
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 124, Number 10, October 1996

EVERY MONOTONE GRAPH PROPERTY

HAS A SHARP THRESHOLD

EHUD FRIEDGUT AND GIL KALAI

(Communicated by Jeffry N. Kahn)

Abstract. In their seminal work which initiated random graph theory Erdös
and Rényi discovered that many graph properties have sharp thresholds as
the number of vertices tends to infinity. We prove a conjecture of Linial that
every monotone graph property has a sharp threshold. This follows from the
following theorem.

Let Vn(p) = {0, 1}n denote the Hamming space endowed with the prob-
ability measure µp defined by µp(ε1, ε2, . . . , εn) = pk · (1 − p)n−k, where
k = ε1 + ε2 + · · · + εn. Let A be a monotone subset of Vn. We say that
A is symmetric if there is a transitive permutation group Γ on {1, 2, . . . , n}
such that A is invariant under Γ.

Theorem. For every symmetric monotone A, if µp(A) > ε then µq(A) > 1−ε
for q = p+ c1 log(1/2ε)/ logn. (c1 is an absolute constant.)

1. Graph properties

A graph property is a property of graphs which depends only on their isomor-
phism class. Let P be a monotone graph property; that is, if a graph G satisfies P
then every graph H on the same set of vertices, which contains G as a subgraph
satisfies P as well. Examples of such properties are: G is connected, G is Hamil-
tonian, G contains a clique (=complete subgraph) of size t, G is not planar, the
clique number of G is larger than that of its complement, the diameter of G is at
most s, etc.

For a property P of graphs with a fixed set of n vertices we will denote by µp(P )
the probability that a random graph on n vertices with edge probability p satisfies
P . The theory of random graphs was founded by Erdös and Rényi [8, 4], and one of
their significant discoveries was the existence of sharp thresholds for various graph
properties; that is, the transition from a property being very unlikely to it being
very likely is very swift. Many results on various aspects of this phenomenon have
appeared since then. In what follows c1, c2, etc. are universal constants.

Theorem 1.1. Let P be any monotone property of graphs on n vertices. If µp(P ) >
ε then µq(P ) > 1− ε for q = p+ c1 log(1/2ε)/ logn.
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2994 EHUD FRIEDGUT AND GIL KALAI

This result verifies a conjecture of Nati Linial [12] and complements a theorem
of Bollobás and Thomason [5], who proved that µq(P ) > 1− ε for q = c(ε) · p.

Let P be the property “G contains a clique with k(n) vertices” and let k(n) ∼
logn. The threshold interval (namely, the interval of edge-probabilities p where
ε ≤ µp ≤ 1− ε) in this case is of size proportional to 1/ log2 n. Perhaps some words
of explanation are in order. Consider G ∈ G(n, p); that is, G is a random graph
with n vertices and edge probability p. The length of the interval of probabilities
p for which the clique number (= size of maximal clique) of G is almost surely
k (where k ∼ logn) is of order log−1 n. The transition between clique numbers
k − 1 and k occurs along an interval of length ≈ log−2 n, and this is precisely the
threshold interval of interest to us. At the beginning of this transition period the
probability of having a clique of size k is ε. This probability rises to 1 − ε at the
end of this interval, but the probability of having a (k + 1)-clique is still small
(≈ 1/ logn). The value of p must increase by c log−1 n before the probability for
having a (k + 1)-clique reaches ε and another transition interval begins.

Conjecture 1.2. Let P be any monotone property of graphs on n vertices. If
µp(P ) > ε, then µq(P ) > 1− ε for q = p+ c log(1/2ε)/ log2 n.

2. Symmetric properties

Consider the Hamming space Vn(p) = {0, 1}n endowed with the probability
measure µp defined by µp(ε1, ε2, . . . , εn) = pk · (1 − p)n−k, where k = ε1 + ε2 +
· · · + εn. Put {0, 1}p = V1(p). Let A be a monotone subset of {0, 1}n; that is, if
(α1, α2, . . . αn) ∈ A and βi ≥ αi for every i, 1 ≤ i ≤ n, then (β1, β2, . . . , βn) ∈ A.
We say that A is symmetric if there is a transitive permutation group Γ on [n] =
{1, 2, . . . , n} such that A is invariant under Γ.

Theorem 2.1. For every symmetric monotone A, if µp(A) > ε then µq(A) > 1− ε
for q = p+ c2 log(1/2ε)/ logn.

To deduce Theorem 1.1 from Theorem 2.1 (with c1 = 2c2), note that the family
of edge-sets of graphs on n vertices which satisfy a monotone graph property P
is invariant under the action of Sn (the group of permutations of the vertices) on
the edges. Note that Theorem 1.1 remains true for monotone properties of random
subgraphs of arbitrary finite edge-transitive graphs. In particular, the theorem
applies to random subgraphs of the discrete cube and of Ckn, the product of k
copies of an n-cycle (grids on the k-dimensional torus).

Note that the symmetry assumption is needed. If A0 = {(ε1, ε2, . . . , εn) ∈
{0, 1}n : ε1 = 1} then µp(A) = p. Bollobás and Thomason [5] proved, using
the Kruskal-Katona theorem, that for every monotone A (symmetric or not), if
µp(A) > ε then µq(A) > 1− ε for q ≤ c(ε)p.

In the rest of the section we will deduce Theorem 2.1 via a lemma of Margulis
[13] and Russo [14], (see also [9], Ch. 2) from a result of Bourgain, Kahn, Kalai,
Katznelson and Linial (briefly, BKKKL) [6]. In the next section we will indicate a
few extensions of the BKKKL Theorem which imply several extensions of Theorem
2.1. In Section 4 we will give examples showing that our results are tight. In Section
5 we will discuss the connection of the threshold interval to the symmetry group Γ
and in Section 6 we will discuss some connections to results by Margulis-Talagrand,
Russo, and Kruskal-Katona.

For v∈A let h(v)= |{w /∈ A : dist(v, w) = 1}|. Define ψp(A)=
∑

v∈A µp(v)h(v).
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Lemma 2.2 (Margulis, Russo).

d(µp(A))

dp
= ψp(A)/p.

Next, we need the notion of influence. Let X be a probability space and let
f : Xn → {0, 1} be a measurable map. Define the influence of the k-th variable
on f , denoted by If (k), as follows: For u = (u1, u2, ..., un−1) ∈ Xn−1 set lk(u) =
{(u1, u2, ..., uk−1, t, uk, ..., un−1) : t ∈ X}, and define

If (k) = Pr(u ∈ Xn−1 : f is not constant on lk(u)).

Given a monotone set A ⊂ Vn(p), denote by χA the characteristic function of
A. We will write IA(k) for Iχ(A)(k). Let φp(A) be the sum of the influences of the
variables on χA. Note that φp(A) = ψp(A)/p.

Theorem 2.3 (Bourgain, Kahn, Kalai, Katznelson and Linial). For every func-
tion f : Xn → {0, 1}, with Pr(f−1(1)) = t, there is a variable k so that

If (k) ≥ c3t′
logn

n
,

where t′ = min(t, 1− t).

Proof of Theorem 2.1. Since A is symmetric the influence of each variable is the
same, and therefore by Theorem 2.3 the sum of the influences for A in Vn(r) is
at least c3 · t′ logn, where t′ = min(µr(A), 1 − µr(A)). So by Lemma 2.2 for
every r such that µr(A) ≤ 1/2, we have dµr(A)/dr ≥ c3µr(A) log n. There-
fore, d(logµr(A))/dr ≥ c3 logn. Now we claim that if µp(A) ≥ ε then µq(A) ≥
1/2 for q = p + 1

c3
· log(1/2ε)

logn . Indeed, log(µq(A)) ≥ log(µp(A)) +
∫ q
p
c3 logndr ≥

log(ε) + log(1/2ε) = log(1/2). So by increasing p by at most log(1/2ε)/c3 logn we
reached q with µq(A) = 1/2, and by the same token another increase of at most
log(1/2ε)/c3 logn will give us µq(A) = 1− ε, as required.

The case X = {0, 1}1/2 of the BKKKL theorem was proved by Kahn, Kalai
and Linial [10] in response to a conjecture of Ben-Or and Linial [3]. Some words
on the proof of this theorem are called for. The proof uses harmonic analysis
on Zn2 . For a boolean function f on {0, 1}n consider the Walsh-Fourier expansion

f =
∑
S⊂[n] f̂(S)uS, where, uS(T ) = (−1)|S∩T |. (Here we identify vectors in {0, 1}n

with subsets of [n] in the standard way.) It can be shown that the sum of influences,

φ1/2(A), is equal to
∑
S⊂[n] f̂

2(S)|S|. In order to show that φ1/2(A) is large, one has

to show that a large portion of the Walsh-Fourier transform of f is concentrated in
“high” frequencies. This is shown, if all influences are not too large, by applying a
certain hypercontractive estimate of Beckner [2]. (In the next section we will show
that if all influences are smaller than δ then φp(A) is at least c log(1/δ).)

The proof of the BKKKL theorem [6] is similar and is based on a Fourier-Walsh
interpretation for influences in arbitrary product spaces. Talagrand [17] (see the
remark in Section 6) found another proof for the special case X = {0, 1}p. He
replaced the Walsh functions uS by an appropriate orthonormal basis for Vn(p).
All these proofs give constants which are quite realistic.
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3. Some extensions

Consider now the situation when p itself is a function of n. We will now describe
sharp forms of the above theorems which show that if µp(A) = ε and µq(A) = 1− ε
then q = p(1 + o(1)) always holds when log p

logn → 0. If p ≤ n−c for some c > 0 we

cannot expect, in general, that q = p(1 + o(p)), and it is an interesting problem
to understand for which A’s this relation holds. We need an improvement of the
BKKKL Theorem for the special case of X = Vn(p):

Theorem 3.1. For every function f : Vn(p) → {0, 1}, with Pr(f−1(1)) = t ≤ 1
2 ,

there is a variable k so that

If (k) ≥ c4
t · logn

n · (p log(1/p))
.

This gives (as above) a sharp (up to constants) form of Theorem 2.1:

Theorem 3.2. For every symmetric monotone property A, if µp(A) > ε then
µq(A) > 1− ε for q = p+ c5 log(1/ε)p log(1/p)/ logn.

Corollary 3.3. Let P be any monotone property of graphs. If µp(P ) > ε, then
µq(P ) > 1− ε for q = p+ c6 log(1/ε)p log(1/p)/ logn.

Proof of Theorem 3.1. We rely on the proof from [6]. Note that the proof of Lemma
3 in [6] gives, for a monotone 0-1 function on {0, 1}p, that w(f) ≤ cp log(1/p). To
see this note that for X = {0, 1}p we have the additional inequalities If (j) ≤ 2p

for every j, in addition to the inequalities If (j) ≤ 2−(m−j) which always hold.
So
∑m
j=1 If (j) ≤ 2p log(1/p) + p. Substituting the improved upper bound for

w(f) in relation (14) of [6] we get that ‖Wk‖22 ≤ c · p log(1/p) · If (k), and we
reach a contradiction in the same way as in the original proof by assuming that
If (k) < c3

t·logn
p·log(1/p)·n , for c3 sufficiently small.

The proof of the BKKKL Theorem can be modified to give the following:

Theorem 3.4. For every function f : Xn → {0, 1}, with Pr(f−1(1)) = t ≤ 1
2 , if

If (k) ≤ δ for every k then

n∑
k=1

If (k) ≥ c7t log(1/δ).

Proof. Again we rely heavily on the proof of BKKKL Theorem (and recycle the
constants c1, . . . , c5). Let δk = If (k). Then, as in the original proof, we have that
more than half of the weight of ‖f‖22 is concentrated where

|S1|+ |S2|+ · · ·+ |Sn| < c1t
−1(

n∑
k=1

δk).

Substituting relation (18) (from [6]) in relation (20) we can replace the right hand
side of relation (20) by c2(

∑n
k=1(δk)3/2). It follows that more than half the weight

of ‖f‖22 is concentrated where

(|S1|+ · · ·+ |Sn|) · ε2|S1|+2|S2|+···+2|Sn| ≤ c2t−1
n∑
k=1

(δk)3/2.
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This implies that
n∑
k=1

δk ≥ c3t log(t(
n∑
k=1

(δk)3/2)−1).

Now assume that δk ≤ δ for every k and that
∑n
k=1 δk ≤ c4t log(1/δ). Using

the convexity of the function x3/2, we get that the maximum value of
∑n
k=1(δk)3/2

is attained when δk = δ for k = 1, 2, . . . , r and δk = 0 for k > r + 1, where
r = c4t log(1/δ)/δ. Therefore, log(t(

∑n
k=1(δk)3/2)−1) > c5 log(1/δ).

Corollary 3.5. Let A be a monotone subset of {0, 1}n such that IA(k) ≤ δ for
every p. If µp(A) > ε, then µq(A) > 1− ε for q = p+ c8 log(1/ε)/ log(1/δ).

It follows from Theorem 3.4 that if we have a monotone subset A which is
invariant under a permutation group Γ with the property that every transitivity
class of Γ has at least a elements, then the assertion of Theorem 2.1 holds with
1/ logn replaced by 1/ log a. Therefore, the assertion of Theorem 1.1 holds (with
a different absolute constant) for symmetric properties of random subgraphs of
arbitrary vertex-transitive graphs (in particular, Cayley graphs) on n vertices.

The proof of Theorem 3.4 extends without change to:

Theorem 3.6. For every function f : X1×X2×...×Xn → {0, 1}, with Pr(f−1(1))
= t ≤ 1

2 , if If (k) ≤ δ for every k then

n∑
k=1

If (k) ≥ c7t log(1/δ).

Assume now thatXk = {0, 1}pk and putX =
∏n
i=1Xi. Note that for a monotone

subset A of X , ∂µ(A)/∂pk = IA(k). (µ(A) is a linear function of pk with slope
IA(k); this is perhaps the shortest derivation of the Margulis-Russo Lemma.) It
follows by a similar argument to the proof of Theorem 2.1 that for every subset A
of Vn and every n-tuple of probabilities (p1, p2, . . . , pn), if µp1,p2...,pn(A) > ε, then
the following statement holds: There is a vector of probabilities (q1, q2, . . . , qn) such
that µq1,q2,...,qn(A) > 1− ε and, for every δ,

|{i : qi − pi ≥ c10 log(1/ε)/ log(1/δ)}| ≤ 1

δ
.

4. Tightness of the results

Ben-Or and Linial [3] constructed a “tribes” example to show that the O(log n/n)
lower bound on influences is sharp; see also [10]. The following more general exam-
ples show that up to multiplicative constants, Theorem 2.1 is sharp when p does
not depend on n, and Theorems 3.1 and 3.2 are sharp even when p does depend on
n. Let n = m · r. Partition [n] into sets T1, T2, . . . , Tr of size m and let A be the
set of subsets of [n] which contain Ti for some i. For a given probability q take

m =
logn− log logn+ log log(1/q)

log(1/q)
.

Then µq(A) is close to 1− 1/e. For p = q(1 + o(1)), let µp(A) = t; then

dµp(A)

dp
≈ (1− t) · log(1/(1− t)) · logn/(p log(p−1)).

Thus the interval [q, p], where µp(A) = 1−ε, is of length ∼ log(1/ε)q log(1/q)/ logn.
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There are many other examples for which Theorem 2.1 is sharp. For example,
consider the property of subsets S of [n]: “S contains an interval of length k = k(n)
of consecutive integers modulo n”. Other examples are the properties of subgraphs
H of the graph of the n-dimensional cube: “H contains the graph of a k-dimensional
face” and, as mentioned below, “H is connected”.

Graph properties. Let P be the property “G contains a clique with k(n) ver-
tices”. For fixed n and k let Xn,p be the number of k-cliques in G(n, p). The
expected value of Xn,p is

λ = λ(n, k, p) =

(
n

k

)
p(
k
2).

Consider now an arbitrary function k(n) = O(log n), and let q = q(n) be such
that λ(n, k(n), q(n)) ∼ 1. Note that log(1/q)/ log(n) → 0 iff k → ∞. In this
case Corollary 3.3 asserts that the length of the threshold interval is o(q). For
p = q(1 + o(1)), Xn,p can be approximated by a Poisson random variable with

mean λ(n, k, p), and Prob(Xn,p > 0) = (1 − e−λ(n,k,p))(1 + o(1)). (This can be
justified along the lines of [4], pp. 260-262.) This shows that the actual threshold

interval is of length proportional to q(n)( log(q(n)−1)
logn )2 rather than q(n) log(q(n)−1)

logn .

Bounded depth circuits. There is an interesting connection between the com-
plexity of Boolean functions and their threshold behavior. It follows, e.g., from the
H̊astad Switching Lemma, see [11, 1], that Boolean functions f that can be ex-
pressed by bounded-depth, polynomial size circuits have large threshold intervals.
Put a(p) = µp(f

−1(1)). If f is expressed by a depth-two circuit of size N , then

lim
s→0

(a(p)− a(p(1 + s/ logN))) = 0.

In other words, the length of the threshold interval is at least c · p0/ logN where
a(p0) = 1/2. This result is tight. Most of the examples described in this section and
in the next section can be expressed by depth-two circuits of small size. For circuits
of depth d, the term logN should be replaced by logd−1N . (This connection was
pointed out to us by Noga Alon and by Joel Spencer.)

5. The dependence of the threshold interval

on the permutation group

The content of this section is the fruit of collaboration with Aner Shalev.

Problem 5.1. For Γ a permutation group on [n], how large can the threshold in-
terval be for monotone families A which are invariant under Γ?

Here by the threshold interval we mean the length of the interval [p, q] where
µp(A) = ε and µq(A) = 1 − ε, for a fixed ε, 0 < ε < 1/2. Given a permutation
group Γ ⊂ Sn, consider the following class of examples: For every s find a set S,
|S| = s, such that the orbit of S under Γ is minimal. Consider the family AS to be
those subsets of [n] which contain a set in the orbit of S. We conjecture that (up to
multiplicative constants) such an example will give the largest threshold intervals
among monotone families invariant under Γ.

If Γ = Sn then the length of the threshold interval is proportional to 1/
√
n.

For a set X let
(
X
r

)
be the set of r-subsets of X . As we already mentioned, for

graph properties (i.e., when Γ = Sm acting on
(

[m]
2

)
), the threshold interval can
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be as large as c/ log2 n (n =
(
m
2

)
), and we conjecture that it cannot be larger.

For symmetric properties of r-uniform hypergraphs (i.e., when Γ = Sm acting on(
[m]
r

)
), the threshold intervals can be as large as log−

r
r−1 n, (n =

(
m
r

)
), and again we

conjecture that it cannot be larger. Another example of interest is the group Γ =
PSL(d, q) acting as a permutation group on d-dimensional projective space over a
field of q elements. If q is fixed (say q = 2), then, considering the monotone families
of all sets containing a subspace of dimension t = log d + log log d (= log log n +
log log logn), we get an example with threshold interval of length 1

logn log log n and we

conjecture that no monotone Γ-symmetric property with larger threshold interval
exists.

By forming wreath products one can construct groups with intermediate thresh-
old behavior (between log−2 n and n−1/2). However, we conjecture† that for prim-
itive permutation groups Γ there are some gaps in the possible behavior of the
largest threshold intervals for properties which are invariant under Γ:

• The length of this interval is proportional to n−1/2 for Sn and An, but at
least log−2 n for any other primitive permutation group.
• The length T of the largest threshold interval satisfies c1 log−α n ≤ T ≤
c2 log−α n for α ∈ {2, 1 1

2 , 1 1
3 , 1 1

4 , 1 1
5 , . . . } or for α which tends to one as a

function of n in an arbitrary way.
• If Γ does not involve (as factors) large alternating groups, then the length

of the largest threshold interval is proportional to 1/(logn · w(n)), where
w(n) ≤ log logn.

This description follows from the following: We conjecture that the value of
the largest threshold interval for Γ-invariant properties, where Γ is a primitive
permutation subgroup of Sn other than An or Sn, is proportional to 1/δ(Γ), where

δ(Γ) = min{|T | : |Γ(T )| ≤ 2|T |}.
The family AT for a set T which realize the minimum in the definition of δ(Γ) seems
to have threshold interval of length proportional to 1/|T |, and this can be proved
when |Γ| ≥ nlog logn using the detailed knowledge of such permutation groups [7].

As for upper bounds, it seems that the issue is to show that if a Boolean function
f has Fourier-Walsh coefficients which are “smeared”, then the sum of influences
must be large. The following inequality (or a similar one) is needed:

Conjecture. For every Boolean function f : {0, 1}n→ {0, 1}∑
f̂2(S) log(1/|f̂(S)|) ≤ c3

∑
f̂2(S)|S|.

6. Some connections to earlier work

Connectivity and the Margulis-Talagrand isoperimetric formula. Perhaps
the most extensively studied problems (in random graph theory as well as in perco-
lation theory) on critical probabilities and threshold behavior are on connectivity.
Erdös and Rényi found the critical probability p = p(n) = logn/n for a random
graph in G(n, p) to be connected and proved that the threshold interval is of length
o(p). For connectivity of random subgraphs of the graph of the n-dimensional cube,
Burtin found the critical probability p = 1/2, and results of Erdös, Spencer and
Bollobás show that the threshold interval is of length O(1/n). See [4], pp. 337-346.

†Added in proof. This conjecture (in a slightly weaker form) has been proved by Bourgain and
Kalai.
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Margulis [13] (see also [4], pp. 169-174,) proved a sharp threshold property for
connectivity of random subgraphs of k-connected graphs, as k →∞, and Talagrand
[16] proved sharper forms of Margulis’ result which include the Erdös-Rényi result
as a special case. For random subgraphs of the the graph of the n-dimensional cube,
the Margulis-Talagrand theorem gives that the length of the threshold interval is
O(n−1/2), and Theorem 2.1 gives O(n−1), which is sharp.

The main tool used by Margulis and sharpened by Talagrand is the following:
Let ∂v(A) = {v ∈ A : h(v) > 0} be the vertex-boundary of A. Margulis [13] proved
that

µp(∂v(A)) · φp(A) ≥ g(p, µp(A)),

for some positive function g(p, µp(A)) in (0, 1)2. It would be interesting to un-
derstand the connection between the influences of the variables and the quantity
µp(∂v(A)) · φp(A).††

Russo’s approximate 0-1 law. Corollary 3.5 is a sharp version of a theorem
of Russo [15]. A weaker version of Theorem 2.1 can be derived also from Russo’s
theorem itself. The derivation is not immediate, since in order to apply Russo’s
theorem it is necessary to show that If (k) = o(1) for every k and every p, which is
not very close to 0 or 1. This follows from

Lemma 6.1. Let p, 0 < p < 1, be fixed. Let B be the Hamming ball in {0, 1}n
containing all the sets S such that |S| > np. Then, for every monotone A,∑n
k=1 IA(k) ≤

∑n
k=1 IB(k).

Proof. Write S � R for R ⊂ S and |S| = |R|+ 1. We have∑
IA(k) =

∑
S�R

p|X|−1qn−|X|(χA(S)− χA(R))

=
n∑
k=1

∑
S:|S|=k

pk−1qn−k−1χA(S)(k − np).

To maximize this sum A should include precisely those sets S with |S| > np. (It can
be proved by a similar argument that if B is any Hamming ball (around (1, 1, . . . , 1))
and A is any monotone set such that µp(A) = µp(B), then

∑
IA(k) ≤

∑
IB(k).)

It follows from Lemma 6.1 that
∑
IA(k) ≤ c ·

√
n

p(1−p) , and therefore if A is

symmetric and p is not close to 0 or to 1, then all influences are o(1).

Remark. After this paper was submitted we learned about Talagrand’s paper [17],
which has some overlaps with the present paper as well as with [6]. Talagrand
proved a sharp form of BKKKL’s theorem for the special case of Vn(p). He also
related this result via the Margulis-Russo lemma to threshold phenomena and to
Russo’s approximate 0-1 law. His results include Theorem 3.1 and the special case
of Vn(p) of Theorem 3.4.

Talagrand shows that for the influences of a Boolean function f (with, say,
prob(f = 1) ≈ 1/2) ∑

−If (k)/(log If (k)) ≥ C,
for some universal constant C. This is remarkable because for some other universal
constant D, if

∑
−ai/(log(ai)) ≥ D then there exists a Boolean function f , with

††Added in proof. This has now been done by Talagrand [18].
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prob(f = 1) ≈ 1/2, such that If (k) ≤ ai for every i, 1 ≤ i ≤ n. To construct f
consider a “tribes” example with tribes of different sizes.

Kruskal-Katona formulation. A simplicial complex K is a collection of subsets
of [n] such that S ∈ K and R ⊂ S imply that R ∈ K. Let fk(K) denote the number
of sets in K of cardinality k + 1. Switching from the model where each vertex is
chosen with probability p to the model where each set of cardinality [pn] is chosen
with equal probability, we obtain the following strong form of the Kruskal-Katona
theorem for simplicial complexes with transitive group action on the vertices. A
similar extension of Macaulay’s theorem on complexes of monomials (multisets)
also follows.

Theorem 6.2. Let K be a simplicial complex with n vertices which is invariant
under a transitive permutation group on its vertices. If fk(K) ≤ (1− ε)

(
n
k+1

)
, then

fr(K) ≤ ε
(
n
r+1

)
, for r ≥ k + c logn/n.
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