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EVERY SEMIGROUP IS ISOMORPHIC TO A TRANSITIVE

SEMIGROUP OF BINARY RELATIONS

RALPH MCKENZIE AND BORIS M. SCHEIN

Abstract. Every (finite) semigroup is isomorphic to a transitive semigroup
of binary relations (on a finite set).

Let BA be the set of all binary relations between elements of a set A. We consider
BA as a semigroup with the operation of relative product ◦. Its subsemigroups are
called semigroups of binary relations. A (faithful) representation of a semigroup S
by relations is a(n injective) homomorphism of S into BA, A being any set.

A subset Φ ⊂ BA is called transitive if
⋃

Φ = A × A (that is, for any a, b ∈ A
there exists ϕ ∈ Φ with (a, b) ∈ ϕ). A representation P of a semigroup S is
called transitive if P(S) is a transitive set of relations, that is, P can be viewed
as a homomorphism of S onto a transitive semigroup of relations. A longstanding
problem of semigroup theory (see [4]) asks which semigroups have faithful transitive
representations by relations. An equally longstanding conjecture is: all. Various
classes of semigroups (subdirectly irreducible, with zero, completely [0]-simple) were
proved to have faithful transitive representations by relations (see [4] and [5]). The
main results of this paper are the following theorems.

Theorem A. Every semigroup is isomorphic to a transitive semigroup of binary
relations.

Theorem B. Every finite semigroup is isomorphic to a transitive semigroup of
binary relations on a finite set.

Before proving the theorems, we mention some open problems.

Open Problems. 1. A relation ϕ ⊂ A × A is called a multipermutation if
its domain and range coincide with A, that is, if, given any a ∈ A, there exist
b, c ∈ A with (a, b), (c, a) ∈ ϕ. Every semigroup is isomorphic to a semigroup of
multipermutations [4]. Which semigroups are isomorphic to transitive semigroups
of multipermutations?

2. Every set Φ of binary relations is ordered by the inclusion relation ⊂,
and every semigroup (Φ; ◦) of relations becomes an ordered semigroup (Φ; ◦;⊂).
Speaking of orders, we always mean partial orders. Clearly, ⊂ is a stable or-
der on Φ (that is, ⊂ is a subsemigroup of the semigroup Φ × Φ or, equivalently,
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272 RALPH MCKENZIE AND BORIS M. SCHEIN

ϕ1 ⊂ ψ1 ∧ ϕ2 ⊂ ψ2 ⇒ ϕ1 ◦ ψ1 ⊂ ϕ2 ◦ ψ2 for all ϕi, ψj ∈ Φ. Here and elsewhere
∧ is a symbol of logical conjunction “and”). Every ordered semigroup (S; ·;≤) (by
definition, ≤ is stable) is isomorphic to an ordered semigroup (Φ; ◦;⊂) of relations
[9]; that is, there exists a bijection R : S → Φ with R(st) = R(s) ◦ R(t) and
s ≤ t⇔ R(s) ⊂ R(t) for all s, t ∈ S. We can choose R preserving all existing infima
of nonempty subsets of S (turning them into intersections of the corresponding
binary relations) [1]. Which ordered semigroups are isomorphic to transitive semi-
groups of binary relations ordered by set-theoretical inclusion?

Example. Let S = {0, 1} be a two-element zero semigroup (xy = 0 for all x, y ∈ S)
with the order 0 < 1. Then S = (S; ·;≤) is an ordered semigroup. If R is an
isomorphism of S onto a transitive inclusion-ordered semigroup of relations on a
set A, then, since R is transitive and R(0) ⊂ R(1), we obtain R(1) = R(0)∪R(1) =
A×A. It follows that

R(0) = R(12) = R(1) ◦R(1) = (A×A) ◦ (A×A) = A×A = R(1) ,

contradicting the faithfulness of R. Therefore, S is an ordered semigroup that is
not isomorphic to any transitive inclusion-ordered semigroup of relations.

3. Every ordered semigroup is isomorphic to a semigroup of multipermutations
ordered by inclusion [4]. Which ordered semigroups are isomorphic to transitive
semigroups of multipermutations ordered by inclusion?

The remaining part of this paper is devoted to the proofs. The proof of Theorem
A is based on constructions that may be of independent interest. This approach is
discussed briefly after Theorem A is proved. For finite semigroups our constructions
may yield a representation by relations on an infinite set. This is why Theorem B
is given a separate proof based on a somewhat different idea.

Proof of Theorem A

Let A be a set, S = (S; ·) a semigroup, and µ : S → BA a mapping. We call µ
transitive if µ(S) is a transitive subset of BA. We call µ a quasi-representation if
µ(s) ◦ µ(t) ⊂ µ(st) for all s, t ∈ S. Thus a representation is a quasi-representation
R such that R(s) ◦R(t) ⊃ R(st). We will extend µ to a representation Rω of S by
relations on a set Aω ⊃ A. This is done in two steps.

Step I. Here we define a quasi-representation Qµ. It is helpful to use the graph
approach introduced now. Let S and V be sets called the sets of labels and vertices,
respectively. A labeled multi-graph is any mapping µ : S → BV . A labeled arrow is
a triple (i, s, j) such that (i, j) ∈ µ(s). It is interpreted as an (oriented) arrow from

i to j labeled by s, graphically i
s−→ j. Alternatively, a labeled multigraph can be

defined as just a subset of V × S × V .
A labeled path from i to j is a sequence of labeled arrows

π =
(
(i0, s0, i1), (i1, s1, i2), ..., (in−1, sn−1, in)

)
,

where i = i0 and j = in. Graphically, π is

i = i0
s0−−−−→ i1

s1−−−−→ i2
s2−−−−→ · · · sn−2−−−−→ in−1

sn−1−−−−→ in = j.

To define the length of π we combine the labels s0, ..., sn−1 in their consecutive
order assuming that the set S of labels is endowed with a binary operation ·, that
is, S = (S; ·) is a groupoid. The product l(π) = s0 · s1 · ... · sn−1 is called the length
of the path π. In particular, the label s of a labeled arrow (i, s, j) is its length. We
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TRANSITIVE REPRESENTATIONS OF SEMIGROUPS 273

assume that · is associative, that is, S is a semigroup, so that l(π) does not depend
on the way in which parentheses are placed in s0 · s1 · ... · sn−1.

If π1 : i = i0
∗−→ · · · ∗−→ im = j and π2 : j = j0

∗−→ · · · ∗−→ jn = k are labeled paths
from i = i0 to j = im and from j = j0 to k = jn, respectively, their concatenation
is the following labeled path π1π2 from i to k :

π1π2 : i = i0
∗−→ i1 · · · ∗−→ im = j0

∗−→ · · · ∗−→ jn = k .

Obviously, l(π1π2) = l(π1)l(π2).

Remark on notation. A relative product ψ ◦ ϕ can be defined either as (a, c) ∈
ψ◦ϕ⇔ (a, b) ∈ ϕ∧(b, c) ∈ ψ for some b, or as (a, c) ∈ ψ◦ϕ⇔ (a, b) ∈ ψ∧(b, c) ∈ ϕ
for some b. If ϕ and ψ are mappings and ϕ(a) = b stands for (a, b) ∈ ϕ, then ψ ◦ϕ
is a mapping such that (ψ ◦ ϕ)(a) = ψ(ϕ(a)), and hence one should adhere to the
former definition of ◦. This is why one of us used the former definition of ◦ in
his previous publications. If we adhere to the former notation with the factors
in a relative product written from the right to the left, and read the factors st
in a product of elements of an abstract semigroup from the left to the right, we
have to define a representation by the equality P(t)◦P(s) =P(st). This seeming
contradiction to our definition can be avoided if ϕ(a) is replaced by aϕ or (a)ϕ, in
which case (a)(ϕ ◦ ψ) = ((a)ϕ)ψ. Another possibility is interpreting ϕ(a) = b as
(b, a) ∈ ϕ. However, this does not lie squarely with the habitual graph notation

a
ϕ−→ b for ϕ(a) = b. Thus, we may want to consider t as the first factor in the

product st.
Another possibility is using the latter definition of ◦, writing ψϕ instead of ψ◦ϕ.

This notation is used in the theory of relations, but it is awkward in the semigroup
context. Indeed, if T and U are subsets of a semigroup S, then TU ordinarily
stands for the subset {tu | t ∈ T, u ∈ U}. If ϕ and ψ are relations between elements
of a semigroup S, then they are subsets of S × S, which is a semigroup (the direct
product of two copies of S). Thus, if we want to adhere to conventional notation,
we have to conclude that ϕψ = {(su, tv) | (s, t) ∈ ϕ ∧ (u, v) ∈ ψ}. For example, if
ϕ is an order relation on a semigroup S, then ϕϕ ⊂ ϕ means that ϕ is stable (that
is, “compatible with multiplication,” s ≤ t ∧ u ≤ v ⇒ su ≤ tv, where a ≤ b stands
for (a, b) ∈ ϕ). On the other hand, ϕ ◦ ϕ ⊂ ϕ means that ϕ is transitive (that is,
(a, b) ∈ ϕ ∧ (b, c) ∈ ϕ⇒ (a, c) ∈ ϕ).

In this paper we assume that (a, c) ∈ ψ ◦ ϕ⇔ (a, b) ∈ ψ ∧ (b, c) ∈ ϕ for some b.
Yet, contrary to what we have just said, we write P(s) instead of more logical (s)P.
Mathematics is both logical and consequential, but who said that mathematicians
should be?

Let S be a semigroup and µ : S → BV a mapping. Define a new mapping
Qµ : S → BV as follows:

Qµ(s) =
⋃
{µ(s1) ◦ µ(s2) ◦ · · · ◦ µ(sn) | n ≥ 1, s = s1s2...sn}.

Thus (i, j) ∈ Qµ(s) when there exists a path of length s leading from i to j.

Lemma 1. Qµ is a quasi-representation. If µ is transitive, so is Qµ.

Proof. Let (i, k) ∈ Qµ(s) ◦ Qµ(t). Then there exists j such (i, j) ∈ Qµ(s) and
(j, k) ∈ Qµ(t), that is, there exist paths π1 from i to j and π2 from j to k such
that l(π1) = s and l(π2) = t. The concatenation π1π2 is a path from i to k and
l(π1π2) = l(π1)l(π2) = st, so that (i, k) ∈ Qµ(st). It follows that Qµ(s) ◦Qµ(t) ⊂
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Qµ(st), and hence Qµ is a quasi-representation of S. Obviously, if µ is transitive,
then Qµ is transitive.

Step II. Now we extend quasi-representations to representations. Let µ : S →
BV be a quasi-representation of a semigroup S. For every i, j ∈ V and s, t ∈ S
such that (i, j) ∈ µ(st) but (i, j) /∈ µ(s) ◦ µ(t), add a new vertex ki,j,s,t to V .
This extends V to a larger set V̄ of vertices. For each new vertex ki,j,s,t add two

new labeled arrows (i, s, ki,j,s,t) and (ki,j,s,t, t, j) (graphically i
s−→ ki,j,s,t

t−→ j,) to
the multi-graph µ, thus obtaining a new multi-graph µ̄. Finally, extend µ̄ to a
quasi-representation Qµ̄ as described in Step I.

Definition. Let Q : S → BA and R : S → BB be quasi-representations of a
semigroup S, A ⊂ B and Q(s) = R(s) ∩ (A×A) for all s ∈ S. Then R is called an
extension of Q.

Lemma 2. Qµ̄ is an extension of µ. If µ is transitive, so is Qµ̄.

Proof. The inclusion µ(r) ⊂ Qµ̄(r)∩ (A×A) is obvious. If (a, b) ∈ Qµ̄(r)∩ (A×A),
there exists a path π from a to b of length r. The endpoints a and b of π belong to

the old set of vertices A. Therefore, new vertices can appear only in subpaths i
s−→

ki,j,s,t
t−→ j of π. Replacing each of these subpaths by a labeled arrow i

st−→ j, which
belongs to the old multi-graph µ, we obtain a new path π′ of the same length as π
and with the same endpoints but without new vertices, so that π′ is a path in the
old multi-graph µ. It follows that (a, b) ∈ µ(r), and hence µ(r) = Qµ̄(r) ∩ (A×A).

Suppose that µ is transitive and a, b ∈ Ā. If a, b ∈ A, then (a, b) ∈ µ(u) for
some u ∈ S, and hence (a, b) ∈ Qµ̄(u). If a ∈ A and b /∈ A, then b = ki,j,s,t for
some i, j ∈ A and s, t ∈ S. Since µ is transitive, (a, i) ∈ µ(v) for some v ∈ S. It

follows that a
v−→ i

s−→ b is a path in µ̄, and hence (a, b) ∈ Qµ̄(vs). Analogously,
if a /∈ A and b ∈ A, then a = ki,j,s,t, also (j, b) ∈ µ(v) for some v ∈ S, and hence
(a, b) ∈ Qµ̄(t) ◦ Qµ̄(v) ⊂ Qµ̄(tv). Finally, if a, b /∈ A, then a = ki1,j1,s1,t1 and
b = ki2,j2,s2,t2 for some i1, i2, j1, j2 ∈ A and s1, s2, t1, t2 ∈ S. Since µ is transitive,

(j1, i2) ∈ µ(u) for some u ∈ S. Thus a
t1−→ j1

u−→ i2
s2−→ b is a path in µ̄, and hence

(a, b) ∈ Qµ̄(t1us2). Therefore, Qµ̄ is transitive.

If R : S → BA is a quasi-representation of S, define inductively An and Rn :
S → BAn as follows. Let A0 = A and R0 = R. If An and Rn : S → BAn have
already been defined, let An+1 = Ān and Rn+1 = QR̄n . By Lemma 2, Rn is a
quasi-representation of S by binary relations on An for every n ≥ 0.

Now define Aω and Rω as follows:

Aω =
∞⋃
n=0

An and Rω(s) =
∞⋃
n=0

Rn(s) for all s ∈ S .

Lemma 3. Rω is a representation of S by binary relations on Aω and an extension
of R0. If R0 is transitive, so is Rω.

Proof. If (i, j) ∈ Rω(s) ◦ Rω(t) for some i, j ∈ Aω and s, t ∈ S, then (i, k) ∈ Rω(s)
and (k, j) ∈ Rω(t) for some k ∈ Aω . It follows from the definition of Rω that
(i, k) ∈ Rm(s) and (k, j) ∈ Rn(t) for some m,n ≥ 0. If p ≥ m and p ≥ n, then
Rm(s) ⊂ Rp(s) and Rn(t) ⊂ Rp(t), so that (i, k) ∈ Rp(s) and (k, j) ∈ Rp(t), whence
(i, j) ∈ Rp(s)◦Rp(t) ⊂ Rp(st) ⊂ Rω(st), becauseRp is a quasi-representation. Thus
Rω is a quasi-representation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TRANSITIVE REPRESENTATIONS OF SEMIGROUPS 275

Now let (i, j) ∈ Rω(st). Then (i, j) ∈ Rn(st) for some n ≥ 0. There may exist
k ∈ An such that (i, k) ∈ Rn(s) and (k, j) ∈ Rn(t). If no such k exists in An, then
there exists k = ki,j,s,t ∈ An+1 such that (i, k) ∈ Rn+1(s) and (k, j) ∈ Rn+1(t).
Since Rω is an extension of both Rn and Rn+1, we obtain (i, k) ∈ Rω(s) and
(k, j) ∈ Rω(t), and hence (i, j) ∈ Rω(s) ◦Rω(t). Therefore, R(st) ⊂ Rω(s) ◦Rω(t).
It follows that Rω is a representation of S. Also,

Rω(s) ∩Am ×Am =
∞⋃
n=0

(
Rn(s) ∩Am × Am

)
= Rm(s),

so that Rω is an extension of Rm for all m ≥ 0.
If R0 is transitive, then Rn is transitive for all n ≥ 0 by induction on n and

Lemma 2. If i, j ∈ Aω, then i ∈ Am and j ∈ An for some m and n, and hence
i, j ∈ Ap for every p such that p ≥ m and p ≥ n. Since Rp is transitive, there exists
s ∈ S such that (i, j) ∈ Rp(s) ⊂ Rω(s). It follows that Rω is transitive.

Definition. Extend a labeled multi-graph µ : S → BA to a quasi-representation
R = Qµ using Step I. Using Step II, extend R to a representation Rω of S. We call
Rω a free representation of S generated by µ.

Suppose that Φ is a transitive semigroup of relations on a set A and Ψ an ideal
of Φ that contains a nonempty relation ψ (this is so if, for example, Ψ is a nonzero
ideal). Let (a, b) ∈ ψ. If i, j ∈ A, then (i, a) ∈ α and (b, j) ∈ β for some α, β ∈ Φ,
because Φ is transitive. It follows that (i, j) ∈ α ◦ ψ ◦ β ∈ Ψ, and hence Ψ is
transitive. Thus if a semigroup has a faithful transitive representation by relations,
then every nonzero ideal of this semigroup has such a representation. A converse
to this statement holds too.

Lemma 4. If an ideal of a semigroup has a faithful transitive representation by
relations, then the semigroup itself has a faithful transitive representation.

Proof. Let Q be a faithful transitive representation of an ideal I of a semigroup S
by relations on a set A. Without loss of generality, assume that Q(s) 6= ∅ for every
s ∈ I. We can do that because if Q(s) = ∅ for some s ∈ I, then, since ∅ is the zero
of BA and Q is faithful, s is the zero of S. In such a case replace I by {0}, where
0 = s, and Q by a faithful transitive representation Q0 of {0} by relations on the
set A0 = {0}, where Q0(0) = {(0, 0)}.

Clearly, a labeled multi-graph µ : S → BA, defined by µ(s) = Q(s) if s ∈ I and
µ(s) = ∅ if s /∈ I, is a transitive quasi-representation of S. Fix u ∈ I and, for every
s /∈ I, choose (as, bs) ∈ Q(usu). This is possible because Q(usu) 6= ∅. Now add two

new vertices is and js to A and three new labeled arrows as
u−→ is

s−→ js
u−→ bs to µ.

Let Â denote the new extended set of vertices and µ̂ the new labeled multi-graph
with the set of vertices Â and old and new labeled arrows. There is a labeled path
in µ̂ between any two vertices of Â, so Qµ̂ is a transitive quasi-representation.

Now we prove that Qµ̂(r) ∩ (A×A) is Q(r) for r ∈ I and ∅ for r /∈ I. Indeed, if
(i, j) ∈ Qµ̂(r) ∩ (A× A), then there is a path π in µ̂ of length r from i to j. If all
the vertices of π belong to A, then π is a path in Q, and so (i, j) ∈ Q(r) and r ∈ I.
If π contains new vertices adjoined to A, then, since the endpoints of π belong to

A, these new vertices appear only in subpaths of the form as
u−→ is

s−→ js
u−→ bs

occurring in π. Replace each of these subpaths by a single labeled arrow as
usu−−→ bs

of the same length. Such arrows belong to Q, and in this way we replace π by a new
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path π′ in Q with l(π) = l(π′) = r. Therefore, (i, j) ∈ Q(r) and r ∈ I. In particular,
Qµ̂(r) ∩ (A × A) = ∅ for r /∈ I. It remains to notice that Q(r) ⊂ Qµ̂(r) ∩ (A × A)
for all r ∈ I.

To see that Qµ̂ is injective, let Qµ̂(s) = Qµ̂(t). Then Qµ̂(s)∩ (A×A) = Qµ̂(t)∩
(A × A). Thus either s, t ∈ I, or s, t /∈ I. In the former case, Q(s) = Q(t), and
hence s = t because Q is faithful. In the latter case, (is, js) ∈ Qµ̂(s) = Qµ̂(t),
and there exists a labeled path π in µ̂ from is to js of length t. However, the only

arrow beginning at is is is
s−→ js. If s 6= t, then π must contain more than one

labeled arrow. The only arrow beginning at js is js
u−→ bs. Therefore, π begins

with is
s−→ js

u−→ bs. Thus l(π) = sux for some x ∈ S. Since u ∈ I, we obtain
t = l(π) ∈ I, which is a contradiction. Thus s = t.

By Lemma 3, Qµ̂ extends to a transitive representation Rω. Also,

Rω(s) = Rω(t)⇒ Qµ̂(s) = Rω(s) ∩ (Â× Â)

= Rω(t) ∩ (Â× Â) = Qµ̂(t)⇒ s = t,

and hence Rω is a faithful transitive representation of S by binary relations.

Definition. The kernel of a semigroup is its smallest ideal (if it exists). A semi-
group S is called simple if it coincides with its kernel. Equivalently, S is simple
when, given any s, t ∈ S, there exist x, y ∈ S such that t = xsy.

Lemma 5. Every semigroup without a kernel possesses a faithful transitive repre-
sentation.

Proof. It is a modification of the proof of Lemma 4. Let A = {0} be a singleton set
and µ a transitive representation of a semigroup S without a kernel by relations on
A defined by µ(s) = {(0, 0)} for all s ∈ S. For every t ∈ S, choose an ideal It such
that t /∈ It and choose ut ∈ It.

For every pair (s, t) with s 6= t, add two new vertices is,t and js,t to A and three

labeled arrows 0
ut−→ is,t

s−→ js,t
ut−→ 0 to µ. Let Â denote the new extended set of

vertices and µ̂ : S → BÂ the new labeled multi-graph. Obviously, Qµ̂ is transitive.
Extend it to a representation Rω freely generated by µ̂. By Lemmas 2 and 3, Rω
is transitive. If Rω(s) = Rω(t) for some s, t ∈ S, then Qµ̂(s) = Qµ̂(t). If s 6= t,
then (is,t, js,t) ∈ Qµ̂(s) = Qµ̂(t). Thus there exists a labeled path π in µ̂ from is,t
to js,t of length t. However, the only arrow beginning at is,t is is,t

s−→ js,t. Also,
π contains more than one labeled arrow, because s 6= t. The only arrow beginning

at js,t is js,t
ut−→ 0. Therefore, π begins with is,t

s−→ js,t
ut−→ 0. Thus l(π) = sutx

for some x ∈ S. Since ut ∈ It, we obtain t = l(π) ∈ It, contradicting t /∈ It. Thus
s = t and Rω is a faithful transitive representation of S.

To complete the proof of Theorem A, it remains to consider semigroups with
kernel.

Step III. Here we define a quasi-representation Qµ̃ of a simple semigroup S.
Let E(S) be the set of all idempotents of S (this set may be empty). For each

e ∈ E(S), let Ge denote the maximal subgroup of S in which e is the identity
element. Thus Ge = {s ∈ S | e ∈ sSs ∧ ese = s}.

For each maximal subgroup Ge, let µe : Ge → BGe be its Cayley right regular

representation. The labeled arrows of µe are g
h−→ gh for all g, h ∈ Ge. Define

G(S) =
⋃
{Ge | e ∈ E(S)} and µ =

⋃
{µe | e ∈ E(S)}. The labeled arrows of
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µ : G(S)→ BG(S) are g
h−→ gh for all g and h belonging to the same subgroup of S.

Extend µ to S by defining µ(s) = ∅ for all s /∈ G(S).
Fix an idempotent eo ∈ E(S). We shall add new labeled arrows to µ connecting

Geo with Ge in both directions, thus turning µ into a multi-graph µ̃ such that Qµ̃
is injective on subgroups of S.

For every e ∈ E(S) there exist r, s ∈ S such that eo = res. Let ae = eore and
be = eseo. Also, assume that aeo = beo = eo. Then eo = aebe, eoae = aee = ae,
and ebe = beeo = be for every e ∈ E(S). Also, (beae)

2 = beaebeae = beeoae = beae,
and hence beae ∈ E(S). Let e′ = beae. Recall that e ≤ f ⇔ e = ef = fe is an order

relation on E(S). Obviously, e′ ≤ e for all e ∈ E(S). In particular, e
′

o = boao = eo.
Define qe,f = beaf for e, f ∈ E(S). Thus e′ = qe,e.

For every e 6= eo add to µ two new labeled arrows eo
ae−→ e and e

be−→ eo. Let
µ̃ : S → BG(S) denote the extended labeled multi-graph. There are labeled paths
in µ̃ from any vertex to eo and from eo to any vertex. Combining them, we obtain
paths from any vertex to any vertex. Therefore, the quasi-representation Qµ̃ of S
is transitive.

Before we proceed, we prove Lemma 9, which gives exact lengths of paths in
µ̃. First we prove Lemmas 6–8, which are special cases of Lemma 9 and which
give lengths of certain cycles, that is, paths with coinciding endpoints. Lemma 9
is stronger than what we need for completing the proof of Theorem A, but this
lemma is used later in the proof of Theorem B.

Lemma 6. If π : e −→ · · · −→ e is a labeled cycle in µ̃ with all vertices belonging to
Ge, then all labels of π belong to Ge and l(π) = e.

Proof. If i
a−→ j is a labeled arrow in µ̃ such that i, j ∈ Ge, then a ∈ Ge. Thus π is

a path in µe. Since µe is the Cayley representation of Ge, we obtain e
(
l(π)

)
= e,

and hence l(π) = e.

Lemma 7. If π : eo −→ · · · −→ eo and τ : e −→ · · · −→ e, eo 6= e ∈ E(S), are labeled
cycles in µ̃ with vertices in Geo ∪ Ge such that some vertices of τ actually belong
to Geo , then l(π) = eo and l(τ) = e′.

Proof. Obviously, π is a concatenation of one or more cycles πk with endpoints
eo that contain no other occurrences of eo. It suffices to show that l(πk) = eo
for every k. If all the vertices of πk belong to Geo , then l(πk) = eo by Lemma
6. Suppose that πk has vertices not belonging to Geo . The only labeled arrow

leading from Geo to Ge is eo
ae−→ e. Having passed it, we make a (possibly trivial)

cycle σ in Ge returning to e, and then pass the arrow e
be−→ eo. By Lemma 6,

l(πk) = ael(σ)be = aeebe = aebe = eo.

Also, τ is a concatenation of a cycle τ1 in Ge, an arrow e
be−→ eo, a cycle τ2 : eo −→

· · · −→ eo, an arrow eo
ae−→ e, and a cycle τ3 in Ge. By Lemma 6, l(τ1) = e = l(τ3).

By the first part of Lemma 7, l(τ2) = eo. Thus l(π) = ebeeoaee = ee′e = e′.

Lemma 8. Let π : e −→ · · · −→ e be a labeled cycle in µ̃ with vertices in G(S). If
all vertices of π are in Ge, then l(π) = e. Otherwise, l(π) = e′.

Proof. If all vertices of π are in Ge, apply Lemma 6. Let π have vertices not
belonging to Ge. If e = eo, then π is a concatenation of cycles πk with endpoints eo,
where each of πk has no other occurrences of eo. If eo, e1, and e2 are three different
idempotents, then any path from e1 to e2 passes through eo. Therefore, either πk
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is a path with all vertices in Geo , or it is a path with vertices in Geo ∪Ge for some
e ∈ E(S). By Lemma 7, l(πk) = eo. Thus l(π) = l(π1)l(π2) . . . = eoeo . . . = eo.

Now let e 6= eo. If π has no occurrences of e, except the endpoints, then it

is of the form e
be−→ eo −→ · · · −→ eo

ae−→ e. As we have just seen, the length of
eo −→ · · · −→ eo is eo, and hence l(π) = beeoae = beae = e′. In general, π is a
concatenation of cycles πk with endpoints e, where πk contain no other occurrences
of e. Then l(πk) is e or e′, and l(π) is a product of idempotents e and e′. Since
ee′ = e′e = e′, we obtain l(π) = e′.

Lemma 9. Let π be a labeled path from i to j in µ̃, where i ∈ Ge and j ∈ Gf for
certain idempotents e and f of a simple semigroup S. If all vertices of π belong to
Ge, then l(π) = i−1j. Otherwise, l(π) = i−1qe,f j.

Proof. If all the vertices of π are in Ge, then π is a path in µe, and hence i
(
l(π)

)
= j.

Thus l(π) ∈ Ge and l(π) = i−1j. If some vertices of π are not in Ge, then π is a
concatenation of paths π1 from i to e, σ from e to f , and π2 from f to j, where all
the vertices of π1 are in Ge and all those of π2 in Gf . Since π1 and π2 are paths
in µe and µf , respectively, we obtain l(π1) = i−1e = i−1 and l(π2) = e−1j = j. It
remains to find l(σ).

If e = f , then, by Lemma 8, l(σ) ∈ {e, e′}. Suppose that e 6= f . We cannot
get from e to f without passing eo. Therefore, σ is a concatenation of a loop σ1

from e to e with all of its vertices in Ge, the labeled arrow e
be−→ eo (if e 6= eo), a

loop σ2 from eo to eo, the labeled arrow eo
af−→ f (if f 6= eo), and a loop σ3 from

f to f with all of its vertices in Gf . By Lemma 6, l(σ1) = e and l(σ3) = f . By
Lemma 8, l(σ2) = eo. Therefore, l(σ) = ebeeoaff = beaf = qe,f . It follows that
l(π) = l(π1)l(σ)l(π2) = i−1qe,f j.

Define Qe(s) = Qµ̃(s) ∩Ge ×Ge for all s ∈ Ge.
Lemma 10. Qe = µe for all e ∈ E(S).

Proof. Obviously, µe(s) ⊂ µ(s) ⊂ µ̃(s) ⊂ Qµ̃(s), and so µe(s) ⊂ Qe(s). If (i, j) ∈
Qe(s) for i, j, s ∈ Ge, then there exists a labeled path π : i −→ · · · −→ j in µ̃ of
length s. This path is a concatenation of a path π1 from i to e with vertices in Ge,
followed by a cycle π2 from e to e with vertices in G(S), and a path π3 from e to j
with vertices in Ge. By Lemma 8, l(π2) ∈ {e, e′}.

Suppose that l(π2) = e′. Let l(π1) = u and l(π3) = v, where u, v ∈ Ge. Then
ue′v = l(π1)l(π2)l(π3) = l(π1π2π3) = l(π) = s ∈ Ge. If x ∈ Ge, let x−1 be the
inverse of x in Ge. Then e′ = ee′e = u−1ue′vv−1 = u−1sv−1 ∈ Ge, and hence
e′ = e, because Ge has only one idempotent.

It follows that l(π1π3) = l(π1)l(π3) = l(π1)e(π3) = l(π1)l(π2)l(π3) = l(π1π2π3) =
l(π) = s, where π1π3 is a path from i to j with all of its vertices in Ge. Thus
(i, j) ∈ µe(s), and hence Qe(s) ⊂ µe(s).
Lemma 11. Every simple semigroup S possesses a transitive quasi-representation
Q such that the restriction Q|Ge of Q to each Ge is injective.

Proof. If G(S) = ∅, let Q(s) = {(0, 0)} for all s ∈ S. Obviously, Q is a transitive
representation of S by relations on a set {0}. Also, Q is injective on all subgroups
of S (because there are none). If G(S) 6= ∅, use Step III to construct the quasi-
representation Q = Qµ̃. We have seen that Q is transitive. If Q(s) = Q(t) for some
s, t ∈ Ge and e ∈ E(S), then, by Lemma 10, µe(s) = Qe(s) = Q(s) ∩ Ge × Ge =
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Q(t)∩Ge×Ge = Qe(t) = µe(t), and hence s = t, because the Cayley representation
µe is injective. Thus Q is injective on maximal subgroups of S.

Step IV. Here we define a quasi-representation Qν̌ .
Let ν : S → BA be a transitive quasi-representation of a simple semigroup S

such that ν is injective on all subgroups of S and A 6= ∅, and let X = {(s, t) ∈
S × S| ν(s) = ν(t) ∧ s 6= t ∧ s /∈ tsSst}.

If s ∈ tsSst and t ∈ stSts for some s, t ∈ S, then s = tsxst and t = styts
for suitable x, y ∈ S. Let a = sxst, b = tyts, c = tsxs, and d = styt. Then
s = ta = ct and t = sb = ds, so that t = tab and s = ct = ctab = sab. Analogously,
cds = s, and hence cdt = t. Therefore, ab = sx · · · = (cds)x · · · = (cd)(ab) =
(· · · yt)(ab) = · · · y(tab) = · · · yt = cd. The element e = ab = cd is idempotent, and
hence s, t ∈ Ge. If ν(s) = ν(t), then s = t, because ν is injective on Ge. Thus, if
ν(s) = ν(t) and s 6= t, then (s, t) ∈ X or (t, s) ∈ X .

Since A 6= ∅ and ν is transitive, we can choose w ∈ S and i, j ∈ A such that
(i, j) ∈ ν(w). Next choose us,t, vs,t ∈ S such that w = us,tstsvs,t.

For every pair (s, t) ∈ X add four new vertices as,t, bs,t, cs,t and ds,t to A.

Let Ǎ be the extended set of vertices. Also, for every (s, t) ∈ X add to ν the

following five labeled arrows: i
us,t−−→ as,t

s−→ bs,t
t−→ cs,t

s−→ ds,t
vs,t−−→ j. Let ν̌ denote

the new labeled multi-graph S → BǍ and let Qν̌ be the quasi-representation of
S corresponding to the multigraph ν̌. Clearly, ν̌ is transitive, and hence Qν̌ is
transitive.

Lemma 12. Every simple semigroup admits a faithful transitive representation by
binary relations.

Proof. Suppose that Qν̌(s) = Qν̌(t) for some s, t ∈ S. If s and t belong to the
same subgroup of S, then s = t because ν̌ is injective on the subgroups. Suppose
that s 6= t and s and t do not belong to the same subgroup. Then (s, t) ∈ X or
(t, s) ∈ X . Without loss of generality, let (s, t) ∈ X . Then (bs,t, cs,t) ∈ ν̌(t) ⊂ Qν̌(t),
and hence (bs,t, cs,t) ∈ Qν̌(s). Thus there exists a labeled path π of length s in ν̌
leading from bs,t to cs,t. Since s 6= t, this path contains more than one arrow.
However, the only path in ν̌ leading from bs,t that has more than one arrow is

bs,t
t−→ cs,t

s−→ ds,t −→ · · · , and the only path leading to cs,t that is not a single

arrow is · · · −→ as,t
s−→ bs,t

t−→ cs,t. Therefore, s = l(π) = ts...st ∈ tsSst, which
contradicts (s, t) ∈ X . Thus s = t.

Let Rω be a free representation of S generated by ν̌. It is transitive and faithful
because it extends the transitive and injective Qν̌ .

Now we can complete the proof of Theorem A. If a semigroup S has no kernel,
apply Lemma 5. If S has a kernel K, then K is a simple semigroup. Apply Lemma
12 and then Lemma 4.

A remark-essay on “metrics” in multi-graphs

To prove Theorem A we used a “metric” on multi-graphs. This idea can be (and
has been) applied to other situations, this is why we discuss it now in more detail.
As we have already seen, if we want to consider “metrics” in multi-graphs, it is
natural to assume that the length of a path should be the “sum” of lengths of its
arrows in the order in which they are passed. Thus it is natural to assume that the
set S, from which we take “lengths” of arrows, has a binary operation (following
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tradition, we call the result of its application a “product” rather than “sum”).

Looking at the length of a three-arrow path · x−→ · y−→ · z−→ ·, we see that it is natural
to assume that (xy)z = x(yz) for all x, y, z ∈ S. Thus it is natural to use semigroups
(or at least small categories) as sets of possible distances in multi-graphs.

If we want our “metrics” to satisfy other “natural” properties, we may have to
impose specific conditions on the semigroup S of “distances.” For example, it may
be natural to ask what is the length of a trivial path with a single vertex and no
arrows in it. Our “metric intuition” tells us this is “zero.” Analyzing that intuition,
we see that the length in this case should not “add anything” to the length of any
path. Thus, if the length of an “empty” path (i) with a single vertex i is a and π
is a path of length s beginning at i, then the length of the concatenation of (i) and
π should be the same as l(π), that is, as = s. Concatenating (i) with itself, we see
that aa = a, that is, a is an idempotent. Analogously, considering paths of length
t ending at i and concatenating them with (i), we see that ta = t. Thus, a is an
idempotent left identity or a right identity for certain elements of S. If we prefer
the length of (i) not to depend on the choice of the vertex i, than this length must
be the identity element of S; that is, it is natural to assume that S is a monoid. If
the length of (i) depends on i, we obtain a semigroup with specific conditions (for
example, each of its elements has left and right idempotent identities).

What about the “symmetry” of our “metric”? One obstacle is that the arrows in
our multi-graphs are oriented and passed in the direction of their orientation in any

path. It is possible to ask what might be the length of an arrow i
s−→ j if it is passed

in the opposite direction, from j to i. One possibility is to consider non-oriented
arrows. Then, if we want our metric to be symmetric, we have to conclude that the

length st of a path i
s
− j

t
− k should coincide with the length of that path passed

in the opposite direction, from k to i, and hence st = ts. Thus we have to assume
that our “metric semigroup” S is commutative, and we may use a more intuitively
appealing additive terminology for lengths of paths.

However, in certain situations (for example, for representations by binary rela-
tions) arrows of our multi-graphs are oriented and commutativity of S may not
be a natural condition. Another approach is possible. Assume that if two arrows
i1 −→ j1 and i2 −→ j2 have the same length s, then those arrows passed in the
opposite direction also have the same length, say s−1. In other words, assume that

the length of an arrow i
s−→ j passed in the opposite direction depends on s but

not on the endpoints i and j. Then s → s−1 is a unary operation in S. If we
reverse the orientation of an arrow

s−→ twice, its length s will change as follows:
s→ s−1 → (s−1)−1. However, after two reversals we return to the original arrow,
and hence it is natural to assume that (s−1)−1 = s for any s ∈ S.

If π : · s−→ · t−→ · is a path of length st, it is natural to assume that its length
in the opposite direction would be (st)−1. However, it is no less natural to assume
that the length of π in the opposite direction would be the product t−1s−1. Thus
we obtain (st)−1 = t−1s−1 for any s, t ∈ S.

An algebra of the form S = (S; ·,−1 ) is called an involuted semigroup if (S; ·) is
a semigroup, −1 is a unary operation, and the identities (x−1)−1 = x and (xy)−1 =
y−1x−1 hold in S. Thus, when we measure lengths of arrows in the direction
opposite to their orientation, we may consider involuted semigroups.

If the distances in a multi-graph are measured by elements of an involuted semi-
group, we may determine lengths of all sorts of “zigzags.” For example, consider
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the configuration i
s−→ j

t←− k
u−→ l. This is not a path, but we can turn it into

a path by reversing the orientation of j ←− k. The length of that path would be
st−1u.

Now suppose that we want to pass an arrow i
s−→ j from i to j, then return to i,

and then return back to j. The length of this “zigzag path” would be ss−1s. Is this

zigzag path “longer” than the original arrow i
s−→ j? To compare lengths of different

paths we need something like an order relation, we need a binary relation s ≺ t,
that means that s is “shorter than or equal to” t. Obviously, this relation should be
reflexive: s ≺ s, and transitive: s ≺ t ∧ t ≺ u ⇒ s ≺ u. It may be antisymmetric:
if s is shorter than t and t shorter than s, then s = t, but situations are conceivable
in which ≺ does not have to be antisymmetric. Also, ≺ does not have to be linear:
neither s ≺ t nor t ≺ s may hold for certain s, t ∈ S. So, if we want to compare
distances, our semigroup S should be equipped with a (partial) order relation, or
at least with a quasi-order relation. There may be other natural conditions too.

For example, if i
s1−→ j is shorter than i

s2−→ j and j
t1−→ k is shorter than j

t2−→ k,

then it is natural to assume that i
s1−→ j

t1−→ k is shorter than i
s2−→ j

t2−→ k. In other
words, s1 ≺ s2 ∧ t1 ≺ t2 ⇒ s1t1 ≺ s2t2, that is, ≺ is stable (or compatible with
multiplication): (≺)(≺) ⊂ (≺), where ≺ is considered as a subset of the semigroup
S × S. What can we say about s−1 and t−1 if s ≺ t? We should not jump to the
conclusion t−1 ≺ s−1, typical for a group situation, because −1 does not necessarily

denote the “reciprocal” or “inverse.” Indeed, if i
s−→ j is shorter than i

t−→ j, we

may conclude that i
s−1

←−− j is shorter than i
t−1

←−− j, that is, s ≺ t⇒ s−1 ≺ t−1.
Also, we can interpret l(π) for a path π as the “work” done when we move along

π. In particular, we may consider “conservative fields” in which lengths of cycles
are “zero,” or at least an idempotent element. For example, if the work s is done

when we move along an arrow i −→ j, then i
s−→ j is the corresponding labeled

arrow, and we can conclude that the work is “undone” when we move back from j
to i along the same arrow. Thus, the length ss−1 of the path i

s−→ j ←− i is e, where
e is the identity element of S (or at least e is a “local identity”). This approach
leads us to groups and inverse semigroups.

On the other hand, geometric intuition may tell us that s ≺ ss−1s for all s ∈ S
because the length of a “zigzag” i

s−→ j
s←− i

s−→ j should be longer than or equal

to the length of i
s−→ j. This is a particular case of the “triangle inequality,” and

we may look into what the triangle inequality means in our situation. This is
a fruitful approach, for it led to a satisfactory solution of another longstanding
semigroup-theoretic problem. An involuted semigroup S is called representable by
binary relations if it is isomorphic to an involuted semigroup (Φ; ◦,−1 ) of binary
relations on a set. Here, if ϕ ∈ Φ, then ϕ−1 = {(i, j) | (j, i) ∈ ϕ}. The problem of
characterizing involuted semigroups representable by binary relations, first raised
in 1953, was solved in [6] using an aproach quite analogous to that used in the
proof of Theorem A. It turns out that the representability of an involuted semi-
group S is equivalent to a certain “triangular inequality” property for the metric
on labeled multi-graphs associated with S. This property gives rise to a system of
quasi-identities that characterize axiomatically the class of representable involuted
semigroups.

Another application of certain ideas used in the proof of Theorem A yielded a
proof of the following theorem (see [1]): for every (partially) ordered semigroup
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S = (S; ·;≤) there exists an isomorphism P onto an inclusion-ordered semigroup
of binary relations (Φ; ◦;⊂) such that, for any nonempty subset T ⊂ S for which
the greatest lower bound a = inf T exists in S, P(a) =

⋂
{P(t) | t ∈ T} (thus P

is an infima-preserving isomorphism). In particular, the construction used in [1]
leads to a representation P such that all the relations P(s) satisfy certain special
conditions. It would be interesting to see if the construction from [1] could yield
transitive representations by special types of relations.

Undoubtedly, metrics in labeled graphs can be used for solving other problems
concerning semigroups of binary relations.

Proof of Theorem B

Recall that the set of idempotents of a semigroup is ordered by ≤ (defined in
Step III). A completely simple semigroup is a simple semigroup with a minimal
idempotent. Historically, finite simple semigroups (which are obviously completely
simple) were the first class of semigroups, besides groups, for which a nontrivial
structural theorem was found (see [7] and [8], or Appendix A in [2]).

In Step III we saw that e′ ≤ e for idempotents e of a simple semigroup. In the
completely simple case all idempotents are primitive (see [7], [8], or [3]), and hence
e′ = e. Also, if e ∈ E(S) and es ∈ Ge for an element s of a completely simple
semigroup S, then s ∈ Ge (for example, see Theorem 2.52(iii) of [2].) In this case
Lemma 9 can be restated as follows.

Lemma 13. If s ∈ S, i ∈ Ge, and j ∈ Gf for some e, f ∈ E(S) in a completely
simple semigroup S, then the following are equivalent:

(i) (i, j) ∈ Qµ̃(s);
(ii) s = i−1qe,f j;
(iii) is = qe,f j;
(iv) j = qf,eis.

Proof. The alternative lengths in Lemma 9 coincide because e′ = e for all e ∈ E(S).
By Lemma 9, (i) ⇔ (ii). If (ii) holds, then is = ii−1qe,f j = eqe,f j = qe,f j, which
is (iii). Also, qe,fqf,k = beafbfak = beeoak = beak = qe,k for any e, f, k ∈ E(S).
In particular, qf,eqe,f = qf,f = f . Thus (iii) implies qf,eis = qf,eqe,f j = fj = j,
which is (iv). If (iv) is true, then s = es = i−1eis = i−1qe,fqf,eis = i−1qe,f j, which
is (ii).

Lemma 14. For a completely simple semigroup, Qµ̃ is a faithful transitive repre-
sentation by binary relations.

Proof. A completely simple semigroup is a union of its maximal subgroups. Let Hs

denote the maximal subgroup that contains s ∈ S (thus He = Ge for e ∈ E(S)).
Then HsHt ⊂ Hst and HsHtHs ⊂ Hs for all s, t ∈ S (see [2]).

Let (i, j) ∈ Qµ̃(st) for some s, t ∈ S, i ∈ Ge, and j ∈ Gf . By Lemma 13,
j = qf,eist. Let g be the identity element of the subgroup Hts. Define k = qg,eis =
gqg,eis ∈ HtsSHs ⊂ HtHsSHs ⊂ Hts = Gg. By Lemma 13, (i, k) ∈ Qµ̃(s).
Also, kt = qg,eist = qg,f qf,eist = qg,f j. By Lemma 13, (k, j) ∈ Qµ̃(t). It follows
that (i, j) ∈ Qµ̃(s) ◦ Qµ̃(t), so that Qµ̃(st) ⊂ Qµ̃(s) ◦ Qµ̃(t), and hence Qµ̃(st) =
Qµ̃(s) ◦Qµ̃(t) for all s, t ∈ S, because Qµ̃ is a transitive quasi-representation. Thus
Qµ̃ is a transitive representation.
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Suppose that Qµ̃(s) = Qµ̃(t) for some s, t ∈ S. If s ∈ Ge, then s = es = eqe,es,
and, by Lemma 13, (e, s) ∈ Qµ̃(s). Therefore, (e, s) ∈ Qµ̃(t), and hence t = eqe,es =
s. Therefore, Qµ̃ is faithful.

Remark. The representationQµ̃ for completely simple semigroups was defined (with
a different notation) in [5]. We mention only a few of its remarkable properties. A
representation R : S → BA is called simply transitive if, for any (a, b) ∈ A×A, there
exists exactly one s in S such that (a, b) ∈ R(s). As proved in [5], a semigroup S
has a faithful simply transitive representation if and only if it is completely simple
or completely 0-simple (the latter case occurs when S has a zero represented by the
empty binary relation). Thus completely simple semigroups are characterized by
the fact of being isomorphic to simply transitive semigroups of nonempty binary
relations. If P: S → BA is a faithful simply transitive representation of a completely
simple semigroup, inflate it as follows. For a set B and a mapping ϕ : B → A of
B onto A, define Pϕ : S → BB by the formula (b, c) ∈Pϕ(s) ⇔ (ϕ(b), ϕ(c)) ∈P(s)
for all b, c ∈ B. Thus every pair (i, j) ∈ A × A is replaced by a “rectangle”
ϕ−1(i) × ϕ−1(j) ⊂ B × B. It is not difficult to see that Pϕ is a faithful simply
transitive representation of S. It turns out that every faithful simply transitive
representation of S is an inflation of a representation (called canonical) that is not
a nontrivial inflation of any representation. Any two canonical representations of S
are similar. Here representationsR1 : S → BA1 and R2 : S → BA2 are called similar
if there exists a bijection θ : A1 → A2 such that (a, b) ∈ R1(s) ⇔ (θ(a), θ(b)) ∈
R2(s) for all s ∈ S and a, b ∈ A1. It is easy to see that the representation Qµ̃
from Lemma 14 is simply transitive. It turns out that it is exactly the canonical
representation of S introduced in [5].

Let S be a semigroup with a completely simple kernel K. Extend the canonical
representation Qµ̃ of K to a mapping R : S → BK by defining (i, j) ∈ R(s)⇔ is =
qe,f j for every s ∈ S, i ∈ Ge, and j ∈ Gf , where e, f ∈ E(K).

Lemma 15. R is a transitive representation of S. It is injective on K, and R(s) 6=
∅ for all s ∈ S.

Proof. Let (i, j) ∈ R(s) and (j, k) ∈ R(t) for i ∈ Ge, j ∈ Gf , and k ∈ Gg, where Ge,
Gf , and Gg are certain maximal subgroups of K. Then is = qe,f j and jt = qf,gk
in K. It follows that ist = qe,f jt = qe,f qf,gk = qe,gk, and hence (i, k) ∈ R(st).

Suppose that (i, k) ∈ R(st) for some i ∈ Ge and k ∈ Gg. Then kg = k and
ist = qe,gk, whence ist = qe,gk = qe,gkg = istg. Also, is, tg ∈ K, and, by Lemma
13, (i, k) ∈ Qµ̃(is · tg) = Qµ̃(is) ◦Qµ̃(tg). Thus (i, j) ∈ Qµ̃(is) and (j, k) ∈ Qµ̃(tg)
for some j ∈ Gf , where f is a suitable idempotent of K. By Lemma 13, is =
qe,f j and jtg = qf,gk. It follows from jf = j that isf = qe,f jg = qe,f j = is.
Principal left ideals of a completely simple semigroup are minimal (see [2]). Thus
ft ∈ Kft = Kis · ft = Kist = Kistg ⊂ Ktg, and hence ft = xtg for some x ∈ K.
It follows that jt = jft = jxtg = jxtgg = jtg = qf,gt. Therefore, (i, j) ∈ R(s) and
(j, k) ∈ R(t), which implies (i, k) ∈ R(s) ◦ R(t). Thus R(st) = R(s) ◦R(t), so that
R is a representation of S. By the definition of R and Lemma 13, R coincides with
Qµ̃ on K, and, by Lemma 14, R is injective on K. Also, R is transitive because Qµ̃
is transitive.

It is easy to see that (eo, eo) ∈ Qµ̃(eo). Since K is simple, it follows that eo = xty
for each t ∈ K and some x, y ∈ K. Thus Qµ̃(eo) = Qµ̃(x) ◦ Qµ̃(t) ◦ Qµ̃(y), and
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hence Qµ̃(t) 6= ∅. Finally, ks ∈ K for every k ∈ K and s ∈ S. It follows that
R(k) ◦R(s) = R(ks) = Qµ̃(ks) 6= ∅, and hence R(s) 6= ∅.

Lemma 16. Every finite semigroup with zero admits a faithful transitive represen-
tation by nonempty binary relations on a finite set.

Proof. In the proof of Lemma 4 we have already constructed a faithful transitive
representation for a semigroup S with zero 0. Here we produce another representa-
tion. Let M be the set of all subsets of S1 that contain 0, where S1 is the semigroup
obtained from S by adjoining an identity 1 (see [2]).

Define Z : S → BM as follows: (α, β) ∈ Z(s) ⇔ αs ⊂ β for any α, β ∈ M and
s ∈ S. If (α, γ) ∈ Z(s)◦Z(t), then (α, β) ∈ Z(s) and (β, γ) ∈ Z(t) for some β ∈M ,
so that αs ⊂ β and βt ⊂ γ. It follows that αst ⊂ βt ⊂ γ, and hence (α, γ) ∈ Z(st).
Conversely, suppose that (α, γ) ∈ Z(st), that is, αst ⊂ γ. Let β = αs. Then
0 = 0s ∈ αs = β, so that β ∈ M . Obviously, (α, β) ∈ Z(s) and (β, γ) ∈ Z(t).
It follows that Z(s) ◦ Z(t) = Z(st) for all s, t ∈ S. Clearly, (α, β) ∈ Z(0) for all
α, β ∈M . Thus Z is a transitive representation of S by binary relations. If s ∈ S,
then {0, 1}s = {0, s}, and so ({0, 1}, {0, s}) ∈ Z(s). It follows that Z(s) 6= ∅.

If Z(s) = Z(t) for s, t ∈ S, then ({0, 1}, {0, s}) ∈ Z(t), so that t ∈ {0, 1}t ⊂
{0, s}. Interchanging the roles of s and t, we obtain s ∈ {0, t}. It follows that s = t,
and hence the representation Z is faithful. It remains to observe that, if S is finite,
then M is finite.

Remark. The representation Z considered in the proof of Lemma 16 first appeared
in [4].

Now we can complete the proof of Theorem B. A finite semigroup S has a
completely simple kernel K. By Lemma 15, R is a transitive representation of S
by relations on K.

Consider the Rees factor semigroup T = S/K. Its elements are (S\K) ∪ {0},
where 0 is the zero and the multiplication in S\K is defined in the same way as
in S, except that whenever the product belongs to K, it is 0 (see [2]). Then T
is a finite semigroup with zero and a homomorphic image of S under an obvious
homomorphism ϕ : S → T . By Lemma 16, T has a faithful transitive representation
Z by binary relations on a finite set M . Combining ϕ and Z, we obtain a transitive
representation ζ = ϕ ◦ Z of S.

If Ri : S → BAi are representations of S for i = 1, 2, construct a representation
R1�R2 : S → BA1×A2 as follows:

(
(a1, a2), (b1, b2)

)
∈ R1�R2(s)⇔ (ai, bi) ∈ Ri(s)

for i = 1, 2, ai, bi ∈ Ai, and s ∈ S.
Let ρ = R�ζ. It is a representation of S by binary relations on a set K×M . Let

(i, α), (j, β) ∈ K ×M . There exists s ∈ K such that (i, j) ∈ Qµ̃(s) = R(s). Also,
ϕ(s) = 0 ∈ T , and Z(0) = M×M (see our proof of Lemma 16). Thus (α, β) ∈ ζ(s),
and hence

(
(i, α), (j, β)

)
∈ ρ(s). It follows that ρ is a transitive representation of

S.
Suppose that ρ(s) = ρ(t) for some s, t ∈ S; then R(s) × ζ(s) = R(t) × ζ(t)

and, since R(s) and ζ(s) are nonempty for all s ∈ S, we obtain R(s) = R(t) and
ζ(s) = ζ(t). If s /∈ K or t /∈ K, then ζ(s) = ζ(t) implies s = t. If s, t ∈ K, then
R(s) = R(t) implies s = t, by Lemma 15. Thus ρ is faithful.

Since S is finite, both K and M are finite, and hence K ×M is finite.
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of binary relations, Matematicheskĭı Sbornik 60 (1963), 292–303]. MR 27:3721

[5] B. M. Schein, A new representation theorem on completely [0]-simple semigroups, Semigroup
Forum 4 (1972), 312–320. MR 47:6923

[6] B. M. Schein, Representation of involuted semigroups by binary relations, Fundamenta Math-
ematicæ 82 (1974), 121–141. MR 50:2381

[7] A. K. Suxkeviq, Teori� De�stvi�, kak Obwa� Teori� Grupp, Vorone�, 1922
[A. K. Suschkewitsch, “Theory of Operation as the General Theory of Groups,” Voronezh,
1922].
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