EN
+> (i = [SiUUIIB) (& = Dllza(0)]5
ieEN
< AP Z (a; — [S; UUi|Bi) (1 = ps)
iEN
—min{(e; — [5; UU|6:) (1 - G)} > lla®)llb
1EN
- <Ap7fp -> |$i(f)|§> :
iEN
Inln{( —1S; UU;|6:) (1 — &)}, (61)

1EN

wherer is defined in equation (32). This inequality means

1S: UUi|B:) (1-G) AP (v —77) < 0, (62)

it > en (D)5 = APzP.
We know if 1 < p < ¢ < oo, the inequality

v gw o NE G
(z uxiug) < (z uxius) < N3 (z umg)
=1 =1 =1

(63)

V < min{(a; —
< gl

holds. So equation (61) implies that jif < ¢, then equa-

tion (62) holds whend_, - [|zi(t)|| > A7?. Similarly, if

14

Notice that before the first time the inequality in (24) is
violated, the inequality

V<Y ien (1= ) (ai —
holds. Therefore, there must exist time instant t, such that
V(t) < V(to) for all t € (to,]. SinceV (¢) is continuous and
V(t) > V(ty), we know there must exist at least one time
interval (s — e1,s + ¢1) C (,1) such that

V(s) = V(to)
V(t) >0, Vte(s—es).

|S; U Ui B:) l415]

(67)
(68)

Assume that is the first time in(t, ) satisfying equation
(67), (68) with a parameter;. Then we have

to<t<s<t (69)
V(t) < V(to), vVt € [to, S). (70)
Equation (70) implies
V(to)
. R QA S VA
z(t) e A and > la(t)]d < T L (71)

1EN
for all ¢t € [to,s) according to equation (66). We know the
fact that

(Cien lill2)"

o < D llwl3, Vg 1,vz; € R

ieN
Equation (70), (71), (72), therefore, suggest that

(Zm |2> < Vi)
min;en L,

iEN

(72)

p > g, then we have equation (62) whén, .\ [|lz:(1)|3 > holds for all¢ € [to,s) and anyq > 1. Combining this
N'~%A%79. Combining these two cases, equation (62) holggequality with equation (35), we have

when
> llai(@®)ls = uaz,
1N
wherey is defined in equation (31). By equation (28),
mlnL Z||:vz|\g<V ZV (x;) <maxL ZHle?
iEN 1EN 1EN

holds, which, with equation (64),
that there existsI' > to, such thatd . . [|zi(t)]| <

(64)

maxwe/\/{_J };quq holds for anyt > T, as shown in

[28]. ]
Proof of Lemma 5.5:Consider the set

ieEN
According to equation (36), we have

HelgflL ZHJ@H%<V ZV x;) <InaXL ZHCEZHQ,

iEN iEN iEN
(66)

(65)

which impliesT" C A andmax”e/\/ L > 1.
We now show thal/(t) < V(¢o) holds for all¢ > to. We

prove it by contradiction. Suppose that there is time irtstan

t > to such thatV () > V().

fi(zp, (1), gi(xz,(1)),0)

<(A+|Z)LiNT ( V(to)

q
_ TV ) .
min;e zr LZ—> ’

for all t € [to, s). Also equation (38) implies

iy 1-& i 1-¢
is sufficient to show Jfx — bk < max{%lm( —1)ll2; ( C_e_k)A} (73)
with
A= bi . (74)

=3

(1 + |Zi|)LiﬁNl_m max; je N { (%) E}

Then, following the same reasoning in Lemma 5.3, we have

V() < |[APaP =) [l |2]
ieEN
?eli/{}{(ai = [SiuUiB) 1 —-G)t  (75)

for all ¢ € [to, s), whereg; is defined in equation (33). Since
V(t) > 0forall ¢t € (s—e1,s), from equation (75), we know

AP >N lzi(B)]5,

ieEN

Yt € (s — €1, $), (76)
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which implies By Fs,, we know each agent will broadcast after Let s;
be the time when each agent.M broadcasts successfully at
e _
pAIT? > zj\:{HxZ(t)H% Vi€ (s —e1,9), (77) " |east once aftet;. Then we have
i€
s q ~ q
where is defined in equation (31). (ZieN IIle(t)Ilg) < (f) .V(Av Vi > s1 > t1. (82)
Therefore, implementing equation (74) into the preceding Na= T/ minjex L;
equation implies Applying the preceding two equations into equation (35)
Vit yields
:u‘Aqﬂ'q p L > Z ||(E1 T
T ma'XZGN ieN fl (LZ'D1 (t), gl (‘%21 (t)) ) 97,7 Vt > S1. (83)
Vi € (s —e€1,$). (78) _

) _ ) ) o We now setA := A, = ZA; and use the preceding
Sincex(t) is continuous, equation (78) implies equation to bound the behavior ¢f over [s1,00). Then
V(to)m? Lemma 5.3 suggests that there exists> s; such that

T maxien (Li] > lim Z [z:(t)]13 = Z [[zi(s)1I3
T max;e *ieN iEN Eiew lli(t) < Z s (t
Becauser > 7, Ne— iEN
V (to) Vit L #\ V(t)
— > i < ING= (=) ——2—, V2>t
maxien{Li} = 74 maxzeN{L } Z;v”x Iz - r?gf)\(f{L }M <7T> minien L’
holds, which implies that Let s, be the time when each agent ik broadcasts
successfully at least once after Then we have
Vi(to) > max{Li} Y _ [lzi(s)]3 > V(). 2
N ™ 1 V(to)
- it [ o s(f) V) s,
This makes a contradiction with equation (67). Therefore, w" N T/ MLenN L;
conclude thal/ (¢t) < V(to) holds for allt > t,. |

With the preceding two equations, we can re-compute the
Proof of Theorem 5.6By Lemma 5.5, we know the state, 4 ,nq onf; over [sz, o0) and re-apply Lemma 5.3 to get new

trajectoryz(t) € A for all ¢ € to. Therefore, by equation (36), o,nds o e n lzs()14 and S, |1 (£)]|4, so on and so

(Z- || (¢ )||2) forth. Then there exists, > t; such that
I_IliIlLi 1EN : Uk
ieN N4 S e (_) Vto) g
< min L, Dl ®E < V() < V(to), VE>to e “\7/) minen{L;}
ieEN Py k
holds, where the inequality on the left most is obtainedgisin fi (wp,(t),9i(2z,(1)),0) < <;> 0;

Holder’s inequality. Therefore,

1 hold for all ¢ > s;. SinceZ € (0,1), ask — oo, the
q . . . . .
Z ll2s(t)||2 < N (L) . Vt>t,. (79) preceding equation implies(t) — 0, which means the NCS
= mingen L is asymptotically stable. n
According to equation (35), we have
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