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The Local Converse 

The transmission probabilities P of a discrete memoryless channel (DMC) with 
alphabets 5F and Y/are given by 

P(y"]x")= ~ w(ytlx,) (1) 
t = l  

n n 

where x" = (x 1 . . . .  , x,) ~ 2F" = 1~ 5F, y" = (y~ . . . . .  y,) ~ ~d" = I~ @', and where w is a 
IX[ x l~l-stochastic matrix, z 1 

An (n, N, 2)-code for the DMC is a system of pairs {(u~, D~)[i= 1, ..., N} with 
ui~Y'  and pairwise disjoint subsets D i of ~ "  (i= 1 . . . .  , N), and with 

P(D~lui) > 1 - A for i = 1 . . . . .  N. (2) 

If N(n, 2) denotes the maximal N for which an (n, N, 2)-code exists, then 

lira n-  ~ log N(n, 2) = C, 0 < 2 < 1. (3) 
tl ,o:~ 

This result was stated (without proof) in [1] as Theorem 12. The inequality 

liminf n-  1 log N(n, ' > /~)=C, 0 < 2 < 1  (4) 
n-, oD 

(the coding theorem) was proved in [3] and in [5]. It was shown in [2] that 
(weak converse) 

inf limsup n-1 log N(n, 2)< C (5) 
2>0  n-,oo 

and finally in [4] that the strong converse holds, i.e. 

limsup n-  1 log N(n, 2) < C, 0 < 2 < 1. (6) 
n~o3 
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(6), together with (4), establishes (3), which says that for any error probabilities 2 
and 2', 0 < )t < 2' < 1, the asymptotic growth of the maximal eodelengths N(n, 2) 
and N(n, 2') is the same. 

In this note we show that an even stronger statement is true: 

Theorem (Local Converse). Let  P be a D M C  and let e, 2, 2' and R be real 
numbers such that e>0,  R > 0 ,  0 < 2 ' < 2 < 1 .  Then one can f ind (also explicit ly) 
an no(A , 2', e) such that for all n > no(A, 2', e) the following is true: 

Every (n, exp(nR), 2)-code {(ui, Di)[i= 1 . . . .  , N = exp (nR)} contains a subset 
o f  codewords {u~ I k = 1 . . . . .  N' = exp ( n ( R -  e))} with suitable decoding sets 
Fik (i = 1 . . . .  , N')  such that {(ui~, Fi~)] k = 1, ..., N'} is an (n, exp (n(R - ~)), 2')-code. 

The result gives a new geometric insight into the coding problem. Out of a 
set of codewords with a certain minimal "distance" one can select a rather big 
subset of a prescribed larger minimal "distance". In the case of a binary symmetric 
channel the word "distance" as used here can be replaced by the Hamming metric, 
a true distance. The result may be of interest for the actual construction of small 
error codes. 

The theorem was stated here for the DMC, the simplest and most familiar 
channel, even though the phenomenon "bad codes contain good codes" is of a 
rather general nature and occurs for much more general one-way channels as 
well as for multi-way channels ([6]). 

Also, this theorem together with the weak converse (5) implies the strong 
converse (6). A new and general method to prove strong converses was presented 
in [7]. It applies to many multi-user coding problems for which all classical 
approaches fail. The idea is as follows: One enlarges the decoding sets of a given 
code in order to decrease the error probability. The new decoding sets are no 
longer disjoint, that is, one has a list code to which one applies Fano's Lemma ([2]). 
Surprisingly enough one can decrease the error probability significantly with a 
"small" increase in list size and therefore the idea works. The main estimates 
are contained in the lemma below. The novelty of the present method of proof for 
the Theorem lies in the observation that one can select at random a subcode of 
list size 1 out of a list code with small list size without losing to much in error 
probability or rate. 

Proof of the Theorem 

We need a result of Margulis [8] in the slightly generalized form given in [7] 
as Lemma 4: 

n 

Lemma. Given a D M C  with transmission probabilities P = I ] w  there is a 
constant c = c ( w ) > O  such that for any n, B c ~ "  and x"~Y'":  1 

p ( F k B [ x  ") > 0 [6) - 1 (P(B[x")) + n - ~(k - 1) c], (8) 

. . . . . . . .  ' '4 = for  at most k where Fk B =  {y"=(y l ,  y ,)]exists  y'" =(y'l,  y , ) e B  with Yt Yt 
t 

components} and C0(t)= S (2~z) -~ exp ( -  tz/2) dt. 
- - o o  
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Suppose now we are given the (n, N, 2)-code {(ui, Di)li= 1, ..., N}. Define 

E i = Fk"Di for i =  1 . . . . .  N (9) 

with k.=n-~logn (actually every k. with n~k2l=o(1) and n-lk.=o(1) would 
work). By the lemma 

P(E, Iu~)>=O[O-I(1 - 2) + n-~(k.  - 1) c]. (10) 

Since knn-~oQ for n ~ o e  and since 0(0--+1 for t--.oo, the right side converges 
to 1, and therefore certainly exceeds 1 - 2 ' / 4  for n>=no(2,2'), suitable. On the 
other hand, the decoding list J ( y " ) =  {uill  <=i<= N, yn~E~} satisfies: 

,j(y.),<,Fk.(y.),< (n) ,~[k.<(n,O~l)k" 
~_ kn 

and hence 

I~r < e x p  (n6 )  for all y"eY/", (11) 

where 6.=]~#t n -~  log 2 n ~ 0  as n ~ o e .  
We complete now the proof  by a r andom coding argument  ([5]). Let  

U i ( i=  1 . . . . .  M) be independent ,  identically distributed r andom variables with 
distr ibution 

Pr(Ui=uk)=l/N for k = l  . . . . .  N. 

With every ou tcome (uil , ...,uiM ) of (U1, ..., UM) we associate decoding sets 
(F/l, .... F/M), where 

Fi~ = {y"eEi. [ ]J(y")  c~ {uil , .... uiM} ] = 1}. (12) 

Equivalently:  F/~ = Ei~ - 0 Ezj. 
j + k  

For  reasons of symmetry the expected average error  probabil i ty  for this de- 
'eoding rule 

M 

E2(~ ..... UM) = M - 1 Z  E 2 P(Y"IUk) 
k = l  yne F~k 

equals E ~ P(Y"I U1), and this expression is upper bounded  by 
.Yn e F~ I 

E Z P(y"fUII+E Z P(Y"IU1). 
Yn~E~ I yn e Ei~ c~ F~l 

The first sum is smaller than 2'/4. Assume therefore that  y"~E~ and also that  
U 1 = u~. Since IJ (y ' ) ]  < exp (n ~,), the probabil i ty  for 

{c~ . . . . .  uM} ~ J ( y " ) + 0  

is smaller than 

1 - (1 - exp (n 6.)/N) M- 1 < M exp (n 6.)/N 

and hence 

E ~ P(y"IU1)<E ~ Mexp(na.)P(y"lU~)/N<Mexp(n~)/N. 
yneEil  c~ F~t yneEil  
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With  M = 2 exp (n(R - 5)) we obta in  for n large enough 

E ~ P(Y"IU1)<2'/4+Mexp(n6.)/N<2'/2. 
yn  ~ F~ 1 

From a subcode of length M and with average error 2'/2 we can pass to a further 
subcode of length N' = exp (n(R - e)) and  maximal error Z. 
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