
40 COMMUNICATIONS OF THE ACM | JANUARY 2009 | VOL. 52 | NO. 1

practice

AT THE FOUNDATION of Amazon’s cloud computing are
infrastructure services such as Amazon’s S3 (Simple
Storage Service), SimpleDB, and EC2 (Elastic Compute
Cloud) that provide the resources for constructing
Internet-scale computing platforms and a great variety
of applications. The requirements placed on these
infrastructure services are very strict; they need to
score high marks in the areas of security, scalability,
availability, performance, and cost-effectiveness, and
they need to meet these requirements while serving
millions of customers around the globe, continuously.

Under the covers these services are massive
distributed systems that operate on a worldwide scale.
This scale creates additional challenges, because
when a system processes trillions and trillions of
requests, events that normally have a low probability
of occurrence are now guaranteed to happen and
must be accounted for upfront in the design and
architecture of the system. Given the worldwide
scope of these systems, we use replication techniques
ubiquitously to guarantee consistent performance and
high availability. Although replication brings us closer
to our goals, it cannot achieve them in a perfectly

transparent manner; under a number

of conditions the customers of these

services will be confronted with the

consequences of using replication

techniques inside the services.

One of the ways in which this mani-

fests itself is in the type of data con-

sistency that is provided, particularly

when many widespread distributed

systems provide an eventual consis-

tency model in the context of data rep-

lication. When designing these large-

scale systems at Amazon, we use a set

of guiding principles and abstractions

related to large-scale data replication

and focus on the trade-offs between

high availability and data consistency.

Here, I present some of the relevant

background that has informed our ap-

proach to delivering reliable distrib-

uted systems that must operate on a

global scale. (An earlier version of this

article appeared as a posting on the

“All Things Distributed” Weblog and

was greatly improved with the help of

its readers.)

Historical Perspective

In an ideal world there would be only

one consistency model: when an up-

date is made all observers would see

that update. The first time this sur-

faced as difficult to achieve was in the

database systems of the late 1970s.

The best “period piece” on this topic

is “Notes on Distributed Databases”

by Bruce Lindsay et al.5 It lays out the

fundamental principles for database

replication and discusses a number

of techniques that deal with achieving

consistency. Many of these techniques

try to achieve distribution transparen-

cy—that is, to the user of the system it

appears as if there is only one system

instead of a number of collaborating

systems. Many systems during this

time took the approach that it was bet-

ter to fail the complete system than to

break this transparency.2

In the mid-1990s, with the rise of

larger Internet systems, these practic-

es were revisited. At that time people

began to consider the idea that avail-

ability was perhaps the most impor-

DOI:10.1145/1435417.1435432

Building reliable distributed systems
at a worldwide scale demands trade-offs
between consistency and availability.

BY WERNER VOGELS

Eventually
Consistent

practice

JANUARY 2009 | VOL. 52 | NO. 1 | COMMUNICATIONS OF THE ACM 41

tant property of these systems, but they

were struggling with what it should be

traded off against. Eric Brewer, systems

professor at the University of Califor-

nia, Berkeley, and at that time head of

Inktomi, brought the different trade-

offs together in a keynote address to the

Principles of Distributed Computing

(PODC) conference in 2000.1 He pre-

sented the CAP theorem, which states

that of three properties of shared-data

systems—data consistency, system

availability, and tolerance to network

partition—only two can be achieved at

any given time. A more formal confir-

mation can be found in a 2002 paper by

Seth Gilbert and Nancy Lynch.4

A system that is not tolerant to net-

work partitions can achieve data con-

sistency and availability, and often does

consistency, the developer has to deal

with the fact that the system may not

be available to take, for example, a

write. If this write fails because of sys-

tem unavailability, then the developer

will have to deal with what to do with

the data to be written. If the system

emphasizes availability, it may always

accept the write, but under certain con-

ditions a read will not reflect the result

of a recently completed write. The de-

veloper then has to decide whether the

client requires access to the absolute

latest update all the time. There is a

range of applications that can handle

slightly stale data, and they are served

well under this model.

In principle the consistency prop-

erty of transaction systems as defined

in the ACID properties (atomicity,

so by using transaction protocols. To

make this work, client and storage sys-

tems must be part of the same environ-

ment; they fail as a whole under certain

scenarios and as such clients cannot

observe partitions. An important ob-

servation is that in larger distributed-

scale systems, network partitions are a

given; therefore, consistency and avail-

ability cannot be achieved at the same

time. This means there are two choices

on what to drop: relaxing consistency

will allow the system to remain highly

available under the partitionable con-

ditions; making consistency a priority

means that under certain conditions

the system will not be available.

Both options require the client de-

veloper to be aware of what the system

is offering. If the system emphasizes I
L

L
U

S
T

R
A

T
I

O
N

S
 B

Y
 D

A
V

E
 B

O
L

L
I

N
G

E
R

42 COMMUNICATIONS OF THE ACM | JANUARY 2009 | VOL. 52 | NO. 1

practice

age systems. In the following examples

illustrating the different types of con-

sistency, process A has made an update

to a data object:

Strong consistency. ˲ After the update

completes, any subsequent access (by A,

B, or C) will return the updated value.

Weak consistency. ˲ The system does

not guarantee that subsequent ac-

cesses will return the updated value. A

number of conditions need to be met

before the value will be returned. The

period between the update and the mo-

ment when it is guaranteed that any ob-

server will always see the updated value

is dubbed the inconsistency window.

Eventual consistency. ˲ This is a spe-

cific form of weak consistency; the

storage system guarantees that if no

new updates are made to the object,

eventually all accesses will return the

last updated value. If no failures occur,

the maximum size of the inconsistency

window can be determined based on

factors such as communication delays,

the load on the system, and the num-

ber of replicas involved in the replica-

tion scheme. The most popular system

that implements eventual consistency

is the domain name system (DNS).

Updates to a name are distributed ac-

cording to a configured pattern and

in combination with time-controlled

caches; eventually, all clients will see

the update.

The eventual consistency model has

a number of variations that are impor-

tant to consider:

Causal consistency. ˲ If process A has

communicated to process B that it has

updated a data item, a subsequent ac-

cess by process B will return the updat-

ed value, and a write is guaranteed to

supersede the earlier write. Access by

process C that has no causal relation-

ship to process A is subject to the nor-

mal eventual consistency rules.

Read-your-writes consistency. ˲ This

is an important model where process

A, after having updated a data item,

always accesses the updated value

and never sees an older value. This is a

special case of the causal consistency

model.

Session consistency. ˲ This is a prac-

tical version of the previous model,

where a process accesses the storage

system in the context of a session. As

long as the session exists, the system

guarantees read-your-writes consisten-

consistency, isolation, durability) is a

different kind of consistency guaran-

tee. In ACID, consistency relates to the

guarantee that when a transaction is

finished the database is in a consistent

state; for example, when transferring

money from one account to another

the total amount held in both accounts

should not change. In ACID-based sys-

tems, this kind of consistency is often

the responsibility of the developer writ-

ing the transaction but can be assisted

by the database managing integrity

constraints.

Consistency—Client and Server

There are two ways of looking at consis-

tency. One is from the developer/client

point of view: how they observe data

updates. The other is from the server

side: how updates flow through the sys-

tem and what guarantees systems can

give with respect to updates.

The components for the client side

include:

A storage system. ˲ For the moment

we’ll treat it as a black box, but one

should assume that under the covers it

is something of large scale and highly

distributed, and that it is built to guar-

antee durability and availability.

Process A. ˲ This is a process that

writes to and reads from the storage

system.

Process B and C. ˲ These two process-

es are independent of process A and

write to and read from the storage sys-

tem. It is irrelevant whether these are

really processes or threads within the

same process; what is important is that

they are independent and need to com-

municate to share information.

Client-side consistency has to do

with how and when observers (in this

case the processes A, B, or C) see up-

dates made to a data object in the stor-

cy. If the session terminates because of

a certain failure scenario, a new session

must be created and the guarantees do

not overlap the sessions.

Monotonic read consistency. ˲ If a pro-

cess has seen a particular value for the

object, any subsequent accesses will

never return any previous values.

Monotonic write consistency. ˲ In this

case, the system guarantees to serial-

ize the writes by the same process. Sys-

tems that do not guarantee this level of

consistency are notoriously difficult to

program.

A number of these properties can

be combined. For example, one can

get monotonic reads combined with

session-level consistency. From a

practical point of view these two prop-

erties (monotonic reads and read-

your-writes) are most desirable in an

eventual consistency system, but not

always required. These two properties

make it simpler for developers to build

applications, while allowing the stor-

age system to relax consistency and

provide high availability.

As you can see from these variations,

quite a few different scenarios are pos-

sible. It depends on the particular ap-

plications whether or not one can deal

with the consequences.

Eventual consistency is not some

esoteric property of extreme distrib-

uted systems. Many modern RDBMSs

(relational database management sys-

tems) that provide primary-backup

reliability implement their replication

techniques in both synchronous and

asynchronous modes. In synchronous

mode the replica update is part of the

transaction. In asynchronous mode

the updates arrive at the backup in a

delayed manner, often through log

shipping. In the latter mode if the pri-

mary fails before the logs are shipped,

practice

JANUARY 2009 | VOL. 52 | NO. 1 | COMMUNICATIONS OF THE ACM 43

reading from the promoted backup

will produce old, inconsistent values.

Also to support better scalable read

performance, RDBMSs have started

to provide the ability to read from the

backup, which is a classical case of

providing eventual consistency guar-

antees in which the inconsistency win-

dows depend on the periodicity of the

log shipping.

On the server side we need to take

a deeper look at how updates flow

through the system to understand what

drives the different modes that the de-

veloper who uses the system can expe-

rience. Let’s establish a few definitions

before getting started:

N = The number of nodes that store

replicas of the data.

W = The number of replicas that

need to acknowledge the receipt of the

update before the update completes.

R = The number of replicas that are

contacted when a data object is ac-

cessed through a read operation.

If W+R > N, then the write set and

the read set always overlap and one

can guarantee strong consistency. In

the primary-backup RDBMS scenario,

which implements synchronous repli-

cation, N=2, W=2, and R=1. No matter

from which replica the client reads, it

will always get a consistent answer. In

the asynchronous replication case with

reading from the backup enabled, N=2,

W=1, and R=1. In this case R+W=N, and

consistency cannot be guaranteed.

The problems with these configura-

tions, which are basic quorum proto-

cols, is that when because of failures

the system cannot write to W nodes, the

write operation has to fail, marking the

unavailability of the system. With N=3

and W=3 and only two nodes available,

the system will have to fail the write.

In distributed storage systems that

provide high performance and high

availability the number of replicas is in

general higher than two. Systems that

focus solely on fault tolerance often

use N=3 (with W=2 and R=2 configu-

rations). Systems that must serve very

high read loads often replicate their

data beyond what is required for fault

tolerance; N can be tens or even hun-

dreds of nodes, with R configured to

1 such that a single read will return a

result. Systems that are concerned with

consistency are set to W=N for updates,

which may decrease the probability of

the write succeeding. A common con-

figuration for these systems that are

concerned about fault tolerance but

not consistency is to run with W=1 to

get minimal durability of the update

and then rely on a lazy (epidemic) tech-

nique to update the other replicas.

How to configure N, W, and R de-

pends on what the common case is and

which performance path needs to be

optimized. In R=1 and N=W we opti-

mize for the read case, and in W=1 and

R=N we optimize for a very fast write.

Of course in the latter case, durability

is not guaranteed in the presence of

failures, and if W < (N+1)/2, there is the

possibility of conflicting writes when

the write sets do not overlap.

Weak/eventual consistency arises

when W+R <= N, meaning that there is

a possibility that the read and write set

will not overlap. If this is a deliberate

configuration and not based on a fail-

ure case, then it hardly makes sense to

set R to anything but 1. This happens

in two very common cases: the first is

the massive replication for read scaling

mentioned earlier; the second is where

data access is more complicated. In

a simple key-value model it is easy to

compare versions to determine the lat-

est value written to the system, but in

When a system
processes trillions
and trillions of
requests, events
that normally have
a low probability
of occurrence
are now guaranteed
to happen and
must be accounted
for upfront in
the design and
architecture
of the system.

44 COMMUNICATIONS OF THE ACM | JANUARY 2009 | VOL. 52 | NO. 1

practice

problem. A specific popular case is a

Web site in which we can have the no-

tion of user-perceived consistency. In

this scenario the inconsistency window

must be smaller than the time expected

for the customer to return for the next

page load. This allows for updates to

propagate through the system before

the next read is expected.

The goal of this article is to raise

awareness about the complexity of en-

gineering systems that need to oper-

ate at a global scale and that require

careful tuning to ensure that they can

deliver the durability, availability, and

performance that their applications

require. One of the tools the system de-

signer has is the length of the consis-

tency window, during which the clients

of the systems are possibly exposed to

the realities of large-scale systems en-

gineering.

References
1. Brewer, E.A. Towards robust distributed systems

(abstract). In Proceedings of the 19th Annual ACM
Symposium on Principles of Distributed Computing
(July 16–19, 2000, Portland, OR), 7.

2. Conversation with Bruce Lindsay. ACM Queue 2, 8
(2004), 22–33.

3. DeCandia, G., et. al. Dynamo: Amazon’s highly
available key-value store. In Proceedings of the 21st
ACM Symposium on Operating Systems Principles
(Stevenson, WA, Oct. 2007).

4. Gilbert, S. and Lynch, N. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
Web services. ACM SIGACT News 33, 2 (2002).

5. Lindsay, B.G. et al. Notes on distributed databases.
Distributed Data Bases. I.W. Draffan and F. Poole, Eds.
Cambridge University Press, Cambridge, MA, 1980,
247–284. Also available as IBM Research Report
RJ2517, San Jose, CA (July 1979).

Werner Vogels is vice president and chief technology
officer at Amazon.com, where he is responsible for
driving the company’s technology vision of continuously
enhancing innovation on behalf of Amazon’s customers at
a global scale.

A previous version of this article appeared in the October
2008 issue of ACM Queue.

© 2009 ACM 0001-0782/09/0100 $5.00

systems that return sets of objects it is

more difficult to determine what the

correct latest set should be. In most

of these systems where the write set is

smaller than the replica set, a mecha-

nism is in place that applies the up-

dates in a lazy manner to the remaining

nodes in the replica’s set. The period

until all replicas have been updated is

the inconsistency window discussed

before. If W+R <= N, then the system is

vulnerable to reading from nodes that

have not yet received the updates.

Whether or not read-your-write, ses-

sion, and monotonic consistency can

be achieved depends in general on the

“stickiness” of clients to the server that

executes the distributed protocol for

them. If this is the same server every

time, then it is relatively easy to guar-

antee read-your-writes and monotonic

reads. This makes it slightly more dif-

ficult to manage load balancing and

fault tolerance, but it is a simple solu-

tion. Using sessions, which are sticky,

makes this explicit and provides an

exposure level that clients can reason

about.

Sometimes the client implements

read-your-writes and monotonic reads.

By adding versions on writes, the client

discards reads of values with versions

that precede the last-seen version.

Partitions happen when some nodes

in the system cannot reach other nodes,

but both sets are reachable by groups

of clients. If you use a classical majority

quorum approach, then the partition

that has W nodes of the replica set can

continue to take updates while the oth-

er partition becomes unavailable. The

same is true for the read set. Given that

these two sets overlap, by definition the

minority set becomes unavailable. Par-

titions don’t happen frequently, but

they do occur between data centers, as

well as inside data centers.

In some applications the unavail-

ability of any of the partitions is unac-

ceptable, and it is important that the

clients that can reach that partition

make progress. In that case both sides

assign a new set of storage nodes to re-

ceive the data, and a merge operation is

executed when the partition heals. For

example, within Amazon the shopping

cart uses such a write-always system; in

the case of partition, a customer can

continue to put items in the cart even if

the original cart lives on the other par-

titions. The cart application assists the

storage system with merging the carts

once the partition has healed.

Amazon’s Dynamo

A system that has brought all of these

properties under explicit control of the

application architecture is Amazon’s

Dynamo, a key-value storage system

that is used internally in many services

that make up the Amazon e-commerce

platform, as well as Amazon’s Web Ser-

vices. One of the design goals of Dyna-

mo is to allow the application service

owner who creates an instance of the

Dynamo storage system—which com-

monly spans multiple data centers—to

make the trade-offs between consis-

tency, durability, availability, and per-

formance at a certain cost point.3

Summary

Data inconsistency in large-scale reli-

able distributed systems must be toler-

ated for two reasons: improving read

and write performance under highly

concurrent conditions; and handling

partition cases where a majority model

would render part of the system un-

available even though the nodes are up

and running.

Whether or not inconsistencies are

acceptable depends on the client appli-

cation. In all cases the developer must

be aware that consistency guarantees

are provided by the storage systems

and must be taken into account when

developing applications. There are a

number of practical improvements to

the eventual consistency model, such

as session-level consistency and mono-

tonic reads, which provide better tools

for the developer to work with. Many

times the application is capable of han-

dling the eventual consistency guaran-

tees of the storage system without any

