R. C. Blei

202

(ii) Does there exist an R-set which is not a Riesz set?

I wish to thank Professor Figà—Talamanca for stimulating conversations on topics related to this work. I also thank the Institute of Mathematics at Universita di Genova for a congenial working atmosphere.

Also, I wish to thank the referee for his remarks following Theorem B, and generally for a critical and constructive reading of the manuscript.

References

- R. C. Blei, On trigonometric series associated with separable, translation invariant subspaces of L[∞](G), Transactions of AMS, 173 (1972), pp. 491-499.
- [2] S. W. Drury, Sur les ensembles de Sidon, C. R. Acad. Sci. Paris 271 (1970), pp. A 162 - A 163.
- [3] D. A. Edwards, On translates of L[∞] functions, J. London Math. Soc. (1961), pp. 431-432.
- [4] Y. Katznelson, An introduction to Harmonic Analysis, New York 1968.
- [5] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. Math. 72 (1960), pp. 362-368.
- [6] Y. Meyer, Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), pp. 87-99.
- [7] H. P. Rosenthal, On trigonometric series associated with weak* closed subspaces of continuous functions, J. of Math. Mech. 17 (1967), pp. 485-490.
- [8] W. Rudin, Fourier Analysis on Groups, Interscience Tracts in Pure and Appl. Math., No. 12, New York, 1962.

Received May 29, 1973 (685)

STUDIA MATHEMATICA, T. LII. (1975)

Every nuclear Fréchet space with a regular basis has the quasi-equivalence property

by

LAWRENCE CRONE and WILLIAM B. ROBINSON (Potsdam, N.Y.)

Abstract. The following theorem is proved: If X is a nuclear Fréchet space with a regular basis (x_n) and if (y_n) is another basis for X, then the bases (x_n) and (y_n) are quasi-equivalent.

M. M. Dragilev has shown in [3] that nuclear Fréchet spaces in the classes (d_1) and (d_2) have the quasi-equivalence property. His results and techniques were reformulated and extended by C. Bessaga in [1]. B. S. Mitiagin has shown in [4] that nuclear centers of Hilbert scales have the quasi-equivalence property, and V. P. Zaharjuta extended this in [7] by replacing the hypothesis of nuclearity with the Schwartz condition, and finally Mitiagin [9] established this property for the centers of arbitrary Hilbert scales. Also Zaharjuta recently obtained the quasi-equivalence property for spaces which are products of a (d_1) and (d_2) space in [8]. However, the general problem of quasi-equivalence for nuclear Fréchet spaces remains.

In this paper we prove that any nuclear Köthe space with a regular basis has the quasi-equivalence property. The essential idea of the proof is that the diametral dimension $\delta(E)$ (as defined in [2]) distinguishes regular bases.

1. Definitions. For two sequences a and b, $a \cdot b$ will denote the sequence $(a_n b_n)$, and if B is a collection of sequences, $a \cdot B = \{a \cdot b \colon b \in B\}$. A Köthe space is the Fréchet space of sequences

$$\lambda = \bigcap rac{1}{a^k} \cdot l_1 = \Big\{ t \colon orall k, \; \|t\|_k = \sum_{n=1}^\infty |t_n| \, a_n^k < + \infty \Big\},$$

with the topology generated by the norms $\|\cdot\|_k$, k=1,2,... We assume that for all k, n, $0 < a_n^k \le a_n^{k+1}$. It is known that λ is nuclear if and only if for all k there exists m such that $\sum_n (a_n^k/a_n^m) < +\infty$, and that λ is a Schwartz space if and only if for all k there exists m such that $a_n^k/a_n^m \to 0$. If λ is

Fréchet space with a regular basis

a Köthe space, the sequences e^n , with $e_i^n = \delta_{ni}$, form an absolute basis for λ . On the other hand, every Fréchet space E with a continuous norm and an absolute basis (a^n) has a natural identification with a Köthe space. In fact, let $a_n^k = ||x^n||_k$, where $(|| ||_k)$ is an increasing sequence of norms defining the topology on E. We also say that (x^n) is represented by the (a_n^k) (cf. [1], [3], or [5] for more information on the above topics).

If E is a Fréchet space with a continuous norm and an absolute basis (x^n) we say that (x^n) is regular if (x^n) is represented by a matrix (a^k) such that for each k and n,

$$rac{a_n^k}{a_n^{k+1}}\geqslant rac{a_{n+1}^k}{a_{n+1}^{k+1}}.$$

This concept was first introduced by Dragilev in [3].

If (x^n) and (y^n) are bases for the locally convex spaces (l.c.s.) E and E, respectively, we say that (x^n) and (y^n) are equivalent if $\sum t_n x^n$ converges if and only if $\sum t_n y^n$ converges. The bases (x^n) and (y^n) are semi-equivalent if there exists a sequence (a_n) of non-zero scalars such that (x^n) is equivalent to $(a_n y^n)$. (x^n) and (y^n) are quasi-equivalent if there exists a permutation H of the natural numbers N such that (x^n) is semi-equivalent to $(y^{H(n)})$. If E is a l.c.s. with a basis in which all bases are quasi-equivalent, we say that E has the quasi-equivalence property. (Cf. [1] or [3] for more details on quasi-equivalence.)

2. Results

LEMMA 1. For each $p=1,2,\ldots$, let a^p and b^p be sequences of positive numbers such that for all p and q, $a^p \cdot b^q \in l_{\infty}$. Then there is a sequence, d, of positive numbers such that $a^p \cdot d \in l_{\infty}$ and $b^p/d \in l_{\infty}$ for all p.

Proof. We define new collections of sequences $\{A^p\}_{p=1}^{\infty}$ and $\{B^p\}_{p=1}^{\infty}$ by induction as follows:

Let $A^1=a^1$ and $B^1=c_1b^1$ where c_1 is a positive number chosen so that $A^1_nB^1_n\leqslant 1$, $\forall n$. Suppose that A^i and B^i have been defined for $i=1,2,\ldots,p-1$. Let $A^p=c_p'a^p$ where c_p' is a positive number chosen so that $A^p_nB^i_n\leqslant 1$ $\forall n$ and $i=1,2,\ldots,p-1$. Let $B^p=c_pb^p$ where c_p is a positive number chosen so that $A^i_nB^p_n\leqslant 1$ $\forall n$ and $i=1,2,\ldots,p$. The collections $\{A^p\}_{p=1}^\infty$ and $\{B^p\}_{p=1}^\infty$ satisfy the condition $A^p_nB^q_n\leqslant 1$ for all n,p and q.

The desired sequence, d, of positive numbers is defined by

$$d_n \equiv \sup_q B_n^q \leqslant \inf_p \frac{1}{A_n^p}, \quad \forall n.$$

LEMMA 2. Let

$$\lambda = \bigcap_{p} \frac{1}{a^{p}} l_{1}$$
 and $\mu = \bigcap_{p} \frac{1}{b^{p}} l_{1}$

be Köthe spaces and suppose

$$igcup_p igcap_q rac{a^p}{a^q} c_0 = igcup_r igcap_s rac{b^r}{b^s} c_0.$$

Then there is a sequence d of positive numbers such that $\lambda = d \cdot u$. Proof. By assumption,

$$\forall p \quad \bigcap_{q} \frac{a^p}{a^q} c_0 \subset \bigcup_{r} \bigcap_{s} \frac{b^r}{b^s} c_0.$$

By [6], problem 33, p. 206,

$$\forall p \quad \exists r(p) \ni \bigcap_{q} \frac{a^p}{a^q} c_0 \subset \bigcap_{s} \frac{b^{r(p)}}{b^s} c_0, \quad \text{ or } \quad \bigcup_{s} \frac{b^s}{b^{r(p)}} l_1 \subset \bigcup_{q} \frac{a^q}{a^p} l_1.$$

Thus

$$abla p \, rac{b^s}{b^{r(p)}} \, l_1 \subset \bigcup_q rac{a^q}{a^p} \, l_1.$$

Again using the result from [6] we have

$$abla p \, \exists \, r(p) \, \forall s \, \exists \, q(p\,,\,s) \, \ni \, \frac{b^s}{b^{r(p)}} \, l_1 \subset \frac{a^{q(p\,,s)}}{a^p} \, l_1$$

or
$$\frac{a^p}{b^{r(p)}} \frac{b^s}{a^{q(p,s)}_1} \epsilon l_{\infty}$$
.

Similarly one can show

$$\nabla p \, \exists r'(p) \, \nabla s \, \exists q'(p,s) \ni \frac{b^p}{a^{r'(p)}} \frac{a^s}{b^{q'(p,s)}} \epsilon l_{\infty}.$$

For each p set

$$R(p) = \max\{r(p), \; q'(1,p), \, q'(2,p), \ldots, \, q'(p,p)\},$$

$$R'(p) = \max\{r'(p), q(1, p), q(2, p), \ldots, q(p, p)\}.$$

Then for all p and s,

$$\frac{a^p}{b^{R(p)}} \frac{b^s}{a^{R'(s)}} \epsilon l_{\infty}.$$

[If $p \geqslant s$,

$$\frac{a^{p}}{b^{R(p)}}\,\frac{b^{s}}{a^{R'(s)}}\leqslant \frac{a^{p}}{b^{q'(s,p)}}\,\frac{b^{s}}{a^{r'(s)}}\,\epsilon\,l_{\infty};$$

if $s \geqslant p$,

$$\frac{a^p}{b^{R(p)}}\frac{b^s}{a^{R'(s)}}\leqslant \frac{a^p}{b^{r(p)}}\frac{b^s}{a^{q(p,s)}}\epsilon l_{\infty}.$$

By Lemma 1 there is a sequence d of positive numbers such that

$$\frac{b^s}{a^{R'(s)}} / d\epsilon l_{\infty} \ \ ext{V}s \quad ext{ and } \quad \frac{a^p}{b^{R(p)}} \cdot d\epsilon l_{\infty} \ \ ext{V}p \, .$$

This is equivalent to the statement $\lambda = d \cdot \mu$.

THEOREM. If E is a nuclear Köthe space with a regular basis, then all bases are quasi-equivalent.

Proof. Let E be a nuclear Köthe space with the regular basis $\{x^n\}$ and let $\{y^n\}$ be an arbitrary basis for E. It is sufficient to show that $\{y^n\}$ is quasi-equival nt to $\{x^n\}$. By [3], Theorem 1, there is a permutation π of the positive integers such that $\{y^{n(n)}\}$ is a regular basis. Let (a_n^n) and (b_n^n) be regular representations of $\{x^n\}$ and $\{y^n\}$, respectively. Let

$$\mu = \bigcap_{p} rac{1}{a^p} l_1 \quad ext{ and } \quad \lambda = \bigcap_{p} rac{1}{b^p} l_1.$$

To complete the proof of the theorem, we shall show that there is a sequence d of positive numbers such that $\lambda = d \cdot \mu$.

Bessaga, Pełczyński and Rolewicz ([2]) introduced a topological invariant δ , defined as follows: A sequence t is in δ if there is a neighborhood of zero, U, such that for all zero neighborhoods $V t_n | d_{n-1}(V, U) \in c_0$. It follows from (1.10) of [1] that δ has the two representations:

$$\bigcup_{p} \bigcap_{q} \frac{a^{p}}{a^{q}} c_{0} = \delta = \bigcup_{r} \bigcap_{s} \frac{b^{r}}{b^{s}} c_{0}.$$

By Lemma 2, there is a sequence d of positive numbers such that $\lambda = d \cdot \mu$. Thus $\{x^n\}$ is equivalent to $\{d_n y^{\pi(n)}\}$.

Remark. The proof given shows that in a Schwartz Köthe space, all absolute regular bases are semi-equivalent.

The following corollary of Lemma 2, which solves Bessaga's conjecture ([1]) for stable spaces, was pointed out to us by Ed Dubinsky.

COROLLARY 1. Let E and F be nuclear Fréchet spaces with continuous norms and regular bases, such that E is isomorphic to $E \times E$ and F is isomorphic to a complemented subspace of E. Let (x^n) be a regular basis for F. Then there exists a sequence (j_n) of integers with $j_1 < j_2 < \ldots$ such that $[x^{j_n}]$ is isomorphic to F.

Proof. Applying Proposition 1 of [2] we see that $\delta(E) \subseteq \delta(E \times F)$ $\subseteq \delta(E \times E) = \delta(E)$, so that $\delta(E) = \delta(E \times F)$. Let (y^n) be a basis for F. By Theorem 2.2 of [1] there exists a regular basis (z^n) for $E \times F$ such that for each n either $z^n = x^m$, for some m, or $z^n = y^i$ for some i. Applying Lemma 2 as in the proof of the theorem above, we obtain numbers (d_n) such that (z^n) is equivalent to $(d_n x^n)$. Then (y^n) is quasi-equivalent to a subsequence of (x^n) .

The following Corollary solves, for Köthe spaces with a regular basis, a problem discussed in [8].

COROLLARY 2. Let E be a Köthe space with a regular basis. Let $E^{(s)}$ be a closed subspace of E of codimension s, s = 1, 2, ... Then either $E \cong E^{(1)}$ or E non $\cong E^{(s)}$ for any s = 1, 2, ...

Proof. By Proposition 1 of [2], we see that $\delta(E^{(s)}) \subseteq \delta(E^{(1)}) \subseteq \delta(E)$. However, $E^{(s)}$ has a regular basis, so that by Lemma 2, $E^{(s)} \cong E$ if and only if $\delta(E^{(s)}) = \delta(E)$. This yields the result.

References

 C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), pp. 307-318.

[2] C. Bessaga, A. Pełczyński, and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. 9 (1961), pp. 677-683.

[3] M. M. Dragilev, On regular bases in nuclear spaces, (Russian) Matem. Sbornik 68 (1965), pp. 153-173. (American Math. Soc. Trans. (2), (93), (1970), pp. 61-82).

[4] B. S. Mitiagin, The approximative dimension and bases in nuclear spaces, (Russian) Usp. Mat. Nauk. 16, (4), (1961), pp. 63-132.

[5] A. Pietsch, Nukleare Lokalkonvexe Raume, Berlin 1965.

[6] A. Wilansky, Functional analysis, New York 1964.

[7] V. P. Zaharjuta, Quasi-equivalence of bases at finite centers of Hilbert scales, Dokl. Akad. Nauk SSSR, Tom 180, (168), No. 4, Soviet Math. Dokl. 9 (1968), pp. 681-684.

[8] — On the isomorphism of Cartesian products of locally convex spaces, Studia Math. 46 (1973), pp. 201-221.

[9] B. S. Mitiagin, The equivalence of bases in Hilbert scales, (Russian), ibid. 37 (1971), pp. 111-137.