
40    COMMUNICATIONS OF THE ACM    |   JANUARY 2009  |   VOL.  52  |   NO.  1

practice

AT THE FOUNDATION  of Amazon’s cloud computing are 
infrastructure services such as Amazon’s S3 (Simple 
Storage Service), SimpleDB, and EC2 (Elastic Compute 
Cloud) that provide the resources for constructing 
Internet-scale computing platforms and a great variety 
of applications. The requirements placed on these 
infrastructure services are very strict; they need to 
score high marks in the areas of security, scalability, 
availability, performance, and cost-effectiveness, and 
they need to meet these requirements while serving 
millions of customers around the globe, continuously. 

Under the covers these services are massive 
distributed systems that operate on a worldwide scale. 
This scale creates additional challenges, because 
when a system processes trillions and trillions of 
requests, events that normally have a low probability 
of occurrence are now guaranteed to happen and 
must be accounted for upfront in the design and 
architecture of the system. Given the worldwide 
scope of these systems, we use replication techniques 
ubiquitously to guarantee consistent performance and 
high availability. Although replication brings us closer 
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number 

of conditions the customers of these 

services will be confronted with the 

consequences of using replication 

techniques inside the services.

One of the ways in which this mani-

fests itself is in the type of data con-

sistency that is provided, particularly 

when many widespread distributed 

systems provide an eventual consis-

tency model in the context of data rep-

lication. When designing these large-

scale systems at Amazon, we use a set 

of guiding principles and abstractions 

related to large-scale data replication 

and focus on the trade-offs between 

high availability and data consistency. 

Here, I present some of the relevant 

background that has informed our ap-

proach to delivering reliable distrib-

uted systems that must operate on a 

global scale. (An earlier version of this 

article appeared as a posting on the 

“All Things Distributed” Weblog and 

was greatly improved with the help of 

its readers.)

Historical Perspective 

In an ideal world there would be only 

one consistency model: when an up-

date is made all observers would see 

that update. The first time this sur-

faced as difficult to achieve was in the 

database systems of the late 1970s. 

The best “period piece” on this topic 

is “Notes on Distributed Databases” 

by Bruce Lindsay et al.5 It lays out the 

fundamental principles for database 

replication and discusses a number 

of techniques that deal with achieving 

consistency. Many of these techniques 

try to achieve distribution transparen-

cy—that is, to the user of the system it 

appears as if there is only one system 

instead of a number of collaborating 

systems. Many systems during this 

time took the approach that it was bet-

ter to fail the complete system than to 

break this transparency.2 

In the mid-1990s, with the rise of 

larger Internet systems, these practic-

es were revisited. At that time people 

began to consider the idea that avail-

ability was perhaps the most impor-
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tant property of these systems, but they 

were struggling with what it should be 

traded off against. Eric Brewer, systems 

professor at the University of Califor-

nia, Berkeley, and at that time head of 

Inktomi, brought the different trade-

offs together in a keynote address to the 

Principles of Distributed Computing 

(PODC) conference in 2000.1 He pre-

sented the CAP theorem, which states 

that of three properties of shared-data 

systems—data consistency, system 

availability, and tolerance to network 

partition—only two can be achieved at 

any given time. A more formal confir-

mation can be found in a 2002 paper by 

Seth Gilbert and Nancy Lynch.4 

A system that is not tolerant to net-

work partitions can achieve data con-

sistency and availability, and often does 

consistency, the developer has to deal 

with the fact that the system may not 

be available to take, for example, a 

write. If this write fails because of sys-

tem unavailability, then the developer 

will have to deal with what to do with 

the data to be written. If the system 

emphasizes availability, it may always 

accept the write, but under certain con-

ditions a read will not reflect the result 

of a recently completed write. The de-

veloper then has to decide whether the 

client requires access to the absolute 

latest update all the time. There is a 

range of applications that can handle 

slightly stale data, and they are served 

well under this model. 

In principle the consistency prop-

erty of transaction systems as defined 

in the ACID properties (atomicity, 

so by using transaction protocols. To 

make this work, client and storage sys-

tems must be part of the same environ-

ment; they fail as a whole under certain 

scenarios and as such clients cannot 

observe partitions. An important ob-

servation is that in larger distributed-

scale systems, network partitions are a 

given; therefore, consistency and avail-

ability cannot be achieved at the same 

time. This means there are two choices 

on what to drop: relaxing consistency 

will allow the system to remain highly 

available under the partitionable con-

ditions; making consistency a priority 

means that under certain conditions 

the system will not be available. 

Both options require the client de-

veloper to be aware of what the system 

is offering. If the system emphasizes I
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age systems. In the following examples 

illustrating the different types of con-

sistency, process A has made an update 

to a data object:

Strong consistency.  ˲ After the update 

completes, any subsequent access (by A, 

B, or C) will return the updated value. 

Weak consistency.  ˲ The system does 

not guarantee that subsequent ac-

cesses will return the updated value. A 

number of conditions need to be met 

before the value will be returned. The 

period between the update and the mo-

ment when it is guaranteed that any ob-

server will always see the updated value 

is dubbed the inconsistency window. 

Eventual consistency.  ˲ This is a spe-

cific form of weak consistency; the 

storage system guarantees that if no 

new updates are made to the object, 

eventually all accesses will return the 

last updated value. If no failures occur, 

the maximum size of the inconsistency 

window can be determined based on 

factors such as communication delays, 

the load on the system, and the num-

ber of replicas involved in the replica-

tion scheme. The most popular system 

that implements eventual consistency 

is the domain name system (DNS). 

Updates to a name are distributed ac-

cording to a configured pattern and 

in combination with time-controlled 

caches; eventually, all clients will see 

the update. 

The eventual consistency model has 

a number of variations that are impor-

tant to consider: 

Causal consistency.  ˲ If process A has 

communicated to process B that it has 

updated a data item, a subsequent ac-

cess by process B will return the updat-

ed value, and a write is guaranteed to 

supersede the earlier write. Access by 

process C that has no causal relation-

ship to process A is subject to the nor-

mal eventual consistency rules. 

Read-your-writes consistency. ˲  This 

is an important model where process 

A, after having updated a data item, 

always accesses the updated value 

and never sees an older value. This is a 

special case of the causal consistency 

model. 

Session consistency. ˲  This is a prac-

tical version of the previous model, 

where a process accesses the storage 

system in the context of a session. As 

long as the session exists, the system 

guarantees read-your-writes consisten-

consistency, isolation, durability) is a 

different kind of consistency guaran-

tee. In ACID, consistency relates to the 

guarantee that when a transaction is 

finished the database is in a consistent 

state; for example, when transferring 

money from one account to another 

the total amount held in both accounts 

should not change. In ACID-based sys-

tems, this kind of consistency is often 

the responsibility of the developer writ-

ing the transaction but can be assisted 

by the database managing integrity 

constraints. 

Consistency—Client and Server

There are two ways of looking at consis-

tency. One is from the developer/client 

point of view: how they observe data 

updates. The other is from the server 

side: how updates flow through the sys-

tem and what guarantees systems can 

give with respect to updates. 

The components for the client side 

include: 

A storage system.  ˲ For the moment 

we’ll treat it as a black box, but one 

should assume that under the covers it 

is something of large scale and highly 

distributed, and that it is built to guar-

antee durability and availability. 

Process A. ˲  This is a process that 

writes to and reads from the storage 

system. 

Process B and C. ˲  These two process-

es are independent of process A and 

write to and read from the storage sys-

tem. It is irrelevant whether these are 

really processes or threads within the 

same process; what is important is that 

they are independent and need to com-

municate to share information. 

Client-side consistency has to do 

with how and when observers (in this 

case the processes A, B, or C) see up-

dates made to a data object in the stor-

cy. If the session terminates because of 

a certain failure scenario, a new session 

must be created and the guarantees do 

not overlap the sessions. 

Monotonic read consistency. ˲  If a pro-

cess has seen a particular value for the 

object, any subsequent accesses will 

never return any previous values. 

Monotonic write consistency. ˲  In this 

case, the system guarantees to serial-

ize the writes by the same process. Sys-

tems that do not guarantee this level of 

consistency are notoriously difficult to 

program. 

A number of these properties can 

be combined. For example, one can 

get monotonic reads combined with 

session-level consistency. From a 

practical point of view these two prop-

erties (monotonic reads and read-

your-writes) are most desirable in an 

eventual consistency system, but not 

always required. These two properties 

make it simpler for developers to build 

applications, while allowing the stor-

age system to relax consistency and 

provide high availability.

As you can see from these variations, 

quite a few different scenarios are pos-

sible. It depends on the particular ap-

plications whether or not one can deal 

with the consequences. 

Eventual consistency is not some 

esoteric property of extreme distrib-

uted systems. Many modern RDBMSs 

(relational database management sys-

tems) that provide primary-backup 

reliability implement their replication 

techniques in both synchronous and 

asynchronous modes. In synchronous 

mode the replica update is part of the 

transaction. In asynchronous mode 

the updates arrive at the backup in a 

delayed manner, often through log 

shipping. In the latter mode if the pri-

mary fails before the logs are shipped, 
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reading from the promoted backup 

will produce old, inconsistent values. 

Also to support better scalable read 

performance, RDBMSs have started 

to provide the ability to read from the 

backup, which is a classical case of 

providing eventual consistency guar-

antees in which the inconsistency win-

dows depend on the periodicity of the 

log shipping. 

On the server side we need to take 

a deeper look at how updates flow 

through the system to understand what 

drives the different modes that the de-

veloper who uses the system can expe-

rience. Let’s establish a few definitions 

before getting started: 

N = The number of nodes that store 

replicas of the data. 

W = The number of replicas that 

need to acknowledge the receipt of the 

update before the update completes. 

R = The number of replicas that are 

contacted when a data object is ac-

cessed through a read operation.

If W+R > N, then the write set and 

the read set always overlap and one 

can guarantee strong consistency. In 

the primary-backup RDBMS scenario, 

which implements synchronous repli-

cation, N=2, W=2, and R=1. No matter 

from which replica the client reads, it 

will always get a consistent answer. In 

the asynchronous replication case with 

reading from the backup enabled, N=2, 

W=1, and R=1. In this case R+W=N, and 

consistency cannot be guaranteed. 

The problems with these configura-

tions, which are basic quorum proto-

cols, is that when because of failures 

the system cannot write to W nodes, the 

write operation has to fail, marking the 

unavailability of the system. With N=3 

and W=3 and only two nodes available, 

the system will have to fail the write. 

In distributed storage systems that 

provide high performance and high 

availability the number of replicas is in 

general higher than two. Systems that 

focus solely on fault tolerance often 

use N=3 (with W=2 and R=2 configu-

rations). Systems that must serve very 

high read loads often replicate their 

data beyond what is required for fault 

tolerance; N can be tens or even hun-

dreds of nodes, with R configured to 

1 such that a single read will return a 

result. Systems that are concerned with 

consistency are set to W=N for updates, 

which may decrease the probability of 

the write succeeding. A common con-

figuration for these systems that are 

concerned about fault tolerance but 

not consistency is to run with W=1 to 

get minimal durability of the update 

and then rely on a lazy (epidemic) tech-

nique to update the other replicas. 

How to configure N, W, and R de-

pends on what the common case is and 

which performance path needs to be 

optimized. In R=1 and N=W we opti-

mize for the read case, and in W=1 and 

R=N we optimize for a very fast write. 

Of course in the latter case, durability 

is not guaranteed in the presence of 

failures, and if W < (N+1)/2, there is the 

possibility of conflicting writes when 

the write sets do not overlap. 

Weak/eventual consistency arises 

when W+R <= N, meaning that there is 

a possibility that the read and write set 

will not overlap. If this is a deliberate 

configuration and not based on a fail-

ure case, then it hardly makes sense to 

set R to anything but 1. This happens 

in two very common cases: the first is 

the massive replication for read scaling 

mentioned earlier; the second is where 

data access is more complicated. In 

a simple key-value model it is easy to 

compare versions to determine the lat-

est value written to the system, but in 

When a system 
processes trillions 
and trillions of 
requests, events 
that normally have 
a low probability  
of occurrence  
are now guaranteed 
to happen and 
must be accounted 
for upfront in 
the design and 
architecture  
of the system.
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problem. A specific popular case is a 

Web site in which we can have the no-

tion of user-perceived consistency. In 

this scenario the inconsistency window 

must be smaller than the time expected 

for the customer to return for the next 

page load. This allows for updates to 

propagate through the system before 

the next read is expected. 

The goal of this article is to raise 

awareness about the complexity of en-

gineering systems that need to oper-

ate at a global scale and that require 

careful tuning to ensure that they can 

deliver the durability, availability, and 

performance that their applications 

require. One of the tools the system de-

signer has is the length of the consis-

tency window, during which the clients 

of the systems are possibly exposed to 

the realities of large-scale systems en-

gineering.  
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systems that return sets of objects it is 

more difficult to determine what the 

correct latest set should be. In most 

of these systems where the write set is 

smaller than the replica set, a mecha-

nism is in place that applies the up-

dates in a lazy manner to the remaining 

nodes in the replica’s set. The period 

until all replicas have been updated is 

the inconsistency window discussed 

before. If W+R <= N, then the system is 

vulnerable to reading from nodes that 

have not yet received the updates. 

Whether or not read-your-write, ses-

sion, and monotonic consistency can 

be achieved depends in general on the 

“stickiness” of clients to the server that 

executes the distributed protocol for 

them. If this is the same server every 

time, then it is relatively easy to guar-

antee read-your-writes and monotonic 

reads. This makes it slightly more dif-

ficult to manage load balancing and 

fault tolerance, but it is a simple solu-

tion. Using sessions, which are sticky, 

makes this explicit and provides an 

exposure level that clients can reason 

about. 

Sometimes the client implements 

read-your-writes and monotonic reads. 

By adding versions on writes, the client 

discards reads of values with versions 

that precede the last-seen version. 

Partitions happen when some nodes 

in the system cannot reach other nodes, 

but both sets are reachable by groups 

of clients. If you use a classical majority 

quorum approach, then the partition 

that has W nodes of the replica set can 

continue to take updates while the oth-

er partition becomes unavailable. The 

same is true for the read set. Given that 

these two sets overlap, by definition the 

minority set becomes unavailable. Par-

titions don’t happen frequently, but 

they do occur between data centers, as 

well as inside data centers. 

In some applications the unavail-

ability of any of the partitions is unac-

ceptable, and it is important that the 

clients that can reach that partition 

make progress. In that case both sides 

assign a new set of storage nodes to re-

ceive the data, and a merge operation is 

executed when the partition heals. For 

example, within Amazon the shopping 

cart uses such a write-always system; in 

the case of partition, a customer can 

continue to put items in the cart even if 

the original cart lives on the other par-

titions. The cart application assists the 

storage system with merging the carts 

once the partition has healed.

Amazon’s Dynamo 

A system that has brought all of these 

properties under explicit control of the 

application architecture is Amazon’s 

Dynamo, a key-value storage system 

that is used internally in many services 

that make up the Amazon e-commerce 

platform, as well as Amazon’s Web Ser-

vices. One of the design goals of Dyna-

mo is to allow the application service 

owner who creates an instance of the 

Dynamo storage system—which com-

monly spans multiple data centers—to 

make the trade-offs between consis-

tency, durability, availability, and per-

formance at a certain cost point.3

Summary 

Data inconsistency in large-scale reli-

able distributed systems must be toler-

ated for two reasons: improving read 

and write performance under highly 

concurrent conditions; and handling 

partition cases where a majority model 

would render part of the system un-

available even though the nodes are up 

and running. 

Whether or not inconsistencies are 

acceptable depends on the client appli-

cation. In all cases the developer must 

be aware that consistency guarantees 

are provided by the storage systems 

and must be taken into account when 

developing applications. There are a 

number of practical improvements to 

the eventual consistency model, such 

as session-level consistency and mono-

tonic reads, which provide better tools 

for the developer to work with. Many 

times the application is capable of han-

dling the eventual consistency guaran-

tees of the storage system without any 


