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(ii) Does there exist an R-set which is not a Riesz set?
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thematies at Universita di Genova for a congenial working atmosphere.
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Every nuclear Fréchet space with a regular basis
has the quasi-equivalence property

by
LAWRENCE CRONE and WILLIAM B. ROBINSON (Potsdam, N.Y.)

Abstract. The following theorem is proved: If X is a nuclear Fréchet space with
a reqular basis (n,) and if (yn) is another basis for X, then the bases (wn) and (yn) are
quasi-equivalent.

M. M. Dragilev has shown in [3] that nuclear Fréchet spaces in the
classes (d;) and (d,) have the quasi-equivalence property. His results
and techniques were reformulated and extended by C. Bessaga in [1].
B. 8. Mitiagin has shown in [4] that nuclear centers of Hilbert scales
have the quasi-equivalence property, and V.P. Zaharjuta extended this
in [7] by replacing the hypothesis of nuclearity with the Schwartz con-
dition, and finally Mitiagin [9] established this property for the centers
of arbitrary Hilbert seales. Also Zaharjuta recently obtained the quasi-
equivalence property for spaces which are products of a (d,) and (s
space in [8]. However, the general problem of quasi-equivalence for nuclear
Fréchet spaces remains.

In this paper we prove that any nuclear Kothe space with a regular
basis has the quasi-equivalence property. The essential idea of the proof
ig that the diametral dimension 6(F) (as defined in [2]) distinguishes
regular bases.

L. Definitions. For two sequences a and b, a-b will denote the sequence
(@,bn), and if B is a collection of sequences, a-B = {a-b: beB}. A Kithe
space is the Fréchet space of sequences

1 : NI
=0l = J\-c: Vi, [l 7?_"\1 ltalak < +oo},
with the topology generated by the norms |||, k¥ =1, 2, ... We assume

that for all k, n, 0 < af < af™. It is known that A is nuclear if and only
if for all & there exists m such that ' (af /o) < + co, and that A is a Schwartz

n
space if and only if for all % there exists m such that a¥/a®-»0. If 1 is
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a Kothe space, the sequences €", with 6} = d,;, form an absolute basis
for A. On the other hand, every Fréchet space F with a confinuous norm
and an absolute basis (™) has a natural identification with a Ko6the space.
In fact, let af = [2"|},, where (| ) is an increasing sequence of norms
defining the topology on E. We also say that (") is represenied by the
(af) (ef. [1], [3], or [B] for more information on the above topics).

If B is a Fréchet space with a continuous norm and an absolute
basis (z") we say that (a") is regular if (2) is represented by a matrix
(af) such that for each k and =,

I Y]
Qi Oy
k+1 = e+l "
Qy, (1/”_,_1

This concept was first introduced by Dragilev in [3].

If (") and (y") are bases for the locally convex spaces (l.c.s.) # and
P, respectively, we say that (2") and (y") are equivalent it 3 t,a™ con-
verges if and only if > #,9" converges. The bases (x") and (y") are semi-
‘equivalent if there exists a sequence (a,) of non-zero scalars such that
(2™ is equivalent to (a,y"). (2") and (y") are quasi-equivalent if there
exists a permutation I7 of the natural numbers N such that (2") is semi-
equivalent to (y"™). If B is a lLc.s. with a basis in which all bases are
quasi-equivalent, we say that B has the quasi-equivalence property. (Cf.
[1] ot [3] for more details on quasi-equivalence.)

2. Results

LEMMA 1. For each p = 1,2, ..., let a® and b? be sequences of positive
numbers such that for all p and g, a?-b%l,,. Then there is a sequence, @, of
positive numbers such that a®-del, and bP[del, for all p.

Proof. We define new collections of sequences {4¥};_, and {B"} ",
by induction as follows: .

Let A' = o' and B* = ¢, b' where ¢, is a positive number chosen so
that A} BL < 1, Vn. Suppose that A4° and B have been defined for ¢
=1,2,...,p—L Let 4”7 = ¢, a® where ¢, is a positive number chosen go
that 43B,<1Vnandi=1,2,..., p—1. Let B® = 0,b” where ¢, is a pos-
itive number chosen so that A%BZ<1 Vn and ¢ =1,2,...,p. The
collections {47}, and {B?};., satisfy the condition ALBE <1 for all
n,p and q.

The desired sequence, d, of positive numbers is defined by
, 1
d, = sngﬁ < 11];1f WL -Vn.

3
LevMmA 2. Let
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be Kithe spaces and suppose

[ b"
un —7 6 = UNs
» o O

-
ros O

Then there is a sequence d of jositive numbers such that A = d-u.
Proof. By assumption,

a? b"
Vo N —Fe<=U MNs5c-
g o F s b

By [6], problem 33, p. 206,

. o a? pri®) b®
Vo ﬂ’"(P)"QFOoCQ Bl oF EJWZI.CLQJ

Thus

aﬂ
2.
aﬂ

b a?
VpHr(p)Vs —b—*@—ll < LqJ ?11-

Again using the result from [6] we have

8 aq(;z,s)
l, =

VpHr(p)VsHy(p, s)>

b
pr(®) a® 2

a® b
e eleo-
Similarly one can show

, , v af
VpHr'(p) Vs Hy'(p, s) ) Wel‘”'

For each p set
R(p) =max{r(p), ¢'(1,p), ¢(2,9)y..., ¢ (®, D)},

Rr(p) = max{r’(p), Q(lap)a Q(27.'p)7 siey Q(P: p)}
~ Then for all p and s,

a® b
pE@ ) el
[ p>s,
a® b a? b
@) HEE ) P2 &P) e €looj
if s> p,

a® b a? b
TED) G < R ele-]
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By Lemma 1 there is a sequence d of positive numbers such that

& aﬂ
del, Vs and m '

FT del, Vp.

This is equivalent to the statement 1 = - u.

THEOREM. If F is a nuclear Kdthe space with a regular basis, then
all bases are quasi-equivalent.

Proof. Let ¥ be a nuclear Kothe space with the regular basis {z"}
and let {y"} be an arbitrary basis for E. It is sufficient to show that {y"}
is quasi-equival nt to {#"}. By [3], Theorem 1, there is a permutation
@ of the positive integers such that {y™™} is a vegular basis. Let (a?) and
"(b7) be regular representations of {#"} and {y"}, respectively. Let

1 1
‘uzﬁ;ﬁll and Z=ﬂﬁ-ll.
» »

To complete the proof of the theorem, we shall show that there is a ge-
quence ¢ of positive numbers such that 2 = d-p.

Bessaga, Pelezynski and Rolewicz ([2]) introduced a topological
invariant J, defined as follows: A sequence ¢ is in ¢ if there iy a neighbor-
hood of zero, U, such that for all zero neighborhoods V ¢, /d,_,(V, U)ed,.
It follows from (1.10) of [1] that & has the two representations:

a? b"
Uﬂ—700=5=U () =7 Co-
p ¢ @ v s b

By Lemma 2, there is a sequence d of positive numbers such that 1 = d-u.
Thus {#"} is equivalent to {d,y"™}.

Remark. The proof given shows that in a Schwartz Koéthe space,
all absolute regular bases are semi-equivalent.

The following corollary of Lemma 2, which solves Bessaga’s con-
jecture ([1]) for stable spaces, was pointed out to us by Bd Dubinsky.

CorOLLARY 1. Let B and F be nuclear Fréchet spaces with continuous
norms and regular bases, such that B is isomorphic to B xH and F s
isomorphic to a complemented subspace of . Let (a") be a vegular basis
Jor F. Then there exists a sequence (§,) of imtegers with j, < f, < ... such
that (2] is isomorphic to F.

Proof. Applying Proposition 1 of [2] we see that 6(B) < (A F
S (B x H) = §(]), so that 6(B) = 6(B x F). Let (y™) be a basis for .
By Theorem 2.2 of [1] there exists a regular basis (") for #x J such
that for each n either #* = 2™, for some m, or 2" = ¢' for some 4. Ap-
plying Lemma 2 as in the proof of the theorem above, we obtain numbers
(dy) such that (¢") is equivalent to (d,2"). Then (4™ is gquasi-equivalent
to a subsequence of (z").
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The following Corollary solves, for Kéthe spaces with a regular basis,
@ problem discussed in [8].

COROLLARY 2. Let B be a Kithe space with a regular basis. Let B pe
a closed subspace of E of codimension s, s = 1,2, ... Then either B = E® or
E non = B® for any s =1,2, ...

Proof. By Proposition 1 of [2], we see that §(HY) = §(EW) < S(B).
However, B has a regular basis, so that by Lemma 2, E® ~ B if and
only if §(E®) = §(B). This yields the resuls.
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