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EVERY ODD NUMBER GREATER THAN 1 IS THE SUM

OF AT MOST FIVE PRIMES

TERENCE TAO

Abstract. We prove that every odd number N greater than 1 can be ex-
pressed as the sum of at most five primes, improving the result of Ramaré
that every even natural number can be expressed as the sum of at most six
primes. We follow the circle method of Hardy-Littlewood and Vinogradov,
together with Vaughan’s identity; our additional techniques, which may be of
interest for other Goldbach-type problems, include the use of smoothed ex-
ponential sums and optimisation of the Vaughan identity parameters to save
or reduce some logarithmic losses, the use of multiple scales following some

ideas of Bourgain, and the use of Montgomery’s uncertainty principle and the
large sieve to improve the L2 estimates on major arcs. Our argument relies
on some previous numerical work, namely the verification of Richstein of the
even Goldbach conjecture up to 4× 1014, and the verification of van de Lune
and (independently) of Wedeniwski of the Riemann hypothesis up to height
3.29× 109.

1. Introduction

Two of most well-known conjectures in additive number theory are the even and
odd Goldbach conjectures, which we formulate as follows1

Conjecture 1.1 (Even Goldbach conjecture). Every even natural number x can
be expressed as the sum of at most two primes.

Conjecture 1.2 (Odd Goldbach conjecture). Every odd number x larger than 1
can be expressed as the sum of at most three primes.

It was famously established by Vinogradov [47], using the Hardy-Littlewood
circle method, that the odd Goldbach conjecture holds for all sufficiently large odd
x. Vinogradov’s argument can be made effective, and various explicit thresholds
for “sufficiently large” have been given in the literature; in particular, Chen and
Wang [5] established the odd Goldbach conjecture for all x � exp(exp(11.503)) ≈
exp(99012), and Liu &Wang [24] subsequently extended this result to the range x �
exp(3100). At the other extreme, by combining Richstein’s numerical verification
[41] of the even Goldbach conjecture for x � 4× 1014 with effective short intervals
containing primes (based on a numerical verification of the Riemann hypothesis
by van de Lune and Wedeniwski [50]), Ramaré and Saouter [40] verified the odd
Goldbach conjecture for n � 1.13×1022 ≈ exp(28). By using subsequent numerical
verifications of both the even Goldbach conjecture and the Riemann hypothesis,
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1The odd Goldbach conjecture is also often formulated in an almost equivalent (and slightly

stronger) fashion as the assertion that every odd number greater than seven is the sum of three
odd primes.
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it is possible to increase this lower threshold somewhat, but there is still a very
significant gap between the lower and upper thresholds for which the odd Goldbach
conjecture is known.2

To explain the reason for this, let us first quickly recall how Vinogradov-type
theorems are proven. To represent a number x as the sum of three primes, it suffices
to obtain a sufficiently non-trivial lower bound for the sum∑

n1,n2,n3:n1+n2+n3=x

Λ(n1)Λ(n2)Λ(n3),

where Λ is the von Mangoldt function (see Section 2 for definitions). By Fourier
analysis, we may rewrite this expression as the integral

(1.1)

∫
R/Z

S(x, α)3e(−xα) dα,

where e(x) := e2πix and S(x, α) is the exponential sum

S(x, α) :=
∑
n�x

Λ(n)e(nα).

The objective is then to obtain sufficiently precise estimates on S(x, α) for large
x. Using the Dirichlet approximation theorem, one can approximate α = a

q + β

for some natural number 1 � q � Q, some integer a with (a, q) = 1, and some β
with |β| � 1

qQ , where Q is a threshold (somewhat close to N) to be chosen later.

Roughly speaking, one then divides into the major arc case when q is small, and
the minor arc case when q is large (in practice, one may also subdivide these cases
into further cases, depending on the precise sizes of q and β). In the major arc
case, the sum S(x, α) can be approximated by sums such as

S(x, a/q) =
∑
n�x

Λ(n)e(an/q),

which can be controlled by a suitable version of the prime number theorem in
arithmetic progressions, such as the Siegel-Walfisz theorem. In the minor arc case,
one can instead follow the methods of Vinogradov, and use truncated divisor sum
identities (such as (variants of) Vaughan’s identity; see Lemma 4.11 below) to
rewrite S(x, α) into various “type I” sums such as∑

d�U

μ(d)
∑

n�x/d

log ne(αdn)

and “type II” sums such as

(1.2)
∑
d>U

∑
w>V

μ(d)(
∑

b|w:b>V

Λ(b))e(αdw)

which one then estimates by standard linear and bilinear exponential sum tools,
such as the Cauchy-Schwarz inequality.

A typical estimate in the minor arc case takes the form

(1.3) |S(x, α)| �
(

x
√
q
+

x√
x/q

+ x4/5

)
log3 x;

2We remark however that the odd Goldbach conjecture is known to be true, assuming the
generalised Riemann hypothesis; see [9].
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see e.g. [19, Theorem 13.6]. An effective version of this estimate (with slightly
different logarithmic powers) was given by Chen & Wang [6]; see (1.13) below.

Note that one cannot hope to obtain a bound for S(x, α) that is better than
x
√
q

φ(q)

without making progress on the Siegel zero problem (in order to decorrelate Λ from
the quadratic character with conductor q); see [35] for further discussion. In a
similar spirit, one should not expect to obtain a bound better than x√

x/q
unless

one exploits a non-trivial error term in the prime number theorem for arithmetic
progressions (or equivalently, if one shows that L-functions do not have a zero on
the line �s = 1), as one needs to decorrelate3 Λ from Archimedean characters nit

with t comparable to x/q (or from combined characters χ(n)nit).
If one combines (1.3) with the L2 bound

(1.4)

∫
R/Z

|S(x, α)|2 dα � x log x

arising from the Plancherel identity and the prime number theorem, one can obtain
satisfactory estimates for all minor arcs with q � log8 x (assuming that Q was
chosen to be significantly less than x/ log8 x). To finish the proof of Vinogradov’s
theorem, one thus needs to obtain good prime number theorems in arithmetic
progressions whose modulus q can be as large as log8 x. While explicitly effective
versions of such theorems exist (see e.g. [27], [23], [39], [11], [20]), their error
term decays very slowly (and is sensitive to the possibility of a Siegel zero for one
exceptional modulus q); in particular, errors of the form O(x exp(−c

√
log x)) for

some explicit but moderately small constant c > 0 are typical. Such errors can
eventually overcome logarithmic losses such as log x, but only for extremely large
x, e.g. for x much larger than 10100, which can be viewed as the principal reason
why the thresholds for Vinogradov-type theorems are so large.

It is thus of interest to reduce the logarithmic losses in (1.3), particularly for
moderately sized x such as x ∼ 1030, as this would reduce the range4 of mod-
uli q that would have to be checked in the major arc case, allowing for stronger
prime number theorems in arithmetic progressions to come into play. In particu-
lar, the numerical work of Platt [33] has established zero-free regions for Dirichlet
L-functions of conductor up to 105 (building upon earlier work of Rumely [39] who
obtained similar results up to conductor 102), and it is likely that such results would
be useful in future work on Goldbach-type problems.

Several improvements or variants to (1.3) are already known in the literature.
For instance, prior to the introduction of Vaughan’s identity in [46], Vinogradov

3Indeed, suppose for sake of heuristic argument that the Riemann zeta function had a zero very
close to 1+ it. Then the von Mangoldt explicit formula

∑
n�x Λ(n) would contain a term close to

−
∑

n�x n−it, which suggests upon summation by parts that S(x, α) would contain a term close

to −
∑

n�x n−ite(αx), which can be of size comparable to x/
√

x/q when α is close to (say) 1/q

and t is comparable to x/q. A similar argument involving Dirichlet L-functions also applies when
α is close to other multiples of 1/q. This suggests that one would need to use zero-free regions for
zeta functions and L-functions in order to improve upon the x√

x/q
bound.

4It seems however that one cannot eliminate the major arcs entirely. In particular, one needs
to prevent the majority of the primes from concentrating in the quadratic non-residues modulo
q for q = 3, q = 4, or q = 5, as this would cause the residue class 0 mod q to have almost no
representations as the sum of three primes.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1000 TERENCE TAO

[48] had already established a bound of the shape

|S(x, α)| �
(

x
√
q
+

x√
x/q

+ exp(− 1
2

√
log x)

)
log11/2 x

by sieving out small primes. This was improved by Chen [4] and Daboussi [7] to
obtain

|S(x, α)| �
(

x
√
q
+

x√
x/q

+ exp(− 1
2

√
log x)

)
log3/4 x(log log x)1/2

and by the constants made explicit (with some slight degradation in the logarithmic
exponents) by Daboussi and Rivat [8]. Unfortunately, due to the slow decay of the
exp(− 1

2

√
log x) term, this estimate only becomes non-trivial for x � 10184 (see [8,

§8]) and is thus not of direct use for smaller values of x.
In [2], Buttkewitz obtained the bound

(1.5) |S(x, α)| �A
x
√
q
log1/4 x+

x

x/q
log log log x+

x

logA x

for any A � 1 (assuming β extremely small), using Lavrik’s estimate [22] on the av-
erage error term in twin prime-type problems, but the constants here are ineffective
(as Lavrik’s estimate uses the Siegel-Walfisz theorem). Finally, in the “weakly mi-

nor arc” regime log q � 1
50 log

1/3 x, Ramaré [37] used the Bombieri sieve to obtain
an effective bound of the form

(1.6) |S(x, α)| �
x
√
q

φ(q)

which, as mentioned previously, is an essentially sharp effective bound in the ab-
sence of any progress on the Siegel zero problem. Unfortunately, the constants in
[37] are not computed explicitly, and seem to be far too large to be useful for values
of x such as 1030.

In this paper we will not work directly with the sums S(x, α), but instead with
the smoothed out sums

Sη,q0(x, α) :=
∑
n

Λ(n)e(αn)�(n,q0)=1η(n/x)

for some (piecewise) smooth functions η : R → C and a modulus q0. The modulus
q0 is only of minor technical importance and should be ignored at a first reading (see
Lemma 4.1 for a precise version of this statement). For sake of explicit constants
we will often work with a specific choice of cutoff η, namely the cutoff

(1.7) η0(t) := 4(log 2− | log 2t|)+,
which is a Lipschitz continuous cutoff of unit mass supported on the interval [1/4, 1].
The use of smooth cutoffs to improve the behaviour of exponential sums is of course
well established in the literature (indeed, the original work of Hardy and Littlewood
[16] on Goldbach-type problems already used smoothed sums). The reason for this
specific cutoff is that one has the identity

(1.8) η0(dw/x) = 4

∫ ∞

0

�[ x
2W , x

W ](d)�[W2 ,W ](w)
dW

W

for any d, w, x > 0, which will be convenient for factorising the Type II sums into
a tractable form. In some cases we will take q0 to equal 2, in order to restrict all
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sums to be over odd numbers, rather than all natural numbers; this has the effect of
saving a factor of two in the explicit constants. Because of this, though, it becomes
natural to approximate 4α by a rational number a/q, rather than α itself.

Our main exponential sum result can be stated as follows.

Theorem 1.3 (Exponential sum estimate). Let x � 1020 be a real number, and let
4α = a

q + β for some natural number 100 � q � x/100 with (a, q) = 1 and some

β ∈ [−1/q2, 1/q2]. Let q0 be a natural number, such that all prime factors of q0 do
not exceed

√
x. Then

(1.9) |Sη0,q0(x, α)| �
(
0.14

x
√
q
+ 0.64

x√
x/q

+ 0.15x4/5

)
log x(log x+ 11.3).

If q � x1/3, one has the refinement

(1.10) |Sη0,q0(x, α)| � 0.5
x

q
(log 2x)(log 2x+ 15) + 0.31

x
√
q
log q(log q + 8.9),

and similarly when q � x2/3, one has the refinement

(1.11) |Sη0,q0(x, α)| � 3.12
x

x/q
(log 2x)(log q + 8) + 1.19

x√
x/q

log
x

q
(log

x

q
+ 2.3).

If q � x2/3 and a = ±1, one has the further refinement

(1.12) |Sη0,q0(x, α)| � 9.73
x

(x/q)2
log2 x+ 1.2

x√
x/q

log
x

q
(log

x

q
+ 2.4).

The first estimate (1.9) is basically a smoothed out version of the standard
estimate (1.3), with the Lipschitz nature of the cutoff η0 being responsible for the
saving of one logarithmic factor, and will be proven by basically the same method
(i.e. Vaughan’s identity, followed by linear and bilinear sum estimates of Vinogradov
type). It can be compared for instance with the explicit estimate

(1.13) |S�[0,1],1(x, 4α)| � 0.177
x
√
q
log3 x+ 0.08

x√
x/q

log3.5 x+ 3.8x4/5 log2.2 x

of Chen & Wang [6], rewritten in our notation. In practice, for x of size 1030 or
so, the estimate (1.3) improves upon the Chen-Wang estimate by about one to two
orders of magnitude, though this is admittedly for a smoothed version of the sum
considered in [6].

The estimate (1.9) is non-trivial in the regime log4 x � q � x/ log4 x. The
key point, though, is that one can obtain further improvement over (1.9) in the
most important regimes when q is close to 1 or to x by reducing the argument
of the logarithm (or by squaring the denominator). Indeed, (1.9) when combined
with (1.10), (1.11) is now non-trivial in the larger range log2 x � q � x/ log2 x,
and with (1.12) one can extend the upper threshold of this range from x/ log2 x to
x/ log x, at least when a = ±1.

The bounds in Theorem 1.3 are basically achieved by optimising in the cutoff
parameters U, V in Vaughan’s identity, and (in the case of (1.12)) a second inte-
gration by parts, exploiting the fact that the derivative of η0 has bounded total
variation. Asymptotically, the bounds here are inferior to those in (1.5), (1.6), but
unlike those estimates, the constants here are reasonable enough that the bounds
are useful for medium-sized values of x, for instance for x between 1030 and 101300.
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There is scope for further improvement5 in the exponential sum bounds in these
ranges by eliminating or reducing more of the logarithmic losses (and we did not
fully attempt to optimise all the explicit constants), but the bounds indicated above
will be sufficient for our applications.

We will actually prove a slightly sharper (but more technical) version of Theorem
1.3, with two additional parameters U and V that one is free to optimise over; see
Theorem 5.1 below.

As an application of these exponential sum bounds, we establish the following
result:

Theorem 1.4. Every odd number x larger than 1 can be expressed as the sum of
at most five primes.

This improves slightly upon a previous result of Ramaré [35], who showed (by
a quite different method) that every even natural number can be expressed as the
sum of at most six primes. In particular, as a corollary of this result we may lower
the upper bound on Shnirelman’s constant (the least number k such that all natural
numbers greater than 1 can be expressed as the sum of at most k primes) from seven
to six (note that the even Goldbach conjecture would imply that this constant is
in fact three and is in fact almost equivalent to this claim). We remark that
Theorem 1.4 was also established under the assumption of the Riemann hypothesis
by Kaniecki [21] (indeed, by combining his argument with the numerical work in
[41], one can obtain the stronger claim that any even natural number is the sum of
at most four primes).

Our proof of Theorem 1.4 also establishes that every integer x larger than 8.7×
1036 can be expressed as the sum of three primes and a natural number between 2
and 4× 1014; see Theorem 8.2 below.

To prove Theorem 1.4, we will also need to rely on two numerically verified
results in addition to Theorem 1.3:

Theorem 1.5 (Numerical verification of the Riemann hypothesis). Let T0 := 3.29×
109. Then all the zeroes of the Riemann zeta function ζ in the strip {s : 0 < �(s) <
1; 0 � 
(s) � T0} lie on the line �(s) = 1/2. Furthermore, there are at most 1010

zeroes in this strip.

Proof. This was achieved independently by van de Lune (unpublished), by Wedeni-
wski [50], by Gourdon [14], and by Platt [34]. Indeed, the results of Wedeniwski
allow one to take T0 as large as 5.72 × 1010, and the results of Gourdon allow one
to take T0 as large as 2.44×1012; using interval arithmetic, Platt also obtained this
result with T0 as large as 3.06× 1010. (Of course, in these latter results there will
be more than 1010 zeroes.) However, we will use the more conservative value of
T0 = 3.29 × 109 in this paper, as it suffices for our purposes and has been verified
by four independent numerical computations. �

5Indeed, since the release of an initial preprint of this paper, such improvements to the above
bounds have been achieved in [18]. The author expects however that in the case of most critical
interest, namely when q is very close to 1 or to x, the Vaughan identity-based methods in the above
theorem are not the most efficient way to proceed. Thus, one can imagine in future applications
that Theorem 1.3 (or variants thereof) could be used to eliminate from consideration all values of q
except those close to 1 and x, and then other methods (e.g. those based on the zeroes of Dirichlet
L-functions, or more efficient identities than the Vaughan identity) could be used to handle those
cases.
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Theorem 1.6 (Numerical verification of the even Goldbach conjecture). Let
N0 := 4 × 1014. Then every even number between 4 and N0 is the sum of two
primes.

Proof. This is the main result of Richstein [41]. A subsequent (unpublished) verifi-
cation of this conjecture by the distributed computing project of Oliveira e Silva [32]
allows one to take N0 as large as 2.6×1018 (with the value N0 = 1017 being double-
checked), but again we shall use the more conservative value of N0 = 4 × 1014 in
this paper, as it suffices for our purposes and has been verified by three independent
numerical computations. �

The proof of Theorem 1.4 is given in Section 8 and proceeds according to the
circle method with smoothed sums as discussed earlier, but with some additional
technical refinements which we now discuss. The first refinement is to take advan-
tage of Theorem 1.6 to reduce the five-prime problem to the problem of representing
a number x as the sum of three primes n1, n2, n3 and a number between 2 and N0.
As far as the circle method is concerned, this effectively restricts the frequency
variable α to the arc {α : ‖α‖R/Z � 1/N0}. At the other end of the spectrum, by
using Theorem 1.5 and the von Mangoldt explicit formula one can control quite
precisely the contribution of the major arc {α : ‖α‖R/Z � T0/x}; see Proposition
7.2. Thus leaves only the “minor arc”

(1.14)
T0

x
� ‖α‖R/Z � 1

N0

that remains to be controlled.
By using Theorem 1.6 and Theorem 1.5 (or more precisely, an effective prime

number theorem in short intervals derived from Theorem 1.5 due to Ramaré and
Saouter [40]), we will be able to assume that x is moderately large (and specifically,
that x � 8.7 × 1036). By using existing Vinogradov-type theorems, we may also
place a large upper bound on x; we will use the strongest bound in the literature,
namely the bound x � exp(3100) of 6 Liu & Wang [24]. In particular, log x is
relatively small compared to the quantities N0 and T0, allowing one to absorb a
limited number of powers of log x in the estimates.

It remains to obtain good L2 and L∞ estimates on the minor arc region (1.14).
We will of course use Theorem 1.3 for the L∞ estimates. A direct application of
the Plancherel identity would cost a factor of log x in the L2 estimates, which turns
out to be unacceptable. One can use the uncertainty principle of Montgomery [28]

to cut this loss down to approximately 2 log x
logN0

(see Corollary 4.7), but it turns out

to be even more efficient to use a large sieve estimate of Siebert [45] on the number
of prime pairs (p, p + h) less than x for various h to obtain an L2 estimate which
only loses a factor of 8 (see Proposition 4.10).

In order to nearly eliminate some additional “Archimedean” losses arising from
convolving together various cutoff functions η on the real line R, we will use a trick
of Bourgain [3], and restrict one of the three summands n1, n2, n3 to a significantly

6The numerology in our argument is such that one could also use the weaker bound x �
exp(exp(11.503)) furnished by Chen & Wang [5], provided one assumed the even Goldbach con-
jecture to be verified up to N0 = 1017, a fact which has been double-checked in [32]. Alternatively,
if one uses the very recent minor arc bounds in [18] that appeared after the publication of this
paper, then no Vinogradov-type theorem is needed at all to prove our result, as the bounds in [18]
do not contain any factors of log x that need to be bounded.
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smaller order of magnitude (of magnitude x/K instead of x for some K, which we
will set to be 103, in order to be safely bounded away from both 1 and T0). By
estimating the exponential sums associated to n1, n2 in L2 and the sum associated
to n3 in L∞, one can avoid almost all Archimedean losses.

As it turns out, the combination of all of these tricks, when combined with the
exponential sum estimate and the numerical values of N0 and T0, are sufficient to
establish Theorem 1.4. However, there is one final trick which could be used to
reduce certain error terms further, namely to let K vary over a range (e.g. from
103 to 106) instead of being fixed, and average over this parameter. This turns
out to lead to an additional saving (of approximately an order of magnitude) in the
weakly minor arc case when α is slightly larger than T0/x. While we do not actually
utilise this trick here as it is not needed, it may be useful in other contexts, and in
particular in improving the known upper threshold for Vinogradov’s theorem.

2. Notation

All summations in this paper will be over the natural numbers N = {1, 2, 3, . . .}
unless otherwise indicated, with the exceptions of sums over the index p, which are
always understood to be over primes.

We use (a, b) to denote the greatest common divisor of two natural numbers,
and [a, b] for the least common multiple. We write a|b to denote the assertion that
a divides b.

Given a statement E, we use �E to denote its indicator; thus �E equals 1 when
E is true and 0 otherwise. Thus, for instance �(n,q)=1 is equal to 1 when n is
coprime to q, and equal to 0 otherwise.

We will use the following standard arithmetic functions. If n is a natural number,
then

• Λ(n) is the von Mangoldt function of n, defined to equal log p when n is a
power of a prime p and zero otherwise.

• μ(n) is the Möbius function of n, defined to equal (−1)k when n is the
product of k distinct primes and zero otherwise.

• φ(n) is the Euler totient function of n, defined to equal the number of
residue classes of n that are coprime to n.

• ω(n) is the number of distinct prime factors of n.

Given two arithmetic functions f, g : N → C, we define the Dirichlet convolution
f ∗ g : N → C by the formula

f ∗ g(n) :=
∑
d|n

f(d)g(
n

d
);

thus for instance μ ∗ 1(n) = �n=0, Λ ∗ 1(n) = log(n), and μ ∗ log(n) = Λ(n).
Given a positive real Q, we also define the primorial Q	 of Q to be the product

of all the primes up to Q:

Q	 :=
∏
p�Q

p.

Thus, for instance �(n,Q�)=1 equals 1 precisely when n has no prime factors less
than or equal to Q.
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We use the usual Lp norms

‖f‖Lp(R) :=

(∫
R

|f(x)|p dx

)1/p

for 1 � p < ∞, with ‖f‖L∞(R) denoting the essential supremum of f . Similarly for
domains other than R which have an obvious Lebesgue measure; we define the 
p

norms for discrete domains (such as the integers Z) in the usual manner.
We use R/Z to denote the unit circle. By abuse of notation, any 1-periodic

function on R is also interpreted as a function on R/Z; thus for instance we can
define | sin(πα)| for any α ∈ R/Z. We let ‖α‖R/Z be the distance to the nearest
integer for α ∈ R, and this also descends to R/Z. We record the elementary
inequalities

(2.1) 2‖α‖R/Z � | sin(πα)| � π‖α‖R/Z � | tan(πα)|,
valid for any α ∈ R/Z. In a similar vein, if a ∈ Z/qZ, we consider a

q as an element

of R/Z.
When considering a quotient X

Y with a non-negative denominator Y , we adopt

the convention that X
Y = +∞ when Y is zero. Thus for instance 1

‖α‖R/Z
is equal to

+∞ when α is an integer.
We will occasionally use the usual asymptotic notation X = O(Y ) or X � Y to

denote the estimate |X| � CY for some unspecified constant C. However, as we
will need explicit bounds, we will more frequently (following Ramaré [35]) use the
exact asymptotic notation X = O∗(Y ) to denote the estimate |X| � Y . Thus, for
instance, X = Y +O∗(Z) is synonymous with |X − Y | � Z.

If F : R → C is a smooth function, we use F ′, F ′′ to denote the first and second
derivatives of F , and F (k) to denote the k-fold derivative for any k � 0.

If x is a real number, we denote e(x) := e2πix, we denote x+ := max(x, 0), and
we denote �x� to be the greatest integer less than or equal to x. We interpret the
x �→ x+ operation to have precedence over exponentiation; thus for instance x2

+

denotes the quantity max(x, 0)2 rather than max(x2, 0).
If E is a finite set, we use |E| to denote its cardinality. If I is an interval, we use

|I| to denote its length. We will also occasionally use translations I + x := {y+ x :
y ∈ I} and dilations λI := {λy : y ∈ I} of such an interval.

The natural logarithm function log takes precedence over addition and subtrac-
tion, but not multiplication or division; thus for instance

log 2x+ 15 = (log(2x)) + 15.

3. Exponential sum estimates

We now record some estimates on linear exponential sums such as∑
n∈Z

F (n)e(αn)

for various smooth functions F : R → C, as well as bilinear exponential sums such
as ∑

n∈Z

∑
m∈Z

anbme(αnm)

for various sequences (an)n∈Z and (bm)m∈Z. These bounds are standard (at least
if one is only interested in bounds up to multiplicative constants), but we will
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need to make all constants explicit. Also, in order to save a factor of two or so in
the explicit bounds, we will frequently restrict the summation to odd integers by
inserting weights such as �(n,2)=1, and will therefore need to develop variants of
the standard bounds for this purpose.

We begin with some standard bounds on linear exponential sums with smooth
cutoffs.

Lemma 3.1. Let α ∈ R/Z, and let F : R → C be a smooth, compactly supported
function. Then we have the bounds

(3.1)
∑
n∈Z

F (n) =

∫
R

F (y) dy +O∗ ( 1
2‖F

′‖L1(R)

)
,

(3.2)

∣∣∣∣∣
∑
n∈Z

F (n)e(αn)

∣∣∣∣∣ �
∑
n

|F (n)| � ‖F‖L1(R) +
1
2‖F

′‖L1(R)

and

(3.3)

∣∣∣∣∣
∑
n∈Z

F (n)e(αn)

∣∣∣∣∣ � 1

|2 sin(πα)|k ‖F
(k)‖L1(R)

for all natural numbers k � 1.

Proof. These bounds appear in [13] and in [29, Lemma 1.1], but we reproduce the
proof here for the reader’s convenience. From the fundamental theorem of calculus
one has

F (n) = F (y) +O∗

(∫ n+1/2

n

|F ′(t)| dt
)

for all y ∈ [n, n+ 1/2] and

F (n) = F (y) +O∗

(∫ n

n−1/2

|F ′(t)| dt
)

for all y ∈ [n− 1/2, n]. Averaging over y, we conclude that

F (n) =

∫ n+1/2

n−1/2

F (y) dy + 1
2O

∗

(∫ n+1/2

n−1/2

|F ′(t)| dt
)
.

Summing over n, we obtain (3.1). Taking 
1 norms instead, one obtains∑
n∈Z

|F (n)| � ‖F‖L1(R) +
1
2‖F

′‖L1(R),

giving (3.2).
Now we obtain the k = 1 case of (3.3). We may assume α �= 0. By summation

by parts, one has∑
n∈Z

(F (n+ 1)− F (n))e(αn) = (1− e(−α))
∑
n∈Z

F (n)e(αn)

and thus

(3.4)

∣∣∣∣∣
∑
n∈Z

F (n)e(αn)

∣∣∣∣∣ = 1

2| sin(πα)| |
∑
n∈Z

(F (n+ 1)− F (n))e(αn)|.
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Since |F (n+ 1)− F (n)| �
∫ 1

0
|F ′(n+ t)| dt, we obtain the k = 1 case of (3.3). To

obtain the higher cases, we observe from (3.4), the fundamental theorem of calculus

F (n+ 1)− F (n) =
∫ 1

0
F ′(n+ t) dt and Minkowski’s inequality that

|
∑
n∈Z

F (n)e(αn)| � 1

2| sin(πα)| |
∑
n∈Z

F ′(n+ t)e(αn)|

for some 0 � t < 1. One can now deduce (3.3) for general k from the k = 1 case by
induction. �

We can save a factor of two by restricting to odd numbers:

Corollary 3.2. With the same hypotheses as Lemma 3.1, we have

|
∑
n∈Z

F (n)e(αn)�(2,n)=1| � 1
2‖F‖L1(R) +

1
2‖F

′‖L1(R)

and

|
∑
n∈Z

F (n)e(αn)�(2,n)=1| � 1

2| sin(2πα)|k ‖F
(k)‖L1(R)

for all k � 1.

Proof. We can rewrite∑
n∈Z

F (n)e(αn)�(2,n)=1 = e(α)
∑
n∈Z

F (2n+ 1)e(2αn).

Applying the previous lemma with α replaced by 2α, and F (x) replaced by F (2x+
1), we obtain the claim. �

We also record a continuous variant:

Lemma 3.3. Let F : R → C be a smooth, compactly supported function. Then one
has ∣∣∣∣

∫
R

F (y)e(αy) dy

∣∣∣∣ �
‖F (k)‖L1(R)

(2π|α|)k
for any k � 0 and α ∈ R.

Proof. The claim is trivial for k = 0. For higher k, we may assume α �= 0. By
integration by parts, we have∫

R

F (y)e(αy) dy = − 1

2πiα

∫
R

F ′(y)e(αy) dy,

and the claim then follows by induction. �

In order to sum the bounds arising from Corollary 3.2 (particularly when k = 1),
the following lemma is useful.

Lemma 3.4 (Vinogradov-type lemma). Let α = a
q + β for some β = O∗(1/q2).

Then for any x < y, A,B > 0, and θ ∈ R/Z, we have∑
x<n�y

min

(
A,

B

| sin(παn+ θ)|

)
�

(⌊
y − x

q

⌋
+ 1

)
(2A+

2

π
Bq log 4q).
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Proof. We may normalise B = 1. By a subdivision of the interval [x, y] it suffices
to show that ∑

x<n�x+q

min(A,
1

| sin(παn+ θ)|) � 2A+
2

π
q log 4q

for all x. The claim then follows from [8, Lemma 1]. (Strictly speaking, the phase
shift θ is not present in the statement of that lemma, but the proof of the lemma is
unchanged with that phase shift. Alternatively, one can perturb α to be irrational,
and then by Kronecker’s theorem one can obtain a dense set of phase shifts by
shifting the interval [x, y] by an integer, and the claim for general θ then follows by
a limiting argument.) �

Once again, we can save a factor of two by restricting to odd n:

Corollary 3.5 (Restricting to odd integers). Let 2α = a
q + β for some β =

O∗(1/q2). Then for any x < y, A,B > 0, and θ ∈ R/Z, we have∑
x<n�y

min

(
A,

B

| sin(παn+ θ)|

)
�(n,2)=1 �

(⌊
y − x

2q

⌋
+ 1

)
(2A+

2

π
Bq log 4q).

Proof. Writing n = 2m+ 1, the expression on the left-hand side is∑
(x−1)/2<m�(y−1)/2

min

(
A,

B

| sin(2παm+ πα+ θ)|

)
.

The claim then follows from Corollary 3.5. �
Now we turn to bilinear estimates. A key tool here is

Lemma 3.6 (Large sieve inequality). Let ξ1, . . . , ξR ∈ R/Z be such that ‖ξi −
ξj‖R/Z � δ for all 1 � i < j � R and some δ > 0. Let I = [N1, N2] be an interval
of length |I| = N2 −N1 � 1. Then we have

R∑
i=1

|
∑

n∈I∩Z

ane(ξin)|2 � (|I|+ δ−1)‖an‖2�2(Z)

for all complex-valued sequences (an)n∈Z.

Proof. See [30, Theorem 3] (noting that the number of integer points in I is at most
|I|+ 1). �

Specialising to ξj that are consecutive multiples of α and applying the Cauchy-
Schwarz inequality, we conclude

Corollary 3.7 (Special case of large sieve inequality). Let I, J ⊂ R be intervals of
length at least 1, and let α ∈ R/Z. Then one has

|
∑

n∈I∩Z

∑
m∈J∩Z

anbme(nmα)|

�
(
|I|+ 1

inf1�j�|J| ‖jα‖R/Z

)1/2

‖(an)n∈Z‖�2(Z)‖(bm)n∈Z‖�2(Z)

for all complex-valued sequences (an)n∈Z, (bm)m∈Z.

Again, we can obtain a saving of a factor of 2 in the main term by restricting
n,m to odd numbers:
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Corollary 3.8 (Restricting to odd numbers). Let I, J ⊂ R be intervals of length
at least 2, and let α ∈ R/Z. Then one has

|
∑

n∈I∩Z

∑
m∈J∩Z

an�(n,2)=1bm�(m,2)=1e(nmα)|

�

⎛
⎝ 1

2 |I|+
1

inf
1�j�1

2 |J|
‖4jα‖R/Z

⎞
⎠

1/2

‖(an)n∈Z‖�2(Z)‖(bm)n∈Z‖�2(Z)

for all complex-valued sequences (an)n∈Z, (bm)m∈Z.

Proof. We can rewrite the left-hand side as

|
∑

n∈1
2 I−1∩Z

∑
m∈ 1

2J−1∩Z

ãnb̃me(4nmα)|

where ãn := a2n+1e(2nα) and b̃m := b2m+1e(2mα), and the claim then follows from
Corollary 3.7. �

The above corollary is useful whenever the 4jα for 1 � j � 1
2 |J | stay far away

from the origin. When J is large, this is not always the case, but one can of course
rectify this by a subdivision argument:

Corollary 3.9 (Subdivision). Let I, J ⊂ R be intervals of length at least 2, and let
α ∈ R/Z. Let M � 1. Then one has

|
∑

n∈I∩Z

∑
m∈J∩Z

an�(n,2)=1bm�(m,2)=1e(nmα)| �
(

1
2 |I|+

1

inf1�j�M ‖4jα‖R/Z

)1/2

×
(⌊

J

2M

⌋
+ 1

)1/2

‖an‖�2(Z)‖bm‖�2(Z)

for all complex-valued sequences (an)n∈Z, (bm)m∈Z.

Proof. We subdivide J into intervals J1, . . . , Jk of length 2M , where k := � J
2M �+1.

The claim then follows by applying Corollary 3.8 to each subinterval, summing, and
using the Cauchy-Schwarz inequality. �

4. Basic bounds on Sη,q(x, α)

In all the lemmas in this section, x � 1 is a real number, α ∈ R/Z is a frequency,
η : R → R

+ is a bounded non-negative measurable function supported in [0, 1],
and q � 1 is a natural number. In some of the lemmas we will also make the
additional hypothesis that η is smooth, although in applications one can often
relax this regularity requirement by a standard limiting argument. In some cases
we will also need η to vanish near zero.

The purpose of this section is to collect some basic estimates for manipulating
the exponential sums

(4.1) Sη,q(x, α) :=
∑
n

Λ(n)e(αn)�(n,q)=1η(n/x)

that already appeared in the introduction.
We first make the easy observation that Sη,q(x, α) barely depends on the param-

eter q.
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Lemma 4.1. We have

Sη,q(x, α) = Sη,1(x, α) +O∗(ω(q)‖η‖L∞(R) log x).

In particular, if the largest prime factor of q is at most
√
x, then

Sη,q(x, α) = Sη,1(x, α) +O∗(2.52
√
x‖η‖L∞(R)).

In practice, we expect Sη,q(x, α) to be of size comparable to x, and so in practice
the error terms here will be utterly negligible in applications, and we will be able
to absorb them without any difficulty into a larger error term.

Proof. We have

|Sη,q(x, α)− Sη,1(x, α)| � ‖η‖L∞(R)

∑
n�x:(n,q)>1

Λ(n).

Note that if Λ(n) is non-zero and (n, q) > 1, then n is a power of a prime p dividing
q; thus ∑

n�x:(n,q)>1

Λ(n) =
∑
p|q

log p
∑

j:pj�x

1.

Since
∑

j:pj�x 1 � log x
log p , the first claim follows. For the second claim, observe that

ω(q) �
∑
p�√

x

1 � 2.52

√
x

log x
,

where the last inequality follows from [43, Corollary 1]. �

Next, we make a simple summation by parts observation that allows one to
replace η by the sharply truncated cutoff �[0,1] if desired.

Lemma 4.2. If η is smooth, then one has

|Sη,q(x, α)| � ‖η′‖L1(R) sup
y�x

|S�[0,1],q(y, α)|.

Proof. Since η(n/x) = − 1
x

∫ x

0
η′(y/x)�n�y dy for all n � x, we have

Sη,q(x, α) = − 1

x

∫ x

0

η′(y/x)
∑
n

Λ(n)e(αn)�n�y�(n,q)=1 dy

and thus

|Sη,q(x, α)| � 1

x

∫ x

0

|η′(y/x)||S�[0,1],q(y, α)| dy,

and the claim follows. �

We trivially have

(4.2) |Sη,q(x, α)| � Sη,q(x, 0)

and we now consider the estimation of the quantity Sη,q(x, 0).

Lemma 4.3. We have

(4.3) Sη,q(x, 0) � ‖η‖L∞(R)S�[0,1],1(x, 0) � 1.04‖η‖L∞(R)x.

If η is smooth and supported on [c, 1] for some c > 0 with cx � 108, then

(4.4) Sη,1(x, 0) = ‖η‖L1(R)x+O∗
(

1

40 log cx
‖η′‖L1(R)x

)
.
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We remark that sharper estimates can be obtained using the machinery from Sec-
tion 7, at least when η is fairly smooth, though we will not need such improvements
here.

Proof. The first inequality of (4.3) is trivial, and the final inequality of (4.3) follows
from [43, Theorem 12] (indeed, one can replace the constant 1.04 with the slightly
smaller 1.03883).

For (4.4), we argue as in Lemma 4.2 and write

Sη,1(x, 0) = − 1

x

∫ x

cx

η′(y/x)
∑
n�y

Λ(n) dy.

From [44, Theorem 7] (and the hypothesis cx � 108) one has∑
n�y

Λ(n) = y +O∗
(

y

40 log cx

)
,

and hence

Sη,1(x, 0) = − 1

x

∫ x

cx

η′(y/x)y dy

+O∗
(
1

x

1

40 log cx

∫ x

cx

|η′(y/x)|y dy

)
.

Using the crude bound ∫ x

cx

|η′(y/x)|y dy � ‖η′‖L1(R)x

the claim follows. �

As Λ and η are real, we have the self-adjointness symmetry

(4.5) Sη,q(x,−α) = Sη,q(x, α).

Also, since e(n(α+ 1/2)) = −e(nα) when n is odd, we have the anti-symmetry

(4.6) Sη,q(x, α+ 1/2) = −Sη,q(x, α)

whenever q is even. More generally, we have the following inequality of Montgomery
[28]:

Lemma 4.4 (Montgomery’s uncertainty principle). For any q0 dividing q, we have

∑
a∈Z/q0Z:(a,q0)=1

∣∣∣∣Sη,q(x, α+
a

q0
)

∣∣∣∣
2

� μ(q0)
2

φ(q0)
|Sη,q(x, α)|2.

Proof. Wemay of course take q0 to be square-free. Let an :=Λ(n)e(αn)�(n,q)=1η(n/x),
S( a

q0
) :=

∑
n ane(an/q0), and Z :=

∑
n an, then the inequality reads∑

a∈Z/q0Z:(a,q0)=1

|S( a
q0

)|2 � 1∏
p|q0(p− 1)

|Z|2.

But this follows from [28] (particularly equation (10) and the final display in Section
3, and setting ω(p) = 1 for all p|q0). Another proof of this inequality may be found
in [19, Lemma 7.15]. �

Now we consider L2 estimates on Sη,q(x, α). We have a global estimate:
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Lemma 4.5 (Global L2 estimate). We have∫
R/Z

|Sη,q(x, α)|2 dα � Sη2,q(x, 0) logx.

Proof. From the Plancherel identity we have∫
R/Z

|Sη,q(x, α)|2 dα =
∑
n

η(n/x)2Λ(n)2�(n,q)=1.

Bounding Λ(n)2 � Λ(n) log x on the support of η(n/x)2, we obtain the claim. �

We can largely remove7 the logarithmic factor in the above lemma by restricting
to major arcs:

Lemma 4.6 (Local L2 estimate). Let Q,R � 1, and let Σ ⊂ R/Z be the set

Σ :=
⋃

q0�Q

⋃
(a0,q0)=1

[
a0
q0

− 1

2Q2R2
,
a0
q0

+
1

2Q2R2
].

If R	|q, then

(4.7)

∫
Σ

|Sη,q(x, α)|2 dα �

⎛
⎝∏

p�Q

p

p− 1

⎞
⎠ log x

logR
Sη2,q(x, 0).

Proof. From Lemma 4.4 one has

μ2(q1)

φ(q1)

∫
Σ

|Sη,q(x, α)|2 dα �
∑

a1∈Z/q1Z:(a1,q1)=1

∫
Σ+

a1
q1

|Sη,q(x, α)|2 dα

for any q1. Summing over all q1 � R coprime to Q	 and rearranging, we obtain the
bound∫

Σ

|Sη,q(x, α)|2 dα �

∑
q1�R:(q1,Q�)=1

∑
a1∈Z/q1Z:(a1,q1)=1

∫
Σ+

a1
q1

|Sη,q(x, α)|2 dα∑
q1�R:(q1,Q�)=1

μ2(q1)
φ(q1)

.

Set

G(R) :=
∑
q1�R

μ2(q1)

φ(q1)
.

Observe that

G(R) �

⎛
⎝ ∑

q1�R:(q1,Q�)=1

μ2(q1)

φ(q1)

⎞
⎠

⎛
⎝∏

p�Q

1 +
1

φ(p)

⎞
⎠

and thus
1∑

q1�R:(q1,Q�)=1
μ2(q1)
φ(q1)

�
∏

p�Q
p

p−1

G(R)
.

Also, from [26] or [31, Lemma 3] one has G(R) � logR + 1.07 for R � 6, so by
direct computation for 1 � R � 6 we have G(R) � logR for R � 1.

To conclude the proof, it thus suffices (in view of Lemma 4.5) to show that the
sets Σ+ a1

q1
are disjoint up to measure zero sets as a1, q1 vary in the indicated range.

7A version of this inequality was also obtained in an unpublished note of Heath-Brown, which
was communicated to me by Harald Helfgott.
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Suppose this is not the case; then Σ+ a1

q1
and Σ+

a′
1

q′1
intersect in a positive measure

set for some distinct a1, q1 and a′1, q
′
1 in the indicated range. Thus one has

|a0
q0

+
a1
q1

− a′0
q′0

− a′1
q′1

| < 1

Q2R2

for some q0, q0 � Q with (a0, q0) = (a′0, q
′
0) = 1. The left-hand side is a fraction

with denominator at most Q2R2, and therefore vanishes. Since q1q
′
1 is coprime with

q0q
′
0 we conclude that a1

q1
=

a′
1

q′1
, contradiction. The claim follows. �

Remark. As pointed out by the anonymous referee, a slightly stronger version of
Lemma 4.6 (saving a factor of eγ asymptotically) can also be established by mod-
ifying the proof of [38, Theorem 5]; the main idea is to decompose into Dirichlet
characters, as in [1].

There are several effective bounds on the expression
∏

p�Q
p

p−1 appearing in

Lemma 4.6; see [43, Theorem 8], [10], [12, Theorem 6.12]. However, in this paper
we will only need to work with the Q = 1 case, and so we will not use the above
lemma here. Specialising Lemma 4.6 to the case Q = 1, we conclude

Corollary 4.7. If 0 < r < 1/2 and
√
1/2r	|q, one has∫

‖α‖R/Z�r

|Sη,q(x, α)|2 dα � 2

1− log(2rx)
log x

Sη2,q(x, 0).

We can complement this upper bound with a lower bound:

Proposition 4.8. Let η be smooth and 0 � r � 1/2. Then∫
‖α‖R/Z�r

|Sη,q(x, α)|2 dα �
(Sη2,q(x, 0)− 1

π2rx‖η′η′ + ηη′′‖L1(R)Sη,q(x, 0))
2
+

‖η‖2L2(R)x+ ‖ηη′‖L1(R)
.

Ignoring the error terms, this gives a lower bound of Sη2,q(x, 0), showing that
Corollary 4.7 is essentially sharp up to a factor of 2 when rx is not too large.

Proof. From the Parseval formula, one has

Sη2,q(x, 0) =

∫
R/Z

Sη,q(x, α)F (α) dα,

where F (α) :=
∑

n η(n/x)e(−αn). In particular,∣∣∣∣∣
∫
‖α‖R/Z�r

Sη,q(x, α)F (α) dα

∣∣∣∣∣ � Sη2,q(x, 0)− Sη,q(x, 0)

∫
‖α‖R/Z>r

|F (α)| dα,

and thus by the Cauchy-Schwarz inequality∫
‖α‖�r

|Sη,q(x, α)|2 dα �
(Sη2,q(x, 0)− Sη,q(x, 0)

∫
‖α‖R/Z>r

|F (α)| dα)2+∫
R/Z

|F (α)|2 dα
.

By the Plancherel theorem, one has∫
R/Z

|F (α)|2 dα =
∑
n

η(n/x)2

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1014 TERENCE TAO

and hence by (3.1)∫
R/Z

|F (α)|2 dα = ‖η‖2L2(R)x+O∗(‖ηη′‖L1(R)).

Similarly, from (3.3) (with k = 2) one has

|F (α)| � 1

2x| sin(πα)|2 ‖η
′η′ + ηη′′‖L1(R)

for any α, and thus∫
‖α‖R/Z�r

|F (α)| dα � cot(πr)

πx
‖η′η′ + ηη′′‖L1(R).

Bounding

cot(πr) � 1

πr
the claim follows. �

We can clean up the error terms as follows:

Corollary 4.9. Let η be smooth and supported on [c, 1] for some c > 0, and suppose
that 1

2x � r � 1/2 and q =
√
x	. We normalise ‖η‖L2(R) = 1. Assume furthermore

that

cx � 108,(4.8)

x � 104‖ηη′‖L1(R),(4.9)

log(cx) � 5‖ηη′‖L1(R),(4.10)

x � 108‖η‖4L∞(R),(4.11)

rx � 20‖η′η′ + ηη′′‖L1(R)‖η‖L∞(R).(4.12)

Then one has

(4.13) Sη2,q(x, 0) = x(1 +O∗(0.02))

and

(4.14)

∫
‖α‖�r

|Sη,q(x, α)|2 dα � 0.94x.

Proof. From Lemma 4.3 and (4.8), (4.10) one has

Sη2,1(x, 0) = x(1 +O∗(0.01)),

and by Lemma 4.1 and (4.11) we conclude (4.13).
Let us denote the quantity

∫
‖α‖�r

|Sη,q(x, α)|2 dα by A. By Proposition 4.8,

(4.9) and Lemma 4.3 we have

A � 0.999
1

‖η‖2L2(R)x

(
Sη2,q(x, 0)−

1.04

π2r
‖η′η′ + ηη′′‖L1(R)‖η‖L∞(R)

)2

+

.

By (4.12), (4.13) we have

1.04

π2r
‖η′η′ + ηη′′‖L1(R)‖η‖L∞(R) � 0.01Sη2,q(x, 0)

and so

A � 0.97
1

x
Sη2,q(x, 0)

2,
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and thus by (4.13)

A � 0.94x,

which is (4.14). �

The estimate in Corollary 4.7 is quite sharp when r is small (of size close to 1/x),
but not when r is large. For this, we have an alternate estimate:

Proposition 4.10 (Mesoscopic L2 estimate). Suppose that q =
√
x	. Let H � 102,

and write DH(α) :=
∑H

h=1 e(hα) for the Dirichlet-type kernel. Then we have∫
R/Z

|Sη,q(x, α)|2|DH(α)|2 dα � (1 + ε)× 8H2x‖η‖2L∞(R)

where ε is the quantity

(4.15) ε :=
0.13 log x

H
+

(eγ log log(2H) + 2.507
log log(2H) ) log(9H)

2H
.

By applying this proposition withH slightly larger than log x and using standard
lower bounds on |DH(α)|, we conclude that∫

‖α‖=o( 1
log x )

|Sη,q(x, α)|2 dα � (8 + o(1))x‖η‖2L∞(R).

In comparison, Corollary 4.7 gives an upper bound of (2 + o(1)) log x
log log xx‖η‖2L2(R)

for this integral, while Proposition 4.8 gives a lower bound of (1 − o(1))x‖η‖2L2(R)

(if η is smooth). Thus we see that the bound in Proposition 4.10 is only off by a
factor of 8 or so, if η is close to �[0,1]. It seems of interest to find efficient variants of

this proposition in which the |DH(α)|2 weight is replaced by a weight concentrated
on multiple major arcs, as in Lemma 4.6, as this may be of use in further work on
Goldbach-type problems.

Proof. We may normalise ‖η‖L∞(R) = 1. By the Plancherel identity, we may write
the left-hand side as

H∑
h=1

H∑
h′=1

∑
n

Λ(n)η(n/x)�(n,q)=1Λ(n+ h′ − h)η((n+ h′ − h)/x)�(n+h′−h,q)=1.

The diagonal contribution h = h′ can be bounded by

H
∑
n

Λ(n)η(n/x) logx,

which by Lemma 4.3 is bounded by 1.04Hx log x. Now we consider the off-diagonal
contribution h �= h′. As Λ(n)�(n,q)=1 is supported on the odd primes p less than or
equal to x, we restrict our attention to the contribution when h − h′ is even, and
can bound this contribution by

H∑
h′=1

∑
1�h�H:h 	=h′;2|h−h′

log2 x|{p � x : p+ h− h′ prime, p+ h− h′ � x}|,

which by the pigeonhole principle is bounded by

(4.16) H
∑

1�h�H:h 	=h′;2|h−h′

log2 x|{p � x : p+ h− h′ prime, p+ h− h′ � x}|,
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for some 1 � h′ � H, which we now fix. Applying the main result of Siebert [45],
we have

|{p � x : p+ h− h′ prime, p+ h− h′ � x}| � 8Si2
x

log2 x

∏
p|h−h′;p>2

p− 1

p− 2
,

where S2 := 2
∏

p>2(1 − 1
(p−1)2 ) is the twin prime constant. We can thus bound

(4.16) by

8S2Hx
∑

1�h�H:h 	=h′;2|h−h′

∏
p|h−h′;p>2

p− 1

p− 2
.

If we let f be the multiplicative function

f(n) := �(n,2)=1μ
2(n)

∏
p|n:p>2

1

p− 2
.

Then we have ∏
p|h−h′;p>2

p− 1

p− 2
=

∑
1�n�H;(n,2)=1:n|h−h′

f(n)

whenever 1 � h, h′ � H with h �= h′, so we may bound the preceding expression by

8S2Hx
∑

1�n�H:(n,2)=1

f(n)
∑

1�h�H:2n|h−h′

1.

We may bound

(4.17)
∑

1�h�H:2n|h−h′

1 � H

2n
+ 1

so that (4.16) is then bounded by

8S2Hx

⎛
⎝H

∞∑
n=1

f(n)

2n
+

∑
1�n�H

f(n)

⎞
⎠ .

By evaluating the Euler product one sees that
∞∑

n=1

f(n)

2n
= 1

2

∏
p

(1 + f(p)) =
1

S2
.

To evaluate the f summation, we observe that8

f(n) = �(n,2)=1
μ2(n)

φ(n)

2n

φ(2n)
1
2

∏
p|n:p>2

(1− 1

(p− 1)2
)−1.

We can bound
1
2

∏
p|n>2

(1− 1

(p− 1)2
)−1 � 1

S2

and from [43, Theorem 15] one has

2n

φ(2n)
� eγ log log(2n) +

2.507

log log(2n)
.

8Alternatively, one can sum f directly by using effective bounds on sums of multiplicative
functions, as in [35]. This will save a factor of log logH in the upper bounds, but in our applications
this loss is quite manageable.
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Since n � H and H � 102, we conclude that

2n

φ(2n)
� eγ log log(2H) +

2.507

log log(2H)

for any 1 � n � H with (n, 2) = 1 (the cases when n is so small that eγ log log(2n)+
2.507

log log(2n) can exceed eγ log log(2H) + 2.507
log log(2H) , and specifically when n = 1, 3, 5,

can be verified by hand). Thus we may bound

S2

∑
1�n�H

f(n) �
(
eγ log log(2H) +

2.507

log log(2H)

) ∑
n�H:(n,2)=1

μ2(n)

φ(n)
.

Since φ(n) = φ(2n) when n is odd, we have∑
n�H:(n,2)=1

μ2(n)

φ(n)
� 1

2

∑
n�2H

μ2(n)

φ(n)
,

and hence by [35, Lemma 3.5], one has∑
n�H:(n,2)=1

μ2(n)

φ(n)
� 1

2 (log(2H) + 1.4709) � 1
2 log(9H).

Combining all these estimates we obtain the claim. �

Remark. As observed by the anonymous referee, when H is an integer, the second
term in (4.15) may be deleted by using [36, Lemma 5.1] as a substitute for (4.17)
(and retaining the sum over h′, rather than working only with the worst-case h′).

To deal with Sη,q(x, α) on minor arcs, we follow the standard approach of Vino-
gradov by decomposing this expression into linear (or “Type I”) and bilinear (or
“Type II”) sums. We will take advantage of the following variant of Vaughan’s
identity [46], which we formulate as follows:

Lemma 4.11 (A variant of Vaughan’s identity). Let U, V � 1. Then for any
function F : Z → C supported on the interval (V, UV 2), one has

|
∑
n

Λ(n)F (n)| � TI + TII ,

where TI is the Type I sum9

TI :=
∑

d�UV

|
∑
n

(log n+ cd log d)F (dn)|

for some complex coefficients cd (depending on F ) with |cd| � 1, and TII is the
Type II sum

TII := |
∑
d>U

∑
w>V

μ(d)g(w)F (dw)|,

where g(w) is the function

g(w) :=
∑

b|w:b>V

Λ(b)− 1
2 logw.

9Strictly speaking, TI is an average of Type I sums, rather than a single Type I sum; however,
we shall abuse notation and informally refer to TI as a Type I sum.
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This differs slightly from the standard formulation of Vaughan’s identity, as we
have subtracted a factor of 1

2 logw from the coefficient g(w) of the Type II sum.
This has the effect of improving the Type II sum by a factor of two, with only a
negligible cost to the (less important) Type I term.

Proof. We split μ = μ��U+μ�>U and Λ = Λ��V +Λ�>V , where ��U (n) := �n�U ,
and similarly for �>U , ��V , �>V . We then have

Λ = μ ∗ Λ ∗ 1
= μ��U ∗ Λ ∗ 1− μ��U ∗ Λ��V ∗ 1 + μ�>U ∗ Λ�>V ∗ 1 + μ ∗ Λ��V ∗ 1
= μ��U ∗ log−μ��U ∗ Λ��V ∗ 1 + μ�>U ∗ Λ�>V ∗ 1 + Λ��V .

(4.18)

We sum this against F , noting that F vanishes on the support of the final term
Λ��V , to conclude that∑

n

Λ(n)F (n) =
∑
d�U

μ(d)
∑
n

(logn)F (dn)

−
∑

d�UV

f(d)
∑
n

F (dn)

+
∑
d>U

∑
w>V

μ(d)(g(w) + 1
2 logw)F (dw),

where

f(d) :=
∑

b|d:d/U�b�V

μ(
d

b
)Λ(b).

Observe that when d > U and w > V , then the term μ(d)( 12 logw)F (dw) vanishes
unless U < d � UV . We may thus bound

|
∑
n

Λ(n)F (n)| =
∑

d�UV

|
∑
n

(log n)F (dn)|

+
∑

d�UV

|f(d)||
∑
n

F (dn)|

+ |
∑
d>U

∑
w>V

μ(d)g(w)F (dw)|.

Note that

|f(d)| �
∑
b|d

Λ(b) = log d.

Since

|
∑
n

(log n)F (dn)|+ |
∑
n

F (dn)| log d = |
∑
n

(log n+ cd log d)F (dn)|

for some complex constant cd with |cd| = 1, we obtain the claim. �

Note that as

0 �
∑

b|w:b>V

Λ(b) �
∑
b|w

Λ(b) = logw

we have the bound

(4.19) |g(w)| � 1
2 logw.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



EVERY ODD NUMBER IS THE SUM OF AT MOST FIVE PRIMES 1019

5. Minor arcs

We now prove the following exponential sum estimate, which will then be used
in the next section to derive Theorem 1.3:

Theorem 5.1 (Bound for minor arc sums). Let 4α = a
q + β for some natural

number q � 4 with (a, q) = 1 and some β = O∗(1/q2). Let 1 < U, V < x, and
suppose that we have the hypotheses

UV � x/4,(5.1)

UV 2 � x,(5.2)

U, V � 40.(5.3)

Then one has

|Sη,2(x, α)| � 0.5
x

q
(log x) log

(
2UV

q
+ 4

)
+ 0.89

(
UV +

5

2
q

)
(8 + log q) log(2x)

(5.4)

+

(
0.1

x
√
q
+ 0.39

x√
x/q

)
(log

x

UV
) log

V x

U
(5.5)

+

(
0.55

x√
U

+ 0.78
x√
V

)
log

x

U
.(5.6)

Furthermore, if a = ±1 and UV < q− 1, then we may replace the term (5.4) in the
above estimate with

(5.7)
96

π2

x

(x/q)2
log(4x) log

4eq

π
.

We now prove Theorem 5.1. By Lemma 4.11, we have

|Sη0,2(x, 1)| � TI + TII ,

where TI is the Type I sum

TI :=
∑

d�UV :(d,2)=1

|
∑

n:(n,2)=1

(log n+ cd log d)e(αdn)η0(dn/x)|

and TII is the Type II sum

TII := |
∑

d>U :(d,2)=1

∑
w>V :(w,2)=1

μ(d)g(w)e(αdw)η0(dw/x)|.

5.2. Estimation of the Type I sum. We first bound the Type I sum TI . We
begin by estimating a single summand

(5.8) |
∑
n

(log n+ cd log d)e(dnα)η0(dn/x)�(n,2)=1|.

By Corollary 3.2, we may bound this expression by

min

(
1
2‖F‖L1(R) +

1
2‖F

′‖L1(R),
‖F ′‖L1(R)

2| sin(2πdα)| ,
‖F ′′‖L1(R)

2| sin(2πdα)|2

)
,

where F (y) = Fd(y) := η0(dy/x)(log y + cd log d). We have

F ′(y) =
d

x
η′0(dy/x)(log y + cd log d) +

η0(dy/x)

y
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and

F ′′(y) =
d2

x2
η′′0 (dy/x)(log y + cd log d) + 2

d

x

η′0(dy/x)

y
− η0(dy/x)

y2
.

Strictly speaking, F is not infinitely smooth, and so Corollary 3.2 cannot be di-
rectly applied. However, we may perform the standard procedure of mollifying η0
(and thus F ) by an infinitesimal amount in order to make all derivatives here well-
defined, and then perform a limiting argument. Rather than present this routine
argument explicitly, we shall abuse notation and assume that η0 has been infinites-
imally mollified (alternatively, one can interpret the derivatives here in the sense of
distributions, and replace the L1 norm by the total variation norm in the event that
the expression inside the norm becomes a signed measure instead of an absolutely
integrable function).

Since d � U and η is supported on [1/4, 1], η(dy/x) is supported on [x/4d, x/d].
In particular, | log y + cd log d| � log x. We thus have

‖F‖L1(R) � ‖η0‖L1(R)
x

d
log x,

‖F ′‖L1(R) � ‖η′0‖L1(R) log x+ ‖η0‖L∞(R) log 4,

‖F ′′‖L1(R) � ‖η′′0‖L1(R)
d

x
log x+ 2‖η′0‖L∞(R)

d

x
log 4 + ‖η0‖L∞(R)

4d

x
.

Routine computations using (1.7) show that

‖η0‖L1(R) = 1,(5.9)

‖η0‖L∞(R) = 4 log 2,(5.10)

‖η′0‖L1(R) = 8 log 2,(5.11)

‖η′0‖L∞(R) = 16,(5.12)

‖η′′0‖L1(R) = 48.(5.13)

Note that ‖η′0‖L1(R) and ‖η′′0‖L1(R) can also be interpreted as the total variation of
the functions η0 and η′0 respectively, which may be an easier computation (especially
since η′′0 is not a function before mollification, but is merely a signed measure).
Inserting these bounds, we conclude that

‖F‖L1(R) � x

d
log x,

‖F ′‖L1(R) � 8(log 2) log 2x,

‖F ′′‖L1(R) � 48
d

x
log 4x.

We conclude that
(5.14)

TI �
∑

d�UV

�(d,2)=1 min

(
1
2

x

d
log x+4(log 2) log 2x,

4(log 2) log 2x

| sin(2πdα)| ,
d

x

24 log 4x

| sin(2πdα)|2

)
.

We first control the contribution to (5.14) when d � q/2. In this case, d is not
divisible by q; as (a, q) = 1, this implies that ad is not divisible by q either. We
therefore have

(5.15) ‖4dα‖R/Z � ‖ad/q‖R/Z − d|β| � 1

q
− q/2

q2
=

1

2q
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and thus

(5.16)
1

| sin(2πdα)| � 1

| sin(π/4q)| � 2q,

thanks to (2.1). Thus contribution here (5.14) of the d � q/2 terms are bounded
by

4(log 2) log 2x
∑

d�q/2

�(d,2) min(2q,
1

| sin(2πdα)|).

By Corollary 3.5 one has∑
d∈Z:−q/2�d�q/2

�(d,2) min(2q,
1

| sin(2πdα)|) � 2

π
q log 4q + 4q,

so by symmetry we may thus bound the contribution of the d � q/2 terms to (5.14)
by

2 log 2 log 2x(
2

π
q log 4q + 4q).

Now consider the contribution to (5.14) of a block of the form 2jq + q
2 < d �

2(j + 1)q + q
2 for a natural number j with j � UV

2q − 1
4 . This contribution can be

bounded by∑
2jq+ q

2<d�2(j+1)q+ q
2

�(d,2)=1 min

(
1
2

x

2jq + q
2

log x+ 4(log 2) log 2x,
4(log 2) log 2x

| sin(2πdα)|

)
,

which by Corollary 3.5 is bounded by

x

2jq + q
2

log x+ 8(log 2) log 2x+ 4(log 2) log 2x
2

π
q log 4q,

which we can crudely bound by

x

2jq + q
2

log x+ 4(log 2) log 2x(
2

π
q log 4q + 4q).

Combining all the contributions to (5.14), we obtain the bound

TI �
∑

0�j� UV
2q − 1

4

x

2jq + q
2

log x

+ (
UV

2q
+

5

4
)(
2

π
q log 4q + 4q)× 4(log 2) log 2x.

By the integral test, one has∑
0�j�UV

2q − 1
4

(
x

2jq + q
2

) � 1

2q

∫ UV +2q

q/2

x

y
dy

=
x

2q
log(

2UV

q
+ 4),

and so

TI � x

2q
log(

2UV

q
+ 4) log x+ (

UV

2q
+

5

4
)(
2

π
q log 4q + 4q)× 4(log 2) log 2x.

We can write
2

π
q log 4q + 4q � 2

π
q(8 + log q)
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and
1
2 × 2

π
× 4 log 2 � 0.89,

and so

(5.17) TI � 0.5
x

q
log(

2UV

q
+ 4) log x+ 0.89(UV +

5

2
q)(8 + log q) log x,

which gives the term (5.4).
Now suppose that a = ±1 and UV < q− 1. By the symmetry (4.5) we may take

a = 1; thus α = 1
4q +O∗( 1

4q2 ) � 1
4(q−1) . In particular, for d � UV one has d � q−2

and therefore 0 < 2πdα < π/2. In particular, we have

sin(2πdα) � sin

(
2πd

4(q − 1)

)
.

From (5.14), we conclude that

TI � 24 log 4x

x

q−2∑
d=1

d cosec2
πd

2(q − 1)
.

The function d �→ d cosec2 πd
2(q−1) is convex on [0, π] (indeed, both factors are already

convex), and so by the trapezoid rule

TI � 24 log 4x

x

∫ q−3/2

1/2

ycosec2
πy

2(q − 1)
dy.

Using the anti-derivative∫
ycosec2y dy = log | sin y| − y cot y

we can evaluate the right-hand side as

(
2(q − 1)

π
)2
24 log 4x

x
(log | sin y| − y cot y)|y=π/2−π/4(q−1)

y=π/4(q−1) .

The function y cot y varies between 0 and 1 on [0, π/2], and thus

TI � (
2(q − 1)

π
)2
24 log 4x

x
(log cot

π

4(q − 1)
+ 1),

which, on bounding cot π
4(q−1) � 4(q−1)

π � 4q
π and 2(q−1)

π � 2q
π , gives

(5.18) TI � 96

π2

x

(x/q)2
log(4x) log(

4eq

π
),

which is the alternate contribution (5.7).

5.3. Estimation of the Type II sum. We now control TII . From (1.8) and the
triangle inequality, we thus have

(5.19) TII � 4

∫ ∞

0

F (W )
dW

W
,

where

F (W ) := |
∑
d>U

∑
w>V

μ(d)�(d,2)=1�[x/2W,x/W ](d)g(w)�(w,2)=1�[W/2,W ](w)e(αdw)|.
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Observe that F (W ) vanishes unless

(5.20) V � W � x

U
,

and we henceforth restrict our attention to this regime.
From (5.20), (5.3) we see that the intervals [x/2W,x/W ], [W/2,W ] both have

length at least 2. We now apply Corollary 3.9 with M := q/2 and use (4.19) to
bound

(5.21) F (W ) � 1
2

(
1
2

W

2
+

1

δ

)1/2 (
� x

2Wq
�+ 1

)1/2

A1/2B1/2,

where10

δ := inf
1�j�q/2

‖4jα‖R/Z,

A :=
∑

d∈[x/2W,x/W ]

�(d,2)=1,

B :=
∑

w∈[W/2,W ]

�(w,2)=1 log
2 w.

From the computation (5.15) we have

(5.22) δ � 1

2q
.

Now we bound A and B. Clearly we have

|A| � x

4W
+ 1.

Similarly, for B we bound log2 w by log2 W , and conclude that

|B| � (
W

4
+ 1) log2 W.

By (5.3), (5.20) we thus have

|A| � 1.1

4

x

W
,

|B| � 1.1

4
W log2 W,

and thus by (5.21), (5.22)

F (W ) � 1.1

8
(
W

4
+ 2q)1/2(

x

2Wq
+ 1)1/2x1/2 logW.

Crudely bounding11 (a+ b)1/2 � a1/2 + b1/2 we thus have

F (W ) � 1.1

8
(

1

2
√
2

x
√
q
+ 1

2

√
xW +

1√
2

x√
W

+
√
2

x√
x/q

) logW.

We integrate this expression over (5.20) against the measure 4dW
W to bound (5.19).

To simplify the computations slightly at the cost of a slight degradation of the

10One could achieve a very slight improvement to the A factor by exploiting the fact that μ2(n)
vanishes when n is divisible by an odd square, but we will not do so here to keep the exposition
simple.

11By avoiding this step, one could save a modest amount in the numerical constants in the
estimates, but at the cost of a more complicated argument.
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numerical constants, we bound logW crudely by log x
U for the middle two terms

for F (W ). Since

4

∫
V �W� x

U

dW

W
= 2 log

x

UV
log

V x

U
,

we thus obtain the bound

TII � 1.1

4

(
1

2
√
2

x
√
q
+
√
2

x√
x/q

)
log

x

UV
log

V x

U

+ 1.1

(
1
2

x√
U

+
1√
2

x√
V

)
logW.

Combining this with (5.17) and (5.18) we obtain the claim.

Remark. When β is very small (of size O(1/x) or so), one can eliminate most of the

0.5x
q log x log(

2UV
q + 4) term in (5.4) by working with Sη,q(x, α) − μ2(q)

φ(q) Sη,q(x, β)

instead of Sη,2(x, α), which effectively replaces the phase e(αn) with the variant

phase (e(an/q)− μ2(q)
φ(q) )e(βn)�(n,q)=1. The main purpose of this replacement is to

delete the non-cancellative component of the Type I sum (which, for small values
of β, occurs when d is divisible by q), which would otherwise generate the x

q log
2 x-

type term in (1.10). Such an improvement may be useful in subsequent work on
Goldbach-type problems, but we will not pursue it further here.12

6. Proof of Theorem 1.3

In this section we use Theorem 5.1 to establish Theorem 1.3, basically by ap-
plying specific values of U and V . With more effort, one could optimise in U and
V more carefully than is done below, which would improve the numerical values in
Theorem 1.3 by a modest amount, but we will not do so here to keep the exposition
as simple as possible.

We begin with (1.9). We apply Theorem 5.1 with

U :=
1

4
x2/5, V := 1

2x
2/5.

As x � 1020, the hypotheses of the theorem are obeyed, and we conclude that

|Sη,2(x, α)| � 0.5
x

q
log x log(x4/5) + 0.89(

1

8
x4/5 +

5

2
q)(8 + log q) log 2x

+ (0.1
x
√
q
+ 0.39

x√
x/q

) log(8x1/5) log(2x)

+ 2.3x4/5 log(2x3/5).

As x � 1020 and q � x/100, one can compute that

log(8x1/5) log(2x) � 1

5
log x(log x+ 11.3),

(8 + log q)(log 2x) � 1.1 log x(log x+ 11.3),

log(2x3/5) � 0.011 log x(log x+ 11.3).

12For very small values of q, it is likely that one should instead proceed using different identities
than Vaughan-type identities, for instance by performing an expansion into Dirichlet characters
instead.
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Inserting these bounds and collecting terms, we conclude that

|Sη,2(x, α)| � (0.4
x

q
+0.1

x
√
q
+2.45

x

x/q
+0.39

x√
x/q

+0.149x4/5) log x(log x+11.3).

Since 100 � q � x/100, one has

0.4
x

q
� 0.04

x
√
q

and

2.45
x

x/q
� 0.245

x√
x/q,

and the claim (1.9) follows, after using Lemma 4.1 to replace Sη,2(x, α) with

Sη,q0(x, α) (at the cost of replacing the 0.149x4/5 term with 0.15x4/5).
Now we verify (1.10). Here we use the choice

U :=
x

q2
; V := q.

The hypotheses of Theorem 5.1 are easily verified, and we conclude that

|Sη,2(x, α)| � 0.5
x

q
log x log(

2x

q2
+ 4) + 0.89(

x

q
+

5

2
q)(8 + log q) log(2x)

+ (0.1
x
√
q
+ 0.39

x√
x/q

)× 3 log2 q

+ (0.55
x√
x/q2

+ 0.78
x
√
q
)× 2 log q.

Since q � x1/3 and x � 1020, one has

x√
x/q2

� x
√
q
,

x√
x/q

� 0.001
x
√
q

and

q � 0.001
x

q
,

so

|Sη,2(x, α)| � x

q
log(2x)[0.5 log(

2x

q2
+ 4) + 0.9(8 + log q)]

+ (0.301 log2 q + 2.66 log q)
x
√
q
.

Since

0.5 log(
2x

q2
+ 4) + 0.9(8 + log q) � 0.5(log(2x+ 4q2) + 14.4)

� 0.5(log(2x) + 15)

(using the hypotheses q � x1/3 and x � 1020) and

0.301 log2 q + 2.66 log q � 0.301 log q(log q + 8.9),

we obtain the claim (1.10), after using Lemma 4.1 to replace Sη,2(x, α) with
Sη,q0(x, α) (and replacing 0.301 with 0.31).
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Now we prove (1.11). Here we use the choice

U :=
x

(x/q)2
; V := x/q.

Again, the hypotheses of Theorem 5.1 are easily verified, and we conclude that

|Sη,2(x, α)| � 0.5
x

q
log x log 6 + 0.89(

7

2
q)(8 + log q) log(2x)

+ (0.1
x
√
q
+ 0.39

x√
x/q

)× 3 log2
x

q

+ (0.55
x√

x/(x/q)2
+ 0.78

x√
x/q

)× 2 log
x

q
.

Since q � x2/3 and x � 1020, one has
x√

x/(x/q)2
� x√

x/q
,

x
√
q

� 0.001
x√
x/q

and
x

q
� 0.001q,

and thus

|Sη,2(x, α)| � 3.12q(8 + log q) log(2x)

+ (1.181 log2
x

q
+ 2.66 log

x

q
)

x√
x/q

.

Writing

1.181 log2
x

q
+ 2.66 log

x

q
� 1.181 log

x

q
(log

x

q
+ 2.3)

we obtain the claim (1.11), after using Lemma 4.1 to replace Sη,2(x, α) with
Sη,q0(x, α) (and replacing 1.181 with 1.19).

Finally, we establish (1.12). Here we use the choice

U :=
x

(1.02x/q)2
; V := 1.02x/q

to ensure that UV < q − 1. We may now use the term (5.7) and conclude that

|Sη,2(x, α)| � 96

π2

x

(x/q)2
log(4x) log

4eq

π

+ (0.1
x
√
q
+ 0.39

x√
x/q

)× 3 log2(1.02x/q)

+ (0.55
x√

x/(1.02x/q)2
+ 0.78

x√
1.02x/q

)× 2 log(1.02x/q).

We can bound

log
4eq

π
� log(x/4),

and hence
log(4x) log(x/4) � log2 x.

Also, as q � x1/3 and x � 1020, one has
x√

x/(1.02x/q)2
� 1.02

x√
x/q
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and
x
√
q

� 0.001
x√
x/q

,

and thus

|Sη,2(x, α)| � 96

π2

x

(x/q)2
log2 x

+ 1.19
x√
x/q

log2(1.02x/q)

+ 2.67
x√
x/q

log(1.02x/q).

The last two terms can be bounded by (1.19 log 1.02x
q )× (log 1.02x

q + 2.3). Since

1.19 log
1.02x

q
� 1.2 log

x

q
,

log
1.02x

q
+ 2.3 � log

x

q
+ 2.35

and
96

π2
� 9.73,

the claim (1.12) follows, after using Lemma 4.1 to replace Sη,2(x, α) with Sη,q0(x, α)
(and replacing 2.35 with 2.4).

7. Major arc estimate

In this section we use Theorem 1.5 to control exponential sums in the “major
arc” regime α = O(T0/x). To link the von Mangoldt function to the zeroes of the
zeta function we use the following standard identity:

Proposition 7.1 (Von Mangoldt explicit formula). Let η : R → C be a smooth,
compactly supported function supported in [2,+∞). Then

(7.1)
∑
n

Λ(n)η(n) =

∫
R

(1− 1

x3 − x
)η(y) dy −

∑
ρ

∫
R

η(y)yρ−1 dy,

where ρ ranges over the non-trivial zeroes of the Riemann zeta function.

Proof. See, for instance, [19, §5.5]. �

Proposition 7.2 (Major arc sums). Let T0 be as in Theorem 1.5. Let η : R → R+

be a smooth non-negative function supported on [c, c′], and let x, α ∈ R be such that
cx � 103 and

(7.2) |α| � T0

4πc′x
.

Then

(7.3) |Sη,1(x, α)−x

∫
R

η(y)e(αxy) dy| � A
log T0

3T0
x+2.01c−1/2x1/2N(T0)‖η‖L1(R),

where A is the quantity

(7.4) A := 60‖η‖L1(R) + 32c′‖η′‖L1(R) + 4(c′)2‖η′′‖L1(R)

and N(T0) is the number of zeroes of ζ in the strip {0 � �(s) � 1; 0 � 
(s) � T0}.
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As should be clear from the proof, the constant A can be improved somewhat
by a more careful argument, for instance by exploiting the functional equation for
ζ, which places at most half of the zeroes to the right of the critical line �ρ = 1/2.
However, this does not end up being of much significance, as the right-hand side of
(7.3) is already small enough for our purposes (thanks to the large denominator of
T0). It may appear odd that the condition (7.2) allows for |α| to exceed 1, but the
estimate (7.3) becomes weaker than the trivial bound in Lemma 4.3 in this case.

For our particular choice of T0, namely T0 := 3.29 × 109, the quantity N(T0)
can be bounded by 1010 (indeed, the value of T0 we have chosen arose from the
verification that the first 1010 zeroes of ζ were on the critical line).

Proof. We have

Sη,1(x, α) =
∑
n

Λ(n)η(n/x)e(αn).

Applying (7.1), we conclude that the left-hand side of (7.3) is bounded by∫
R

1

y3 − y
η(y/x) dy +

∑
ρ

∣∣∣∣
∫
R

η(y/x)e(αy)yρ−1 dy

∣∣∣∣ .
Crudely bounding 1

y3−y by 2
(cx)3 on the support of η(y/x), the first term is at most

2c−3x−2‖η‖L1(R). Now we turn to the second sum. We write ρ = σ + it with
0 < σ < 1 and t ∈ R.

We first consider the contribution of those zeroes with |t| � T0. By hypothesis,
σ = 1/2 for these zeroes, and we may bound this portion of the sum by∑

ρ:|t|�T0

∫
R

η(y/x)y−1/2 dy,

which we may bound in turn by

2c−1/2x1/2N(T0)‖η‖L1(R).

As T0 � 103 and cx � 103, we may clearly absorb the much smaller error term
2c−3x−2‖η‖L1(R) into this term by increasing the 2 factor to 2.01.

Finally, we consider the terms with |t| > T0. We may rewrite a single integral

(7.5) |
∫
R

η(y/x)e(αy)yρ−1 dy|

as

|
∫
R

f(y)ei(2παy+t log y) dy|,

where f(y) := η(y/x)yσ−1. Since

ei(2παy+t log y) =
1

i(2πα+ t/y)

d

dy
ei(2παy+t log y)

with the denominator non-vanishing on the support of η(y/x) thanks to (7.2), we
may integrate by parts and write the preceding integral as

|
∫
R

d

dy

(
1

2πα+ t/y
f(y)

)
ei(2παy+t log y) dy|.

A second integration by parts then rewrites the above expression as

|
∫
R

d

dy

(
1

2πα+ t/y

d

dy

(
1

2πα+ t/y
f(y)

))
ei(2παy+t log y) dy|,
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which we then bound by∫
R

| d
dy

(
1

2πα+ t/y

d

dy

(
1

2πα+ t/y
f(y)

))
| dy.

The expression inside the absolute value can be expanded as

t2/y4 − 4παt/y3

(2πα+ t/y)4
f(y)

+
3t/y2

(2πα+ t/y)3
f ′(y)

+
1

(2πα+ t/y)2
f ′′(y).

On the support of f one has y � c′x. From (7.2) we may thus obtain the lower the
bound

|2πα+ t/y| � |t|
2y

and the upper bound

|t2/y4 − 4παt/y3| � 2t2

y4
,

and so the preceding integral may be bounded by

32

t2

∫
R

|f(y)|dy

+
24

t2

∫
R

y|f ′(y)| dy

+
4

t2

∫
R

y2|f ′′(y)| dy.

Since 0 � σ � 1, we have the crude bounds

|f(y)| � η(y/x),

|f ′(y)| � 1

x
|η′(y/x)|+ 1

y
η(y/x),

|f ′′(y)| � 1

x2
|η′′(y/x)|+ 2

xy
|η′(y/x)|+ 1

y2
η(y/x),

and so (on bounding y from above by c′x) we may bound (7.5) by

A
x

t2
,

where A is the quantity defined in (7.4). From [40, Lemma 2], we may bound∑
ρ:|t|�T0

1

t2
� 1

πT0
(log

T0

2π
+ 1) +

1.34

T 2
0

(2 log
T0

2π
+ 1),

which under the hypothesis T0 � 103 can be bounded above by

log T0

3T0
.

The claim then follows. �
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8. Sums of five primes

In this section we establish Theorem 1.4. We recall the following result of Ramaré
and Saouter:

Theorem 8.1. If x � 1.1× 1010 is a real number, then there is at least one prime
p � x with x− p � x

2.8×107 .

Proof. See [40, Theorem 3]. One of the main tools used in the proof is Theorem
1.5. By using the more recent numerical verifications of the Riemann hypothesis,
one can improve this result; see [18]. However, we will not need to do so here. �

By combining the above result with Theorem 1.6, we see that

• Every odd number between 3 and (2.8×107)N0 is the sum of at most three
primes.

• Every even number between 2 and (2.8 × 107)2N0 is the sum of at most
four primes.

• Every odd number between 3 and (2.8 × 107)3N0 is the sum of at most
five primes.

In particular, Theorem 1.4 holds up to (2.8 × 107)3N0 � 8.7 × 1036. Thus, it
suffices to verify Theorem 1.4 for odd numbers larger than 8.7× 1036.

On the other hand, in [24] it is shown that every odd number larger than
exp(3100) is the sum of three primes. It will then suffice to show that

Theorem 8.2. Let 8.7 × 1036 � x � exp(3100) be an integer. Then there is an
integer in the interval [x−N0, x− 2] which is the sum of three odd primes.

We establish this theorem by the circle method. Fix x as above. We will need a
symmetric, Lipschitz, L2-normalised cutoff function η1 which is close to �[0,1]. For
sake of concreteness we will take

η1(t) := (1− 10 dist(t, [0.2, 0.8]))+,

which is supported on [0.1, 0.9] and obeys the symmetry

(8.1) η1(1− t) = η1(t) for all t ∈ R.

For future reference we record some norms on η1 (after performing an infinitesimal
mollification):

‖η1‖L2(R) =

√
2

3
,(8.2)

‖η1‖L∞(R) = 1,(8.3)

‖η1‖L1(R) =
7

10
,(8.4)

‖η′1‖L∞(R) = 10,(8.5)

‖η′1‖L1(R) = 2,(8.6)

‖η1η′1‖L1(R) = 1,(8.7)

‖η′′1 ‖L1(R) = 40,(8.8)

‖η′1η′1 + η1η
′′
1 ‖L1(R) = 40.(8.9)
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For a parameter K � 1 to be chosen later, we will consider the quantity13

∑
n1,n2,n3

∑
1�h1,h2,h3�N0/3

Λ(n1)�(n1,
√
x�)=1η1(n1/x)Λ(n2)�(n2,

√
x�)=1η1(n2/x)

× Λ(n3)�(n3,
√

x/K�)=1
η0(Kn3/x)�x=n1+n2+n3+h1+h2+h3

.

(8.10)

Observe that the summand is only non-zero when n1, n2, n3 are odd primes (of
magnitudes less than x, x, and x/K respectively) with n1+n2+n3 ∈ [x−N0, x−2].
Thus, to prove Theorem 8.2, it suffices to show that the quantity (8.10) is strictly
positive. Applying the prime number heuristic Λ ≈ 1 and (8.2), we see that we
expect the quantity (8.10) to be of size roughly 2

3x
3K−1(N0/3)

3.
Note that we have made the third prime n3 somewhat smaller than the other

two. This trick, originally due to Bourgain [3], helps remove some losses associated
to the convolution of the cutoff functions η1, η0.

By Fourier analysis, we may rewrite (8.10) as

(8.11)

∫
R/Z

Sη1,
√
x�(x, α)

2S
η0,

√
x/K�

(x/K, α)DN0/3(α)
3e(−xα) dα,

where DN0/2(α) is the Dirichlet-type kernel

DN0/2(α) :=
∑

1�n�N0/3

e(nα).

It thus suffices to show that the expression is non-zero for some K. It turns out
that there is some gain to be obtained (of about an order of magnitude) in the
weakly minor arc regime when α is slightly larger than T0/x, by integrating K over
an interval inside [1, T0] that is well separated from both endpoints; for instance,
one could integrate K from 103 to 106. Such a gain could be useful for further work
on Goldbach-type problems. However, for the problem at hand, it will be sufficient
to select a single value of K, namely

K := 103.

As mentioned previously, the expected size of the quantity (8.11) is roughly
2
3
x2

K (N0/3)
3. This heuristic can be supported by the following major arc estimate:

Proposition 8.3 (Strongly major arc estimate). We have∫
‖α‖R/Z� T0

3.6πx

Sη1,
√
x�(x, α)

2S
η0,

√
x/K�

(x/K, α)DN0/3(α)
3e(−xα) dα

=
x2

K
(N0/3)

3(
2

3
+O∗(0.1)).

(8.12)

Proof. From the mean value theorem one has

DN0/3(α) = (N0/3)(1 +O∗(2π(N0/3)‖α‖R/Z)) = (N0/3)(1 +O∗(
N0T0

5.4x
))

13The ranges of the h1, h2, h3 parameters are not optimal. One could do a bit better, for
instance, by requiring 1 � h1, h2 � N0/20 and 1 � h3 � 0.9N0 instead, as this barely impacts
Proposition 8.4, but reduces the upper bound in (8.19) by almost a factor of three. However, we
will not need this improvement here.
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when ‖α‖R/Z � T0

3.6πx . Since N0 = 4 × 1014, T0 = 3.29 × 109, and x � 8.7 × 1036,
we conclude that

(8.13) DN0/3(α) = (N0/2)(1 +O∗(10−10))

(with plenty of room to spare). Also, by Proposition 7.2, for α in the interval
[− T0

3.6πx ,
T0

3.6πx ] (and in fact for all α in the wider interval [−KT0

4πx ,
KT0

4πx ]), one has

Sη0,1(x/K, α) =
x

K
η̂0(αx/K) +O∗(A2

log T0

3T0

x

K
+ 2.01x1/2K−1/2N(T0)‖η0‖L1(R)),

where η̂0(α) :=
∫
R
η0(y)e(αxy) dy and

A2 := 60‖η0‖L1(R) + 32‖η′0‖L1(R) + 4‖η′′0 ‖L1(R).

From (5.9), (5.11), (5.13) one has

A2 = 252 + 256 log 2 � 330,

and with x � 8.7× 1036, K = 103, T0 = 3.29× 109, and N(T0) � 1010, we conclude
that

Sη0,1(x/K, α) =
x

K
(η̂0(αx/K) +O∗(10−6)).

By Lemma 4.1 and (8.13) (and bounding η̂0(αx) as O∗(1) whenever necessary)
we then have

S
η0,

√
x/K�

(x/K, α)DN0/3(α)
3 =

x(N0/3)
3

K
(η̂0(αx) +O∗(1.1× 10−6)).

Let us consider the contribution of the error term x(N0/3)
3

K O∗(1.1×10−6) to (8.12).
By Corollary 4.7, we may bound this contribution in magnitude by

1.1× 10−6x(N0/3)
3

K

2

1− log(2T0/3π)
log x

S
η2
1 ,
√

x/K�
(x, 0),

which by Lemma 4.3 and the bounds T0 = 3.29× 109, x � 8.7× 1036 can be safely
bounded by

10−3x
2(N0/3)

3

K
.

Thus it will suffice to show that

(8.14)

∫
|α|� T0

3πx

Sη1,
√
x�(x, α)

2η̂0(αx/K)e(−xα) dα = x(
2

3
+O∗(0.09)).

We apply Proposition 7.2 again to obtain

Sη1,1(x, α) = xη̂1(αx) +O∗(A1
log T0

3T0
x+ 2.01c

−1/2
1 x1/2N(T0)‖η1‖L1(R)),

where η̂1(α) :=
∫
R
η1(y)e(αxy) dy and

A1 := 60‖η1‖L1(R) + 32c′1‖η′1‖L1(R) + 4(c′1)
2‖η′′1‖L1(R)

with c1 := 0.1, c′1 = 0.9. From (8.4), (8.6), (8.8) one has

A1 = 229.2,

and with x � 8.7× 1036, T0 = 3.29× 109, and N(T0) � 1010, we conclude that

Sη1,1(x, α) = x(η̂1(αx) +O∗(10−6)).
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Bounding η̂0 as O∗(1), we may thus express the left-hand side of (8.14) as the sum
of the main term

x2

∫
|α|� T0

3.6πx

η̂1(αx)
2η̂0(αx/K)e(−xα) dα

and the two error terms

(8.15) O∗(10−6x

∫
|α|� T0

3.6πx

|Sη1,1(x, α)| dα)

and

(8.16) O∗(10−6x2

∫
|α|� T0

3.6πx

|η̂1(αx)| dα).

We first estimate (8.15). From Corollary 4.7 and Lemma 4.3 we have∫
|α|� T0

3.6πx

|Sη1,1(x, α)|2 dα � 2

1− log(2T0/3.6π)
log x

× 4 log 2× 1.04x,

and so by Cauchy-Schwarz we may bound (8.15) by

10−6x

√
T0

3.6π
(

2

1− log(2T0/3.6π)
log x

× 4 log 2× 1.04)1/2;

since x � 8.7× 1036, T0 = 3.29× 109, we may bound (8.15) by 0.02x. A similar (in
fact, slightly better) bound obtains for (8.16) (using Plancherel’s theorem in place
of Corollary 4.7). We conclude that it will suffice to show that∫

|α|� T0
3.6πx

η̂1(αx)
2η̂0(αx/K)e(−xα) dα =

1

x
(1 +O∗(0.05)).

By Lemma 3.3 we have

|η̂1(αx)| �
‖η′1‖L1(R)

2π|α| =
1

π|α| .

From this and the choice T0 = 3.29× 109 one easily verifies that∫
|α|> T0

3.6πx

η̂1(αx)
2η̂0(αx/K)e(−xα) dα = O∗(0.01

1

x
),

and so it remains to show that∫
R

η̂1(αx)
2η̂0(αx/K)e(−xα) dα =

1

x
(1 +O∗(0.04)).

The left-hand side can be expressed as

1

x

∫
R

∫
R

η1(s)η1(1− s− t/K)η0(t) dsdt.

As η0 has an L1 norm of 1, it thus suffices to show that∫
R

η1(s)η1(1− s− t/K) ds = 1 +O∗(0.04)

for all t = O∗(1). By (8.1) and (8.5) one has

η1(1− s− t/K) = η1(s) +O∗(10/K),
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and so (by (8.4) and the L1-normalisation of η0)∫
R

η1(s)η1(1− s− t/K) ds = 1 +O∗(10/K).

Since K = 103, the claim follows. �

In view of the above proposition, it suffices to show that
(8.17)∫
‖α‖R/Z� T0

3.6πx

|Sη1,
√
x�(x, α)|2|Sη0,

√
x/K�

(x/K, α)||DN0/3(α)|3 dα � 0.56
x2

K
(N0/3)

2.

We have the following L2 estimate:

Proposition 8.4 (L2 estimate). We have∫
‖α‖R/Z� T0

3.6πx

|Sη1,
√
x�(x, α)|2|DN0/3(α)|2 dα � 7.09(N0/3)

2x.

Proof. By Proposition 4.10 we have∫
R/Z

|Sη1,
√
x�(x, α)|2|DN0/3(α)|2 dα

� 8H2x

(
1 +

0.13 log x

H
+

(eγ log log(2H) + 2.507
log log(2H) ) log(9H)

2H

)
,

where H := �N0/3�. Since log x � 3100 and N0 = 4 × 1014, a brief computation
then shows that∫

R/Z

|Sη1,
√
x�(x, α)|2|DN0/3(α)|2 dα � 8.001(N0/3)

2x.

Meanwhile, from Corollary 4.8 (using the values x � 8.7×1036, T0 = 3.29×109, c =
0.1, and the estimates (8.3), (8.7), (8.9) to verify the hypotheses of that corollary),
we have ∫

‖α‖R/Z� T0
3.6πx

|Sη1,
√
x�(x, α)|2 dα � 0.92x,

and thus by (8.13)∫
‖α‖R/Z� T0

3.6πx

|Sη1,
√
x�(x, α)|2|DN0/3(α)|2 dα � 0.919(N0/3)

2x.

Subtracting, one obtains the bound. �

In view of this proposition and Hölder’s inequality, it suffices to show the L∞

estimate that

(8.18) |S
η0,

√
x/K�

(x/K, α)||DN0/3(α)| � 0.078x(N0/3)
x

K

whenever ‖α‖R/Z � T0

3.6πx ; comparing this with Lemma 4.3, we see that we have
to beat the “trivial” bounds in that lemma by a factor of roughly 13. By the
conjugation symmetry (4.5) we may assume that

T0

3πx
� α � 1

2 .
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We first consider the case of the weakly major arc regime

T0

3.6πx
< α � KT0

4πx
.

By the computations in the proof of Proposition 8.3, we have

S
η0,

√
x/K�

(x/K, α) =
x

K
(η̂0(αx/K) +O∗(1.1× 10−6))

in this regime, so by the trivial bound |DN0/3(α)| � (N0/3) it suffices to show that

|η̂0(αx/K)| � 0.077.

By Lemma 3.3, we have

|η̂0(αx/K)| �
‖η′0‖L1(R)

2π|α|x/K .

Since α � T0

3.6πx , we conclude from (5.10) that

|η̂0(αx/K)| � 7.2K log 2

T0
,

and the claim follows (with plenty of room to spare) from the choices K = 103,
T0 = 3.29× 109.

Next, we observe from Lemma 4.3 and (5.11) (and the lower bound x/K �
8.7× 1033) that

|S
η0,

√
x/K�

(x/K, α)| � Sη0,1(x/K, 0) � 1.01
x

K
.

Combining this with the crude bound

|DN0/3(α)| � 2

|1− e(α)| =
1

| sin(πα)| � 1

2α

(by (2.1)), we have

|S
η0,

√
x/K�

(x/K, α)||DN0/3(α)| � 1.01

2α

x

K

which gives (8.18) whenever

α � 20

N0
,

and so we may assume that

(8.19)
KT0

3πx
� α <

20

N0
.

In this regime we use the crude bound |DN0/3(α)| � N0/3, and reduce to showing
that

(8.20) |S
η0,

√
x/K�

(x/K, α)| � 0.078x.

We may write 4α = 1
q +O∗(1/q2) for some

1

4α
− 1 � q � 1

4α
;

in particular
N0

80
− 1 � q � πx

KT0
.
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We first consider the weakly minor arc case

(x/K)2/3 � q � πx

KT0
.

In this case we may use (1.12) to bound the left-hand side of (8.20) by

(9.73
1

(x/Kq)2
log2(x/K) + 1.2

1√
x/Kq

log
x

Kq
(log

x

Kq
+ 2.4))

x

K
.

Since x/q � T0/π, we can bound this by

(9.73(
π

T0
)2 log2 x+ 1.19

√
π√
T0

log(T0/π)(log(T0/π) + 2.3))
x

K
.

As log x � 3100 and T0 = 3.29 × 109, the expression inside the parentheses is cer-
tainly less than 0.078 (in fact it is less than 0.004). Note here that the computations
would not have worked if we had used the weaker bounds (1.9), (1.11) in place of
(1.12).

Next, we consider the intermediate minor arc case

(x/K)1/3 � q � (x/K)2/3.

Here, we use (1.9) to bound the left-hand side of (8.20) by

(0.14
y
√
q
+ 0.64

1√
y/q

+ 0.15y−1/5) log y(log y + 11.3)× x

K
,

where y := x/K. Using the bounds on q, this can be bounded in turn by

(0.8y−1/6 + 0.027y−1/5) log y(log y + 11.3)× x

K
.

Since y � 8.7 × 1033, the expression (0.8y−1/6 + 0.15y−1/5) log y(log y + 11.3) is
bounded by 0.078 (in fact it is less than 0.013), so this case is also acceptable.

Finally, we consider the strongly minor arc case

N0

80
− 1 � q � (x/K)1/3.

Note that this case can be vacuous if x is too small. In this case we use (1.10) to
bound the left-hand side of (8.20) by

[0.5
1

q
log(2x/K)(log(2x/K) + 15) + 0.31

1
√
q
log q(log q + 8.9)]× x

K
.

Since log(2x/K) � log x � 3100 and q � N0

80 − 1 = 5 × 1012 − 1, the expression
in brackets is bounded by 0.078 (in fact it is less than 0.0002). This concludes the
proof of (8.18) in all cases, and hence of Theorem 1.4.
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Vol. 1, Progr. Math. 138, Birkhäuser, Boston 1996, 231–244. MR1399341 (97i:11088)
[8] H. Daboussi, J. Rivat, Explicit upper bounds for exponential sums over primes, Math. Com-

putation 70 (2000), 431–447. MR1803131 (2001k:11156)
[9] J.-M. Deshouillers, G. Effinger, H. te Riele, D. Zinoviev, A complete Vinogradov 3-primes

theorem under the Riemann hypothesis, Electron. Res. Announc. Amer. Math. Soc. 3 (1997),
99–104. MR1469323 (98g:11112)
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