
Acta Math., 213 (2014), 49–62
DOI: 10.1007/s11511-014-0115-4
c© 2014 by Institut Mittag-Leffler. All rights reserved

Every finite group is the group of self-homotopy
equivalences of an elliptic space

by

Cristina Costoya

Universidade da Coruña

A Coruña, Spain

Antonio Viruel

Universidad de Málaga

Málaga, Spain

1. Introduction

For simply connected CW-complexes X of finite type, we are interested in the group of
homotopy classes of self-homotopy equivalences, E(X), and the realizability problem for
groups. Namely, if a given group G can appear as the group E(X) for some space X.
This problem has been placed as the first to solve in [3], being around for over fifty years
and recurrently appearing in surveys and lists of open problems about self-homotopy
equivalences [2], [14], [20], [21], [26]. The difficulty of this question relies on the fact that
techniques used so far are specific to certain groups [6], [7], [12], [22], [24], and have not
proved fruitful when addressing this problem in general.

Apart from the group of automorphisms of a group π, Aut(π), which is isomorphic
to E(K(π, n)) for an Eilenberg–MacLane space K(π, n), there is no global picture in this
context. A special mention deserves the cyclic group of order 2, which is the group of
automorphisms of the cyclic group of order 3, and hence it can be realized as E(K(Z3, n)).
Arkowitz and Lupton show that, moreover, it is the group of self-homotopy equivalences
of a rational space, pointing out the surprising appearance of a finite group in rational
homotopy theory, and raising the question of when finite groups can be realized by
rational spaces [4].

In this paper, we give a complete answer to the realizability problem for finite groups.

Theorem 1.1. Every finite group G can be realized as the group of self-homotopy
equivalences of infinitely many (non-homotopy-equivalent) rational elliptic spaces X.
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To build up those spaces, we introduce a general method which we hope can be use-
ful for obtaining examples with interesting properties in subjects of different nature. For
instance, it appears to produce differential manifolds related to a question of Gromov,
as mentioned below (see also §3). Indeed, we construct a contravariant functor from a
subcategory of finite graphs to the homotopy category of differential graded commuta-
tive algebras whose cohomology is 1-connected and of finite type. Then, the geometric
realization functor of Sullivan [27] gives the equivalence of categories between the homo-
topy category of minimal Sullivan algebras and the homotopy category of rational simply
connected spaces of finite type.

We remark that by dropping the requirement on the finiteness type of the differential
graded algebras, our method can be extended to infinite, locally finite graphs. This is
a subtle and technical point that is handled in [10], where this extended version of our
techniques is used to obtain an isomorphism criteria for a large class of groups, having
thus consequences in representation theory.

In this paper, we prove the following theorem.

Theorem 1.2. Let G be a finite connected graph with more than one vertex. Then,
there exists an elliptic minimal Sullivan algebra MG such that the group of automor-
phisms of G is realizable by the group of self-homotopy equivalences of MG.

Our idea of using graphs has its origin on the following classical result ([16], [17]).

Theorem 1.3. (Frucht, 1939) Given a finite group G, there exist infinitely many
non-isomorphic connected (finite) graphs G whose automorphism group is isomorphic
to G.

Because of the equivalence given by the geometric realization functor of Sullivan,
Theorem 1.1 follows directly from Theorems 1.2 and 1.3 (see Proposition 2.7). Applying
Theorem 1.1 to the trivial group, we supply a partial answer to Problem 3 in [21]. This
problem consists on determining spaces, which were thought to be quite rare [20], with
a trivial group of self-homotopy equivalences, the so-called homotopically rigid spaces.

Corollary 1.4. There exist infinitely many rational spaces that are homotopically
rigid.

Recall that in homotopy theory, naive dichotomy [13] classifies spaces in either ellip-
tic or hyperbolic. Ellipticity is a very severe restriction on a space X, and it is remarkable
that many of the spaces which play an important role in geometry are rationally elliptic.
In particular the rational cohomology of X satisfies Poincaré duality [19] and, with extra
hypothesis on the dimension of the fundamental class, X has the rational homotopy type
of a simply connected manifold ([5], [27]). Indeed, the spaces in Theorem 1.1 can be
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chosen to have rational homotopy type of a special class of simply connected manifolds
called inflexible. A manifold M is inflexible if all its self-maps have degree −1, 0 or 1.
The work of Crowley–Löh [11] relates the existence of inflexible d-manifolds with the ex-
istence of functorial semi-norms on singular homology in degree d that are positive and
finite on certain homology classes of simply connected spaces, solving in the negative a
question raised by Gromov [18]. Following those ideas we prove the following.

Theorem 1.5. Any finite group G can be realized by the group of self-homotopy
equivalences of the rationalization of an inflexible manifold M .

Corollary 1.6. For every n∈N, n>1, there are functorial semi-norms on singular
homology in degree d=415+160n that are positive and finite on certain homology classes
of simply connected spaces.

This paper is organized as follows. In §2, for any finite connected graph G, we
construct an elliptic minimal Sullivan algebra MG such that its group of self-homotopy
equivalences, E(MG), is isomorphic to the automorphim group of the graph, Aut(G). The
construction, restricted to a suitable category of graphs, gives a contravariant faithful
functor which is injective on objects (see Remark 2.8). This algebra MG is inspired
by [4], where some examples of minimal Sullivan algebras, verifying that the monoid
of homotopy classes of self-maps is neither trivial nor infinite, are constructed, thus
disproving a conjecture of Copeland–Shar [9]. Our construction gives infinitely many
examples of this nature (see Theorem 2.6). In §3, we upgrade our construction in order
for it to be the rational homotopy type of an inflexible manifold M .

For the basic facts about graphs, we refer to [8]. Only simple graphs G=(V,E) are
considered. This means that they do not have loops and they are not directed, that is,
for any vertex u in V , the edge (u, u) is not in E and, if an edge (v, w) is in E, then (w, v)
is also in E. We refer to [15] for basic facts in rational homotopy theory. Only simply
connected Q-algebras of finite type are considered. If W is a graded rational vector
space, we write ΛW for the free commutative graded algebra on W . This is a symmetric
algebra on W even tensored with an exterior algebra on W odd. A Sullivan algebra is a
commutative differential graded algebra which is free as a commutative graded algebra
on a simply connected graded vector space W of finite dimension in each degree. It is
minimal if in addition d(W )⊂Λ>2W . A Sullivan algebra is pure if d=0 on W even and
d(W odd)⊂W even.
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2. From graphs to elliptic Sullivan algebras

Ellipticity for a Sullivan algebra (ΛW,d) means that both W and H∗(ΛW ) are finite-
dimensional. Hence, the cohomology is a Poincaré duality algebra [19]. One can easily
compute the degree of its fundamental class (a fundamental class of a Poincaré duality
algebra H=

∑n
i=0 Hi is a generator of Hn, n is called the formal dimension of the algebra)

by the formula
p∑

i=1

deg xi−
q∑

j=1

(deg yj−1), (1)

where deg xi are the degrees of the elements of a basis of W odd and deg yj of a basis of
W even.

Definition 2.1. For a finite connected graph G=(V,E) with more than one vertex,
we define the minimal Sullivan algebra associated with G as

MG =(Λ(x1, x2, y1, y2, y3, z)⊗Λ(xv, zv | v ∈V ), d),

where degrees and differentials are described by

deg x1 =8, d(x1) = 0,

deg x2 =10, d(x2) = 0,

deg y1 =33, d(y1) =x3
1x2,

deg y2 =35, d(y2) =x2
1x

2
2,

deg y3 =37, d(y3) =x1x
3
2,

deg xv =40, d(xv) = 0,

deg z =119, d(z) = y1y2x
4
1x

2
2−y1y3x

5
1x2+y2y3x

6
1+x15

1 +x12
2 ,

deg zv =119, d(zv) =x3
v+

∑
(v,w)∈E

xvxwx4
2.

Lemma 2.2. The constructed MG=(ΛW,d) is an elliptic minimal Sullivan algebra
of formal dimension n=208+80|V |, where |V | is the order of the graph.

Proof. We need to prove that the cohomology of (ΛW,d) is finite-dimensional. In-
stead, we prove that the cohomology of the pure Sullivan algebra associated with (ΛW,d)
is finite-dimensional, which is an equivalent condition [15, Proposition 32.4].

The pure Sullivan algebra associated with (ΛW,d), and denoted by (ΛW,dσ), is
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determined by its differential which is described by

dσ(x1) = 0, dσ(y1) =x3
1x2,

dσ(x2) = 0, dσ(y2) =x2
1x

2
2, dσ(z) =x15

1 +x12
2 ,

dσ(xv) = 0, v ∈V, dσ(y3) =x1x
3
2, dσ(zv) =x3

v+
∑

(v,w)∈E

xvxwx4
2, v ∈V.

Therefore, the cohomology of (ΛW,dσ) is finite-dimensional because

dσ(zx2
1−y2x

10
2 ) =x17

1 and dσ(zx2−y1x
12
1 ) =x13

2 ,

and the cohomology class

[x3
v]4 =

[
−

∑
(v,w)∈E

xvxwx4
2

]4
=0.

Now, the formal dimension of (ΛW,d) is immediately obtained by (1).

Our next step is to describe Hom(MG ,MG). Actually, it is the most demanding task
in this paper. Recall that an automorphism of G is a permutation σ on V with (v, w)∈E

if and only if (σ(v), σ(w))∈E for every (v, w)∈E. The following is a straightforward
result.

Lemma 2.3. Every σ∈Aut(G) induces an automorphism fσ of MG.

Proof. Take fσ:MG!MG defined by

fσ(ω) =ω for ω ∈{x1, x2, y1, y2, y3, z},

fσ(xv) =xσ(v) for v ∈V ,

fσ(zv) = zσ(v) for v ∈V .

Lemma 2.4. For every f∈Hom(MG ,MG) one of the following holds.
(1) If f is an automorphism, then there exists σ∈Aut(G) such that

f(ω) = fσ(ω) for ω ∈{x1, x2, y1, y2, y3, xv | v ∈V },

f(z) = fσ(z)+d(mz) for mz ∈M118
G ,

f(zv) = fσ(zv)+d(mzv ) for v ∈V and mzv ∈M118
G .

(2) If f is not an automorphism, then there exist s∈{0, 1} and fs∈Hom(MG ,MG)
defined by

fs(ω) = sω for ω ∈{x1, x2, y1, y2, y3, z},

fs(xv) = 0 for v ∈V ,

fs(zv) = 0 for v ∈V ,
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such that

f(ω) = fs(ω) for ω ∈{x1, x2, y1, y2, y3, xv | v ∈V },

f(z) = fs(z)+d(mz) for mz ∈M118
G ,

f(zv) = fs(zv)+d(mzv
) for v ∈V and mzv

∈M118
G .

Proof. For f∈Hom(MG ,MG), by degree-reasoning we write

f(x1) = a1x1,

f(x2) = a2x2,

f(y1) = b1y1,

f(y2) = b2y2,

f(y3) = b3y3,

f(xv) =
∑
w∈V

a(v, w)xw+a1(v)x5
1+a2(v)x4

2, v ∈V,

f(z) = cz+
∑
w∈V

c(w)zw+α1y1x
2
1x

7
2+β1y2x

3
1x

6
2+γ1y3x

4
1x

5
2

+α2y1x
7
1x

3
2+β2y2x

8
1x

2
2+γ2y3x

9
1x2

+
∑
w∈V

xw(α3(w)y1x
2
1x

3
2+β3(w)y2x

3
1x

2
2+γ3(w)y3x

4
1x2),

f(zv) = e(v)z+
∑
w∈V

c(v, w)zw+α1(v)y1x
2
1x

7
2+β1(v)y2x

3
1x

6
2+γ1(v)y3x

4
1x

5
2

+α2(v)y1x
7
1x

3
2+β2(v)y2x

8
1x

2
2+γ2(v)y3x

9
1x2

+
∑
w∈V

xw(α3(v, w)y1x
2
1x

3
2+β3(v, w)y2x

3
1x

2
2+γ3(v, w)y3x

4
1x2), v ∈V.

(2)

Since df(yi)=f(dyi) for i=1, 2, 3, we obtain

b1 = a3
1a2, b2 = a2

1a
2
2 and b3 = a1a

3
2. (3)

As df(z)=f(dz), the two expressions below must be equal:

df(z) = c(x4
1x

2
2y1y2−x5

1x2y1y3+x6
1y2y3+x15

1 +x12
2 )

+
∑
w∈V

c(w)
(

x3
w+

∑
(w,u)∈E

xwxux4
2

)
+(α1+β1+γ1)x5

1x
8
2+(α2+β2+γ2)x10

1 x4
2

+
∑
w∈V

(α3(w)+β3(w)+γ3(w))xwx5
1x

4
2,

f(dz) = b1b2a
4
1a

2
2y1y2x

4
1x

2
2−b1b3a

5
1a2y1y3x

5
1x2+b2b3a

6
1y2y3x

6
1+a15

1 x15
1 +a12

2 x12
2 .
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Hence, we obtain
c= a15

1 = a12
2 = b1b2a

4
1a

2
2 = b1b3a

5
1a2 = b2b3a

6
1 (4)

and

c(w) = 0 for all w∈V ,

αi+βi+γi =0 for i=1, 2,

α3(w)+β3(w)+γ3(w) = 0 for all w∈V .

Equations (3) and (4) are the same as in [4, Example 5.1]. Therefore

a1 = a2 = b1 = b2 = b3 = c= s and s∈{0, 1}.

This yields

f(x1) = sx1, f(x2) = sx2, f(y1) = sy1, f(y2) = sy2, f(y3) = sy3

and

f(z) = sz+d(β1y1y2x
5
2+γ1y1y3x1x

4
2)+d(β2y1y2x

5
1x2+γ2y1y3x

6
1)

+
∑
w∈V

d(β3(w)y1y2xwx2+γ3(w)y1y3xwx1).

Assume first that s=1. As df(zv)=f(dzv), the following two expressions must be
equal:

df(zv) = e(v)(y1y2x
4
1x

4
2−y1y3x

5
1x2+y2y3x

6
1+x15

1 +x12
2 )

+
∑
w∈V

c(v, w)
(

x3
w+

∑
(w,u)∈E

xwxux4
2

)
+(α1(v)+β1(v)+γ1(v))x5

1x
8
2+(α2(v)+β2(v)+γ2(v))x10

1 x4
2

+
∑
w∈V

(α3(v, w)+β3(v, w)+γ3(v, w))xwx5
1x

4
2

(5)

and

f(dzv) =
( ∑

w∈V

a(v, w)xw+a1(v)x5
1+a2(v)x4

2

)3

+
∑

(v,r)∈E

( ∑
w∈V

a(v, w)xw+a1(v)x5
1+a2(v)x4

2

)

×
( ∑

u∈V

a(r, u)xu+a1(r)x5
1+a2(r)x4

2

)
x4

2.

(6)
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Close examination of equations (5) and (6) yields the following remarks. Firstly, remark
that in (5) there is no summand containing xvxwxu for v 6=w 6=u 6=v. This forces (6) to
have, at most, two non-trivial coefficients a(v, w). Observe now that in (5) neither there
is a summand containing x2

wxv, so in (6) only one non-trivial coefficient a(v, w) can exist.
Therefore, in (6), there is at most a unique summand containing x3

w and, in (5), a unique
non-trivial coefficient c(v, w). Secondly, comparing in both equations the coefficients of
y1y2x

4
1x

4
2 and x15

1 , we obtain

e(v) = a1(v) = 0.

Now, there is no term of type x2
wx4

2 in (5) (the graph does not contain any loop) so we
deduce that

a2(v) = 0.

Finally, comparing the coefficients of x5
1x

8
2, x10

1 x4
2 and xwx5

1x
4
2, we obtain that

αi(v)+βi(v)+γi(v) = 0 for i=1, 2,

α3(v, w)+β3(v, w)+γ3(v, w) = 0.

Summarizing,

f(xv) = a(v, σ(v))xσ(v),

f(zv) = c(v, σ(v))zσ(v)+d(β1(v)x5
2y1y2+γ1(v)x1x

4
2y1y3)

+d(β2(v)x5
1x2y1y2+γ2(v)x6

1y1y3)

+
∑
w∈V

d(β3(v, w)xwx2y1y2+γ3(v, w)xwx1y1y3),

where σ is a self-map of V and

c(v, σ(v))= a(v, σ(v))3 for all v ∈V ,

c(v, σ(v))= a(v, σ(v))a(w, σ(w)) for all (v, w)∈E.

Therefore a(v, σ(v))2=a(w, σ(w)) if (v, w)∈E. Since G is not a directed graph (which
implies that if (v, w)∈E then (w, v)∈E too) we deduce that a(w, σ(w))2=a(v, σ(v)), and
hence a(v, σ(v))4=a(v, σ(v)). Moreover, since G is connected, one of the following holds:

(1) a(v, σ(v))=c(v, σ(v))=0 for all v∈V , which proves Lemma 2.4 (2) for s=1.
(2) a(v, σ(v))=c(v, σ(v))=1 for all v∈V . Then,

f(xv) =xσ(v),

f(zv) = zσ(v)+d(β1(v)x5
2y1y2+γ1(v)x1x

4
2y1y3)+d(β2(v)x5

1x2y1y2+γ2(v)x6
1y1y3)

+
∑
w∈V

d(β3(v, w)xwx2y1y2+γ3(v, w)xwx1y1y3).
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The self-map σ:V!V is, in fact, an element in Aut(G). We first show that σ∈Hom(G,G),
that is, (v, w)∈E if and only if (σ(v), σ(w))∈E. Indeed, (v, w)∈E if and only if there is
a summand xvxwx4

2 in d(zv), and hence if and only if there is a summand xσ(v)xσ(w)x
4
2

in f(dzv)=df(zv)=d(zσ(v)), that is, if and only if (σ(v), σ(w))∈E. Now, since for every
v∈V , f(dzv)=d(zσ(v)), σ is one-to-one on the neighborhood of every vertex. Therefore
σ∈Aut(G) [23, Lemma 1], which proves Lemma 2.4 (1).

Assume now that s=0. Then

f(dzv) =
( ∑

w∈V

a(v, w)xw+a1(v)x5
1+a2(v)x4

2

)3

. (7)

Since df(zv)=f(dzv), an argument similar to the one above, comparing (5) and (7), yields

f(xv) = 0,

f(zv) = 0+d(β1(v)x5
2y1y2+γ1(v)x1x

4
2y1y3)+d(β2(v)x5

1x2y1y2+γ2(v)x6
1y1y3)

+
∑
w∈V

d(β3(v, w)xwx2y1y2+γ3(v, w)xwx1y1y3),

which proves Lemma 2.4 (2) for s=0.

As mentioned in §1, isomorphism classes of minimal Sullivan algebras whose coho-
mology is 1-connected and of finite type are in bijection with rational homotopy types
for simply connected spaces with rational homology of finite type. Also, the homotopy
classes of morphisms of the corresponding minimal Sullivan algebras are in bijection with
the homotopy classes of maps between the corresponding rational homotopy types. Re-
call that two morphisms from a Sullivan algebra to an arbitrary commutative cochain
algebra, φ0, φ1: (ΛW,d)!(A, d), are homotopic if there exists

H: (ΛW,d)−! (A, d)⊗(Λ(t, dt), d)

such that (id ·εi)H=φi, i=0, 1, where deg t=0, deg dt=1, and d is the differential sending
t 7!dt. The augmentations ε0, ε1: Λ(t, dt)!Q are defined by ε0(t)=0 and ε1(t)=1.

Lemma 2.5. For any f∈Hom(MG ,MG), one of the following holds:
(1) There exists an automorphism fσ, as in Lemma 2.4 (1), such that f is homo-

topic to fσ.
(2) There exists fs, as in Lemma 2.4 (2), such that f is homotopic to fs.

Proof. This follows directly from Lemma 2.4.

Gathering Lemmas 2.3–2.5, we have proved the following result from which we de-
duce Theorem 1.2 as a corollary.
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Theorem 2.6. Let G be a finite connected graph with more than one vertex. Then,
there exists an elliptic minimal Sullivan algebra MG such that the monoid of homotopy
classes of self-maps is

[MG ,MG ]∼=Aut(G)t{fs: s=0, 1}.

Therefore Aut(G)∼=E(MG).

We finish this section with some comments on the properties of the construction
above. The following, together with Theorem 1.3, justifies the infinitely many rational
spaces X from Theorem 1.1 (see also Remark 2.9).

Proposition 2.7. Let G1=(V,E) and G2=(V ′, E′) be two non-isomorphic graphs.
Then, MG1 and MG2 are non-isomorphic minimal Sullivan algebras.

Proof. Assume that MG1 and MG2 are isomorphic, and let f denote such an iso-
morphism. Since

|V |+2 =dimM40
G1

=dimM40
G2

= |V ′|+2,

we have |V |=|V ′| and, without loss of generality, we may assume that G1 and G2 have
the same set of vertices V . Then, the isomorphism f is described by the system of
equations (2). Reproducing the same steps as in the proof of Lemma 2.4, we get that
f is homotopic to fσ, where σ is a permutation of V such that (v, w)∈E if and only if
(σ(v), σ(w))∈E′. That is, σ induces an isomorphism between G1 and G2.

The construction of M is functorial when considering the appropriate category of
graphs. Recall that given G1=(V,E) and G2=(V ′, E′), a morphism σ:G1!G2 is said to
be full if for every pair of vertices v, w∈V , (v, w)∈E if and only if (σ(v), σ(w))∈E′.

Remark 2.8. Let Graphfm be the category whose objects are finite graphs with
more than one vertex, and whose morphisms are full graph monomorphisms. Then, the
construction M provides a contravariant faithful functor which is injective on objects
(an embedding) from Graphfm to the category of Sullivan algebras. Let G1=(V,E) and
G2=(V ′, E′) be graphs, and MG1 and MG2 be the associated minimal Sullivan algebras
provided by Theorem 2.6. If σ:G1!G2 in Graphfm, then there is a morphism of minimal
Sullivan algebras M(σ):MG2!MG1 given by

M(σ)(ω) =ω for ω ∈{x1, x2, y1, y2, y3, z}

M(σ)(xv′) =
{

xv, if σ(v) = v′,
0, otherwise,

M(σ)(zv′) =
{

zv, if σ(v) = v′,
0, otherwise.

If G1=G2, then σ∈Aut(G1) and M(σ)=fσ−1 as described in Lemma 2.3.
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We finish this section illustrating other possible constructions of minimal Sullivan
algebras for a given graph G.

Remark 2.9. The construction of MG is not unique, that is, given a finite connected
graph G with more than one vertex, there exist infinitely many non-isomorphic minimal
Sullivan algebras whose group of self-homotopy equivalences is isomorphic to Aut(G). In
fact, given a non-trivial vector (u1, u2)∈Q2, it is possible to construct a minimal Sullivan
algebra (M(u1,u2), d(u1,u2)) having the same generators as MG , and d(u1,u2) equal to d

in every generator but in

d(u1,u2)(zv) =x3
v+

∑
(v,w)∈E

xvxw(u1x
5
1+u2x

4
2).

3. From graphs to inflexible manifolds

Inflexibility for an oriented compact closed manifold M means that the set of mapping
degrees ranging over all continuous self-maps is finite. By composition of self-maps, it
is obvious that it is equivalent to demanding that all its self-maps have degree −1, 0
or 1. For an elliptic (and hence Poincaré duality) Sullivan algebra (ΛW,d) of formal
dimension n, inflexibility means that, for every f∈Hom((ΛW,d), (ΛW,d)), and for a
representative x of the fundamental class in Hn(ΛW,d), the equality [f(x)]=a[x] holds
for a∈{−1, 0, 1}.

Proposition 3.1. Let A=(ΛW,d) be a 1-connected elliptic Sullivan algebra of for-
mal dimension 2n. Choose x∈A2n representing the fundamental class in H2n(A).
Define the Sullivan algebra Ã=(ΛW⊗Λ(y), d̃) with d̃|W =d, deg y=2n−1 and d̃(y)=x.
Then, Ã is a 1-connected elliptic Sullivan algebra of formal dimension 4n−1. More-
over, if we choose z∈A4n−1 such that d(z)=x2, then xy−z is a representative of the
fundamental class in H4n−1(Ã).

Proof. First notice that, since (W⊕Qy)even=W even, every element in H∗(Ã) is
nilpotent because every element in H∗(A) is nilpotent. Hence Ã is elliptic and the
formal dimension is easily obtained by (1).

Now, d̃(xy−z)=xd̃(y)−d(z)=0. Let us see that it is not a boundary. Assume
that xy−z=d̃(ω) for ω=ω1y+ω2∈Ã4n−2, ω1, ω2∈A. Then, xy−z=d(ω1)y+ω1x+d(ω2).
Since z, ω1x, d(ω2)∈A, we deduce that xy=d(ω1)y, and so x=d(ω1). This contradicts
the fact that x is a representative of the fundamental class.

Lemma 3.2. The elliptic Sullivan algebra Ã is inflexible if A is inflexible. Moreover,
[A,A]∼=[Ã, Ã] as monoids and, in particular, E(A)∼=E(Ã).
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Proof. For f̃∈Hom(Ã, Ã), let f denote f̃ |A. Then f̃(xy−z)=f(x)f̃(y)−f(z). Since
A is inflexible, f(x)=ax+d(mx) with a∈{1, 0,−1}. Applying d to f(z), and using that
d(z)=x2, a straightforward calculation shows that

f(z) = a2z+(2axmx+mxd(mx))+d(γ).

Applying now d̃ to f̃(y), and using that d̃(y)=x, again a straightforward calculation
shows that

f̃(y) = ay+mx+d(γ′).

Hence [f̃(xy−z)]=a2[xy−z], proving that Ã is inflexible.
Observe now that any f̃∈Hom(Ã, Ã) is determined, up to homotopy, by its restric-

tion to A. The only undetermined term appears when f̃(y) is computed. This means
that if f̃1|A and f̃2|A are equal, then f̃1(y)−f̃2(y)=d(γ′1−γ′2). Hence f̃1 and f̃2 are homo-
topic. In the same way, any f∈Hom(A,A) can be extended to Hom(Ã, Ã) in a unique
way, up to homotopy.

We can now prove Theorem 1.5.

Proof of Theorem 1.5. Let G be a finite group. There exists a finite and connected
graph G=(V,E) such that Aut(G)∼=G (by Theorem 1.3). Associated with the graph G
of order n, there exists a 1-connected elliptic minimal Sullivan algebra MG (of formal
dimension 208+80n) such that Aut(G)∼=E(MG) (by Theorem 2.6). We modify MG

into an elliptic minimal Sullivan algebra M̃G of formal dimension (416+160n)−1 (by
Proposition 3.1) which, by Lemma 3.2, is inflexible since MG is inflexible. This is clear
since [MG ,MG ]∼=Gt{f0, f1} is finite, and because of the multiplicativity of the mapping
degree.

Now, since 415+160n 6≡0 (mod 4), the theorems of Sullivan [27, Theorem (13.2)] and
Barge [5, Théorème 1] give a sufficient condition for the realization of M̃G by a simply
connected manifold M .

Finally, again by Lemma 3.2, E(MG)∼=E(M̃G). Hence, putting the isomorphisms of
groups together, we get

G∼=Aut(G)∼= E(MG)∼= E(M̃G)∼= E(M0),

where M0 is the rational homotopy type of M .

The question of whether certain orientation-reversing maps on manifolds exist is
treated in the literature (see for example [25] and [1]). Examples of such manifolds are
provided by Theorem 1.5.
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Corollary 3.3. For any n>1, there exists a simply connected manifold M of
dimension 415+160n that does not admit an orientation-reversing self-map.

Proof. The existence of such a manifold M is given by Theorem 1.5 for a graph G
of order n, with M̃G being the minimal Sullivan algebra of M . Now, any self-map of
M̃G , is shown to satisfy deg(f̃)=deg(f̃ |MG )2 (by the proof of Lemma 3.2). Therefore,
any self-map of M has either degree 0 or 1.
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connexes. Ann. Sci. École Norm. Sup., 9 (1976), 469–501.
[6] Benkhalifa, M., Rational self-homotopy equivalences and Whitehead exact sequence. J.

Homotopy Relat. Struct., 4 (2009), 111–121.
[7] — Realizability of the group of rational self-homotopy equivalences. J. Homotopy Relat.

Struct., 5 (2010), 361–372.
[8] Bollobás, B., Modern Graph Theory. Graduate Texts in Mathematics, 184. Springer,

New York, 1998.
[9] Copeland, Jr., A. H. & Shar, A.O., Images and pre-images of localization maps. Pacific

J. Math., 57 (1975), 349–358.
[10] Costoya, C. & Viruel, A., Faithful actions on commutative differential graded algebras

and the group isomorphism problem. To appear in Q. J. Math.
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